Int. J. Dev. Biol. 58: 363 - 368 (2014)
doi: 10.1387/ijdb.140029mu
© UPV/EHU Press

Differential expression of arid5b isoforms in Xenopus laevis pronephros

Ronan Le Bouffant, Anne-Claire Cunin, Isabelle Buisson, Jérôme Cartry, Jean-François Riou and Muriel Umbhauer*

Sorbonne Universités, UPMC Univ Paris 06 and CNRS, UMR7622 Developmental Biology, Paris, France

ABSTRACT Arid5b belongs to the ARID family of transcription factors characterised by a helix-turn-helix motif- based DNA-binding domain called ARID (A-T Rich Interaction Domain). In human, alternative splicing leads to long and short isoforms (isoform1 and 2, respectively) which differ in their N-terminal part. In this study, we report the cloning and expression pattern of Xenopus laevis arid5b. We have isolated a full length cDNA that shows homology with the human arid5b isoform1. Furthermore, 5’RACE experiments revealed the presence of a shorter isoform equivalent to the human isoform2. Temporal expression analysis by RT-qPCR indicated that X. laevis arid5b isoform1 and isoform2 are differentially expressed during development. Isoform1 is strongly expressed maternally, while isoform2 expression is essentially restricted to tailbud stages. Spatial expression analysis by whole mount in situ showed that arid5b is predominantly expressed in the developing pronephros. Arid5b mRNAs are detected in the antero-dorsal part of the pronephros anlage at the early tailbud stage and later on, in the proximal part of the pronephric tubule. RT-qPCR analyses with primers that allow to discriminate isoform1 from isoform2 showed that the latter is enriched in the pronephros anlage. In agreement with a specific pronephric signature of the isoform2, we also observed that isoform2 but not isoform1 is upregulated in animal caps induced to form pronephric tissue in response to activin A and retinoic acid. These results indicate that the two arid5b isoforms are differentially expressed and likely play different roles during early Xenopus development.


arid5b, Xenopus, pronephros

*Corresponding author e-mail: