The International Journal of Developmental Biology

Int. J. Dev. Biol. 44: 819 - 835 (2000)

Vol 44, Issue 8

Dictyostelium discoideum: a model system for differentiation and patterning

Published: 1 December 2000

R Escalante and J J Vicente

Instituto de Investigaciones Biomédicas. CSIC/UAM, Madrid, Spain. rescalante@iib.uam.es

Abstract

In Dictyostelium, development begins with the aggregation of free living amoebae, which soon become organized into a relatively simple organism with a few different cell types. Coordinated cell type differentiation and morphogenesis lead to a final fruiting body that allows the dispersal of spores. The study of these processes is having increasing impact on our understanding of general developmental mechanisms. The availability of biochemical and molecular genetics techniques has allowed the discovery of complex signaling networks which are essential for Dictyostelium development and are also conserved in other organisms. The levels of cAMP (both intracellular and extracellular) play essential roles in every stage of Dictyostelium development, regulating many different signal transduction pathways. Two-component systems, involving histidine kinases and response regulators, have been found to regulate intracellular cAMP levels and PKA during terminal differentiation. The sequence of the Dictyostelium genome is expected to be completed in less than two years. Nevertheless, the available sequences that are already being released, together with the results of expressed sequence tags (ESTs), are providing invaluable tools to identify new and interesting genes for further functional analysis. Global expression studies, using DNA microarrays in synchronous development to study temporal changes in gene expression, are presently being developed. In the near future, the application of this type of technology to the complete set of Dictyostelium genes (approximately 10,000) will facilitate the discovery of the effects of mutation of components of the signaling networks that regulate Dictyostelium development on changes in gene expression.

Full text in web format is not available for this article. Please download the PDF version.