The International Journal of Developmental Biology

Int. J. Dev. Biol. 36: 439 - 443 (1992)

Vol 36, Issue 3

N-glycosylated proteins interfere with the first cellular migrations in early chick embryo

Published: 1 September 1992

N Zagris and M Panagopoulou

Department of Biology, University of Patras, Greece.

Abstract

Cell adhesion and migration properties which are known to play a crucial role in developmental events seem to be modulated by variations in glycosylation of glycoproteins. In the chick embryo, the extracellular matrix (ECM) appears as a loose meshwork of fibrillar material in the space between the epiblast and the hypoblast shortly before the first major cell migrations start. Chick embryos treated with tunicamycin (TN), a specific inhibitor of N-linked glycosylation of proteins, show little or no ECM, diminished cell adhesion and a dramatic alteration in the architecture of the epiblast and of the hypoblast. The first major cell migrations which signal the onset of PS and gastrula formation are inhibited irreversibly in these embryos. Tunicamycin induces a substantial change in the labeling pattern with change in mobility of some polypeptides and with the induction or marked accentuation of multiple charged species (isoforms) of polypeptides different from these already present in the control blastoderm. The N-linked glycosylation of protein(s) that are synthesized during the interaction of the epiblast and of the hypoblast seem to play a critical role in cell adhesion and in the morphogenetic movements of gastrulation in the early chick embryo.

Full text in web format is not available for this article. Please download the PDF version.