Marjolaine Debant1,2,3, Patrice Hemon1,2,3, Christophe Brigaudeau1,3 , Yves Renaudineau2,3 and Olivier Mignen*,1,3
1INSERM U1078, Brest University Medical School, Brest, 2INSERM ESPRI, ERI29/EA2216 Laboratory of Immunotherapy and B Cell Pathologies, CHRU Morvan, European University of Brittany, Brest and 3 Network “Ion channels and cancer-Cancéropole Grand Ouest, (IC-CGO), France
ABSTRACT Ca2+ signaling is a key regulator of B lymphocyte cell fate and defects in this signaling pathway have been reported in numerous diseases such as Chronic lymphocytic leukemia (CLL). CLL is a B cell clonal disorder characterized by the accumulation of mature monoclonal CD5+ B cells. Although CLL could be considered to be a proliferative disease, most circulating CLL B cells are arrested in the G0 phase of the cell cycle and present both defects in calcium (Ca2+) homeostasis and signaling. The Ca2+ response to antigen ligation is heterogeneous and related, in part, to defects arising from the incapacity to respond to B cell receptor (BCR) engagement (anergy), to the expression of T cell kinases (e.g. Zap70), and to the presence of negative feedback regulation by phosphatases (e.g. SHP-1). Anergic CD5+ CLL B cells are characterized by an elevated basal Ca2+ level, IgM/CD79 downregulation, a constitutive activation of BCR pathway kinases, and an activation of the nuclear factor of activated T cells (NF-AT). Based on the Ca2+ response, patients are classified into three groups: unresponders, responders with apoptosis, and responders with entry in the cell cycle. Moreover, internal and direct interaction between leukemic BCR-HCDR3 epitopes at the plasma membrane and interaction between Bcl-2 and the IP3-receptor at the endoplasmic reticulum are also suspected to interfere with the intracellular Ca2+ homeostasis in CLL-B cells. As a whole, the Ca2+ pathway is emerging to play a key role in malignant CLL-B survival, disease progression, and last but not least, in the therapeutic response.
Keywords:*Corresponding author e-mail: olivier.mignen@univ-brest.fr