Int. J. Dev. Biol. 57: 535 - 543 (2013)
doi: 10.1387/ijdb.130240qw
© UPV/EHU Press

Fluorescent protein marker lines in maize: generation and applications

Qingyu Wu1, Anding Luo2, Tara Zadrozny1, Anne Sylvester2 and Dave Jackson*,1

1Cold Spring Harbor Laboratory, NY, and 2Department of Molecular Biology, University of Wyoming,Wyoming, USA

ABSTRACT Fluorescent proteins (FP) have significantly impacted the way that we study plants in the past two decades. In the post-genomics era, these FP tools are in higher demand by plant scientists for studying the dynamics of protein localization, function, and interactions, and to translate sequence information to biological knowledge that can benefit humans. Although FP tools have been widely used in the model plant Arabidopsis, few FP resources have been developed for maize, one of the most important food crops worldwide, and an ideal species for genetic and developmental biology research. In an effort to provide the maize and cereals research communities with a comprehensive set of FP resources for different purposes of study, we generated more than 100 stable transformed maize FP marker lines, which mark most compartments in maize cells with different FPs. Additionally, we are generating driver and reporter lines, based on the principle of the pOp-LhG4 transactivation system, allowing specific expression or mis-expression of any gene of interest to precisely study protein functions. These marker lines can be used not only for static protein localization studies, but will be useful for studying protein dynamics and interactions using kinetic microscopy methods, such as fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and fluorescence resonance energy transfer (FRET). All of the constructs and maize marker lines are publicly available through our website, http://maize.jcvi.org/cellgenomics/index.php

Keywords:

fluorescent protein, FRET, maize, pOp, LhG4

*Corresponding author e-mail: jacksond@cshl.edu