Int. J. Dev. Biol. 54: 585 - 589 (2010)
doi: 10.1387/ijdb.082786zc
© UPV/EHU Press

Intraovarian transplantation of stage I-II follicles results in viable zebrafish embryos

Zsolt Csenki1, Andreas Zaucker2,3, Balázs Kovács4, Yavor Hadzhiev2,3, Árpád Hegyi1, Katalin-Kinga Lefler1, Tamás Müller1, Róbert Kovács1, Béla Urbányi*,1 László Váradi*,1 and Ferenc Müller*,2,3

1Department of Fish Culture, Institute of Environmental and Landscape Management, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllo, Hungary, 2Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany, 3Department of Medical and Molecular Genetics, Division of Reproductive and Child Health, Medical School, University of Birmingham, UK and 4Regional University Center of Excellence in Environmental Industry Based on Natural Resources, Szent István University Gödöllo, Hungary

ABSTRACT Maternal gene products drive early embryogenesis almost exclusively until the mid blastula transition (MBT) in many animal models including fish. However, the maternal contribution to embryogenesis does not stop at MBT, but continues to be an essential regulator of key developmental processes. The extent to which maternal effects contribute to embryonic and larval development is hard to estimate due to the technical difficulty of interfering with maternal gene products by conventional forward and reverse genetic tools. Therefore, novel methods to manipulate maternal factors in oocytes need to be developed. Here, we provide a proof of principle protocol for transplanting stage I-II zebrafish follicles into recipient mothers where donor stage I oocytes can develop to stage IV in 2 weeks and in 3 weeks they develop into mature eggs and produce viable offspring. Moreover, we show that simple microinjection of stage I-II follicles with RNA results in reporter gene expression in oocytes and paves the way for developing tools for interfering with maternal gene activity. This early stage oocyte transplantation protocol provides a means to study cellular and molecular aspects of oocyte development in the zebrafish.

Keywords:

oogenesis, follicle, transplantation, transgenic, maternal effect

*Corresponding author e-mail: f.mueller@bham.ac.uk