The in vivo and in vitro effects of Bone Morphogenetic Protein-2 on the development of the chick mandible

SUNETRA EKANAYAKE* and BRIAN K. HALL
Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Canada

ABSTRACT During embryonic development, neural crest derived mesenchymal (ectomesenchymal) cells in the chick mandible give rise to cartilage and membrane bone. Signaling molecules involved in the development of the mandible are less understood. To examine whether BMP-2 is involved in morphogenesis and growth of the mandible in vivo, agarose beads, loaded with BMP-2 at concentrations of 5 to 150 ng/μl were implanted into the mandible at HH stage 22 and embryos were maintained in shell-less culture. To examine whether BMP-2 is involved in osteogenic or chondrogenic differentiation, mandibular ectomesenchyme from HH stage 22 embryos was cultured in the absence of mandibular epithelium, but in the presence of BMP-2 or BMP-2 and/or type IV collagen. Chondrogenesis and osteogenesis were examined by histological, histochemical and immunohistochemical methods. Implantation of BMP-2-containing beads in vivo retarded mandibular growth and morphogenesis in a dose-dependent manner. BMP-2 induced localized death of ectomesenchymal cells in the vicinity of the implanted bead and in proportion to the concentration of BMP-2 applied. Neither BMP-2 alone, nor BMP-2+collagen type IV, was sufficient to initiate osteogenesis in vitro in the absence of epithelium. BMP-2 inhibited chondrogenesis both in vivo and in vitro. Cartilage morphology was rod-like in the absence of BMP-2 but nodular in ectomesenchyme cultured in the presence of BMP-2. These results are discussed in relation to the stimulatory and inhibitory effects of BMPs on skeletal development.

KEY WORDS: bone morphogenetic protein, mandible, chondrogenesis, osteogenesis

Introduction

The mandibular skeleton of the chick is derived from migratory neural crest cells. Ectodermal in origin, but mesenchymal in nature, they are known as ectomesenchymal cells. During early stages of development (beginning at 5.5 days of incubation; Hamburger and Hamilton (1951) stage 26), ectomesenchymal cells produce a single cartilaginous rod — Meckel’s cartilage — in the core of each half of the mandibular arch. From 7 to 7.5 days of incubation (HH stage 31) onwards, ectomesenchymal cells give rise to membrane bone by direct osteogenesis. By day 14, membrane bone surrounds Meckel’s cartilage along the length of the lower jaw (Romanoff, 1960; Murray, 1963).

It has been shown previously that epithelial-mesenchymal interactions play key roles in inducing both chondrogenesis and osteogenesis from mandibular ectomesenchyme (Hall, 1987b, 1988a, 1994). The epithelial-mesenchymal interaction that initiates chondrogenesis in the chick occurs during migration of neural crest cells from the neural tube (Hall and Tremaine, 1979; Bee and Thorogood, 1980). As evident from chondrogenesis in clonal cell culture, by the time they reach the mandibular region, a sub population of cells can undergo chondrogenesis independent of the mandibular environ-
Fig. 1. Effect of local application of BMP-2 on mandibular development in vivo. Affi-Gel blue agarose beads loaded with BMP-2 were implanted into one side of the mandible at HH stage 22 and embryos were maintained in shell-less culture. (A) The face of an embryo that received a bead loaded with BMP-2 at a concentration of 50 ng/µl, and was cultured for 6 days. The mouth remains open due to the asymmetry of the lower jaw as seen in C. Abbreviations: lj, lower jaw; t, tongue; uj, upper jaw. (B) The face of a control embryo that received a bead without BMP-2, and was cultured for 1 day. Note the location of the bead (arrow). Both sides of the mandibular process are equal in size. (C) The face of an embryo that received a bead loaded with BMP-2 at a concentration of 75 ng/µl, and was cultured for 1 day. The implanted side of the mandibular process is smaller than the unimplanted side. Arrow indicates the location of the bead. Bar: A, 1 mm; B-C, 0.8 mm.

mesenchyme (Wedden, 1987; Richman and Tickle, 1989; Mina et al., 1994; Richman, 1994). Msx-1 is upregulated by epithelial-mesenchymal interaction (Takahashi et al., 1991; Phippard et al., 1996; Watanabe and Le Douarin, 1996), downregulated where such interactions fail to occur, as in the diastema of rodent dentition (Tureckova et al., 1995), and may mediate mandibular growth (Mina et al., 1995). Signals regulating growth are reciprocal: mandibular epithelium regulates proliferation of mesenchyme, while mesenchyme regulates epithelial proliferation (Hall and Coffin-Collins, 1990; Minkoff, 1991).

Recent studies indicate that BMP-2 and BMP-4, the BMPs related to the Drosophila decapentaplegic (DPP) gene, play important roles in epithelial-mesenchymal interactions during embryonic development (Lyons et al., 1990; Jones et al., 1991; Vainio et al., 1993; Bitgood and McMahon, 1995; Phippard et al., 1996), are involved in induction of mesoderm and neural ectoderm (see, for example, Jones et al., 1992; Hawley et al., 1995; Liem et al., 1995), and, along with other growth factors, can regulate the fate of neural crest cells and their derivatives (Hall and Ekanayake, 1991; Reissmann et al., 1996; Shah et al., 1996).

BMPs were initially identified as the cartilage and bone inducing activity present in demineralized bone matrix (Urist, 1965; Sampath and Reddi, 1981; Wang et al., 1988, 1990; Wozney et al., 1988; Celeste et al., 1990, 1994; Ozkaynak et al., 1992). Eight of the nine BMPs reported to date (BMP-2-9) belong to the TGF-β superfamily. BMP-1 has now been shown to be a type 1 procollagen C-proteinase that cleaves the COOH-propeptides of procollagens I-III (Kessler et al., 1996). When introduced in vitro, DPP-related BMPs stimulate cartilage formation by chick limb bud mesenchymal cells and established

lines of multipotential progenitor cells (Chen et al., 1991a,b, 1992; Ahrens et al., 1993; Wang et al., 1993; Luyten et al., 1994), and enhance chondrogenesis by chondrocyte cultures. BMPs also enhance osteoblast differentiation in established lines of multipotential progenitor cells and primary cultures of rat osteoblasts (Yamaguchi et al., 1991; Ohta et al., 1992; Ahrens et al., 1993; Wang et al., 1993; Amédée et al., 1994; Rickard et al., 1994; Centrella et al., 1995; Yamaguchi, 1995).

The first mutant involving BMP has been identified in the short ear mouse, in which a large portion of the BMP-5 gene is deleted. Action at the prechondrogenic condensation stage results in short ears, missing ribs and absence of the xiphoid process of the sternum (Kingsley et al., 1992; King et al., 1994; Kingsley, 1994; Hall and Miyake, 1995). The Talpid (ta2) mutation in the chick has
Fig. 3. Effects of local application of BMP-2 on the development of Meckel's cartilage as seen in cleared and stained whole-mount preparations of embryos maintained in shell-less culture. The implanted side of the mandible is shown with an asterisk. The location of the anteriormost position of the quadrate (APQ) in relation to the ceratobranchial cartilage (c) of the unaffected hyobranchial skeleton is marked with a dotted line, drawn perpendicular to a line joining the articular and otic processes of the quadrate (q). The ceratobranchial-epibranchial (e) joint is marked with a double arrow. (A) A control embryo that received an agarose bead without BMP-2 and was cultured for 6 days. Note that both sides of the mandible are equal in size. Implanting the bead has not affected development of Meckel's cartilage (mc). The anteriormost position of quadrate is close to the ceratobranchial-epibranchial joint. (B,C,D and E) Embryos that received an agarose bead loaded with BMP-2 at a concentration of 150, 75, 50, or 25 ng/ml, respectively. Embryos in (C-E) were maintained in shell-less culture for 6 days, the embryo in (B) for 4 days. Note that in (B) Meckel's cartilage (mc) on the implanted side is drastically shortened. Articulation processes at the proximal end of the cartilage are almost completely missing. The quadrate (q) is shifted forward. The APQ is more anterior, further from the ceratobranchial-epibranchial joint. Bone has not differentiated at this stage. In (C) the implanted bead is visible (arrowhead). Meckel's cartilage (mc) is shorter than on the unimplanted side because the proximal region has failed to form. The retroarticular process (r) at the proximal tip of Meckel's cartilage is present, but malformed. (D) The implanted bead can be seen (arrowhead); however, it has fallen from the implanted position to a place near the hyobranchial skeleton (h) during clearing and staining. A portion of the shaft of Meckel's cartilage (mc) is missing. The proximal articulation processes of Meckel's cartilage are all present. Morphology of the quadrate (q) has not been affected, although the quadrate has moved forward, placing the APQ at a more anterior level, in line with the middle of the ceratobranchial cartilage (c). (E) The bead (arrowhead) can be seen at the proximal end of Meckel's cartilage (mc). The shaft of Meckel's cartilage is less affected. The articulation processes at the proximal end of Meckel's cartilage are all missing. However, the morphology of the adjacent quadrate (q) is not affected. The quadrate is slightly shifted forward and the APQ is somewhat further from the ceratobranchial-epibranchial joint than in the control embryo shown in (A). In all figures: a, articular facet of Meckel's cartilage;aq, articular process of quadrate; c, ceratobranchial cartilage; e, epibranchial cartilage; h, hyobranchial skeleton; m, medial process of Meckel's cartilage; o, otic process of quadrate; or, orbital process of quadrate; q, quadrate; r, retroarticular process of Meckel's cartilage. Bar: A,C,D, 2.5 mm; B, 1.6 mm; E, 2.2 mm.

also recently been shown to be defective in BMPs and sonic hedgehog, a patterning gene upstream of BMP (Francis-West et al., 1995). Sonic hedgehog is also expressed in the mouse mandible concomitant with epithelial-mesenchymal interaction (Kronmiller et al., 1995).

Most information on the role of BMPs on embryonic development comes from the localization of expression sites of mRNAs by in situ hybridization. In addition to localization in developing cartilage and bone, BMPs, especially BMP-2 and 4, are expressed at a number of embryonic sites where epithelial-mesenchymal interactions occur (Lyons et al., 1989, 1990, 1995; Jones et al., 1991; Francis-West et al., 1994; Bitgood and McMahon, 1995; Dudley et al., 1995; Liem et al., 1995; Luo et al., 1995). Exogenous introduction of BMP-4 induces expression of transcription factors by dental mesenchyme in a manner similar to that caused by dental epithelium (Vainio et al., 1993). Moreover, BMP-2 is expressed in the
Fig. 4. Histological analysis of the head of an embryo with a bead loaded with 75 ng/μl BMP-2 implanted on one side of the mandible (asterisk) and maintained in shell-less culture for 8 days. Age of the embryo is equivalent to 12 days in ovo. The head of the embryo was serially sectioned and stained with Alcian blue for cartilage and direct red for bone. (A) A section through the pharynx showing the proximal end of the mandible (m). Note that Meckel's cartilage (mc) is present only on one side of the jaw. Areas marked with ‘B’ and ‘C’ are enlarged in (B and C). tng, tongue; pc, pharyngeal cavity. (B) Unimplanted side of the mandible with Meckel's cartilage (mc). Mandibular bones are absent at the level of the pharynx (C) Implanted side of the mandible. Both cartilage and bone are absent. Only loosely arranged mesenchymal cells are present in the area. (D) A section through a more distal region of the mandible (m) of the same embryo. Meckel's cartilage (mc) is present only in the unimplanted side, producing an asymmetrical jaw, leaving the mouth open (arrow). The areas marked with ‘E’ and ‘F’ are enlarged in E and F. bc, buccal cavity. (E) Unimplanted side of the mandible showing Meckel's cartilage (mc) and differentiating membrane bone (b) around it. (F) Implanted side of the mandible. Neither cartilage nor bone are present. Bar: A, D, 250 μm; B, E, F, 38 μm; C, 50 μm.

Basement membrane of both embryonic chick and mouse mandibular epithelium or cranial ectoderm at times consistent with a role in epithelial-mesenchymal signaling (Hall, 1988a, 1994; Lyons et al., 1989; Francis-West et al., 1994; Bennett et al., 1995; Liem et al., 1995). Furthermore, BMP-3, -4, and -7 bind with high affinity to type IV collagen, the main collagen in epithelial basement membrane (Paralkar et al., 1990, 1992; Vukicevic et al., 1994).

To examine the action(s) of BMP-2 on mandibular development, morphogenesis, and growth in vivo, agarose beads loaded with recombinant human BMP-2 were implanted into one side of the mandibular arch of chick embryos at HH stage 22. Human, mouse and chick BMP-2 share some 80% amino acid identity (Francis et al., 1994). The embryos were established in shell-less culture, and examined up to 8 days later for skeletal tissue differentiation, morphogenesis, growth, and cell death in the mandible. To examine whether BMP-2 could substitute for the mandibular epithelium and induce osteogenesis in mandibular ectomesenchyme or enhance chondrogenesis from prechondrogenic cells, mandibular ectomesenchyme from HH stage 22 chick embryos was cultured, without epithelium, on a substrate coated with BMP-2 alone, or with BMP-2 and type IV collagen.

Results

Effect of local application of BMP-2 in vivo

Whole-mounts

BMP-2 was applied locally by implanting agarose beads loaded with BMP-2 into one side of the mandibular arch. The bead was placed in the proximal region of the mandibular process and embryos were maintained in shell-less culture for up to 8 days. As controls, agarose beads loaded with BSA in PBS were implanted.
Effect of BMP-2 on development of chick mandible

Fig. 5. Cell death analysis by Nile blue sulfate (A and B) and neutral red (C and D) of embryos implanted with control or BMP-2-loaded beads and maintained in shell-less culture for 1 day. (A) The mandible of a control embryo with an implanted bead (b) without BMP-2. There is no cell death around the bead. (B) The mandible of an embryo with an implanted bead loaded with 50 ng/μl BMP-2. Blue granular staining indicates cell death, which is localized to the site of the bead. (C) The mandible of an embryo with an implanted bead loaded with 75 ng/μl BMP-2. Red granular staining adjacent to the bead (b) indicates cell death. The implanted side of the mandible is much smaller than the unimplanted side. (D) The mandible of an embryo with an implanted bead (b) loaded with 25 ng/μl BMP-2. Cell death is evident, but to a lesser degree than in embryos treated with higher concentrations of BMP-2 (compare D to B and C). There is no recognizable size difference between implanted and unimplanted sides of the mandible. Bar: A, 312 μm; B, D, 390 μm; C, 500 μm.

As beads were only implanted on one side, the contralateral arch served as an internal control.

Morphogenesis and growth of the mandibles in control embryos was normal. However, embryos that receivedagarose beads loaded with BMP-2 had jaw malformations on the implanted side; the unimplanted side was normal. The implanted side of the jaw was shorter, the mandible deviated to one side, and the mouth was open (Fig. 1A). The upper jaw and the rest of the face was normal, i.e., the effect was localized to the region implanted with the bead. The effect of BMP-2 was directly related to the concentration used to load the beads (Fig. 2). At concentrations of 75-150 ng/μl, all embryos were affected. At 50 ng/μl, 50% of implanted embryos had malformed jaws. At concentrations of 10 ng/μl or less, all embryos had normally developing jaws.

The effect of BMP-2 was apparent within one day. At this time, the left and right mandibular processes of embryos implanted with beads loaded with BSA were equal in size. In embryos with a bead loaded with a high concentration of BMP-2, the implanted side of the mandibular process was very small in comparison with the unimplanted side (compare Fig. 1B and C). Implantation of beads treated with either BSA or BMP-2 did not cause an inflammatory response by mandibles (Fig. 1B and C). Vascular system was not well developed in the mandible at the age (HH stage 22) that the implantations were performed.

Older embryos that were cleared and stained with Alcian blue and alizarin red as whole-mounts indicated that Meckel's cartilage was largely affected by exogenous BMP-2. Meckel's cartilages in control embryos implanted with beads loaded with BSA were normal (Fig. 3A). Embryos implanted with BMP-2-loaded beads had major deficiencies in Meckel's cartilages and other elements of the mandibular arch skeleton on the implanted but not on the unimplanted side. The effect was concentration dependent (compare Fig. 3B and D). Variation in the degree of malformation among individuals in the same treatment group was attributed to variation in the size of individual agarose beads.

In all affected embryos, Meckel's cartilage in the implanted side was shorter than on the unimplanted side. The bead was implanted proximally and malformation was most evident at the proximal end of Meckel's cartilage. In extreme cases (embryos with beads treated with BMP-2 at 150 ng/μl), the articulating elements of Meckel's cartilage (retroarticular process, medial process and the facet that articulates with the articular process of the quadratid) were completely missing and Meckel's cartilage was a very small rod restricted to the distal end of the jaw (Fig. 3B). In embryos that received beads loaded with 50-75 ng/μl BMP, Meckel's cartilage in the implanted side was shorter than on the unimplanted side. The articulation elements and shaft of the cartilage adjacent to the bead were malformed to different degrees (Fig. 3C, D). In embryos that received beads treated with 25 ng/μl BMP-2, effects on the length of Meckel's cartilage were less dramatic. However, the articulation was malformed (Fig. 3E).

Although morphology of the quadratid that articulate with Meckel's cartilage was unaffected, it appeared to be displaced anteriorly, forming an abnormal articulation with the shortened and deformed Meckel's cartilage.

Displacement of the quadratid was examined by comparing the location of the anteriormost position of the quadratid (APQ) relative to the ceratobranchial-epibranchial joint of the adjacent
hyobranchial skeleton among control and BMP-treated embryos. The APQ was projected onto the ceratobranchial cartilage by drawing a line from the APQ perpendicular to the axis that goes through the articular and orbital processes of the quadrate, as shown in Figure 3A, B, D and E. In control embryos, the APQ is at a level very close to the hyobranchial-epibranchial joint. In BMP-2 treated embryos, the APQ is projected more anteriorly on the ceratobranchial cartilage. Anterior displacement of the quadrate was greater with increasing concentrations of BMP-2. The adjacent hyobranchial skeleton, including the median copula and laterally extended ceratobranchial and epibranchial cartilages, were unaffected by BMP-2.

In neither control nor in BMP-2-treated embryos could mandibular bones be visualized by alizarin red-staining of whole-mounts of embryos maintained in shell-less culture up to 8 days. The Ca++-deficient environment in shell-less culture is known to delay mineralization (Jacenko and Tuan, 1986b; Tuan et al., 1991).

Tissue organization evident by histological analysis

Histological examination of serial sections of the heads of embryos implanted with beads loaded with BMP-2 provided information about the effect of BMP-2 on cell and tissue organization in the mandible. The results are in accordance with findings from the whole-mounts.

In the unimplanted side, a rod-like cartilage was present, running along the whole length of the mandible. In transverse sections stained with Alcian blue, it appeared as a blue-stained circular cartilage consisting of polygonal cells embedded in extracellular matrix. Figure 4 illustrates two such transverse sections taken at the level of the pharynx and the buccal cavity of a BMP-2-treated embryo, showing both the unimplanted and implanted sides. Cartilage was absent in the BMP-2-treated side of the mandible in the proximal region where the bead had been implanted (Fig. 4A, C, D and F). In this region cells appeared mesenchymal and loosely organized. They were not organized into any particular structure (Fig. 4C, F).

Membrane bone was also absent in the side of the mandible implanted with a BMP-soaked bead, where cartilage was absent. In contrast, developing membrane bone (red staining areas in Fig. 4D and E) could be seen in the unimplanted side. Bone surrounded the cartilage along most of its length except for the most proximal (pharyngeal) region.

Cell death

Since BMP-2 reduces the size of the mandibular process within one day after implantation (Fig. 1C), we examined whether malformation of Meckel's cartilage and surrounding bones were due to death of ectomesenchymal cells. Staining BMP-2-treated embryos with vital dyes revealed dead cells in the area adjacent to the bead but not in the unimplanted side of the mandible in the same embryo. Nor was cell death evident in the mandibles of embryos implanted with beads soaked in PBS containing BSA (compare Fig. 5A and B), i.e., cell death is not caused by injury associated with implanting the bead, but by BMP-2 adsorbed into the bead. The amount of cell death was in proportion to the concentration of BMP-2 applied (Fig. 5B-D). Similar results were obtained using either neutral red and Nile blue sulfate to visualize cell death.

Effect of BMP-2 on chondrogenesis in vitro

Histology and immunohistochemistry of control cultures

Mandibular ectomesenchymal explants cultured on either tissue culture plastic or type IV collagen-coated substrate were used as controls. Histological examination revealed that in both controls explants produced cartilage characterized by spherical cells with Alcian blue staining matrix (Fig. 6A, B). Immunohistochemical...
Fig. 7. Expression of type II collagen by mandibular ectomesenchymal cells undergoing chondrogenesis in explant culture. Cryosections of 6-day-old cultures were stained with a monoclonal antibody against chicken type II collagen followed by FITC-conjugated secondary antibody. Positive staining is indicated by yellowish green fluorescence. All four groups of cultures express type II collagen in the cartilage matrix. (A) Control, cultured on plastic. (B) Control, cultured on type IV collagen. (C) Ectomesenchyme cultured in plates coated with BMP-2. (D) Ectomesenchyme cultured in plates coated with BMP-2 and type IV collagen. Bar, 25 µm.

staining with anti-chicken type II collagen antibody revealed this cartilage specific collagen in the matrix (Fig. 7A,B). In both control groups, cartilage morphology was rod-like, similar to the normal morphology of Meckel’s cartilage in vivo. Rod-like morphology was more prominent in explants cultured on plastic, in which almost the whole explant was comprised of cartilage. Non-chondrogenic cells, appearing fibroblastic, were limited to a thin layer around the cartilage rod (Fig. 6A). In explants cultured on type IV collagen-coated substrata, more fibroblast-like cells surrounded the cartilage rod than in explants cultured on plastic.

BMP-2 treated explants

Explants cultured in culture plates coated with either BMP-2 alone or BMP-2+type IV collagen also produced cartilage, evident as cells surrounded by Alcian blue staining matrix (Fig. 6C,D) containing type II collagen (Fig. 7C,D). However, in both cultures, chondrocytes were not organized into a rod-like morphology. Rather, they existed as a large number of cartilage nodules (compare Fig. 6C and D with 6A and B). Since culturing mesenchyme on type IV collagen alone did not influence rod-like morphology, disruption of the rod-like cartilage morphology seen in cultures treated with BMP-2 alone or BMP-2+type IV collagen was due to BMP-2. In these cultures intermodular spaces as well as peripheral region were occupied by fibroblasts. There were more fibroblasts in these cultures than in control explants cultured on plastic (compare Fig. 6C and D with 6A and B).

Collagen type X expression

Expression of type X collagen is an indication of maturation of cartilage, which in vivo, precedes endochondral ossification. Although chondrocytes in Meckel’s cartilage do not express type X collagen in vivo, they express type X collagen in vitro in response to ascorbic acid, a commonly used supplement in the medium to enhance chondrogenesis (Ekanayake and Hall, 1994b). In vitro expression of type X collagen is then followed by mineralization of cartilage matrix.

To determine whether exogenous BMP-2 affected expression of type X collagen in vitro, we examined 15-day-old explant cultures using a monoclonal antibody raised against chicken type X collagen. BMP-2 did not affect expression of type X collagen in the two groups of control cultures, positive antibody staining was present in the extracellular matrix throughout the cartilage rod (Fig. 8A,B). In the two groups of BMP-2 treated cultures (BMP-2 with and without type IV collagen), type X collagen was present in the extracellular matrix of chondrocytes arranged into nodules throughout the culture (Fig. 8C,D). Figure 8E-H shows phase contrast images of Figure 8A-D, respectively.

Mineralization of cartilage

Mineralization of cartilage was examined by histochemical staining with AgNO₃ following Von Kossa’s method. Dark granular patches indicate positive staining. All four culture groups indicated mineralization of cartilage matrix beginning at 11-12 days of culture. Mineralization spread over a larger area of cartilage with time. By day 15 a considerable portion of the cartilage rod was mineralized in both control groups (Fig. 9A,B). Cartilage nodules produced by explants cultured on BMP-2 alone or BMP-2+type IV collagen were either completely or partially mineralized by day 15 (Fig. 9C,D).

Exogenous BMP-2 does not induce osteogenesis of mandibular ectomesenchyme in vitro

Treatment of mandibular ectomesenchyme with BMP-2 in the absence of epithelium did not induce bone formation. Neither
groups of control explant cultures (mesenchyme alone cultured on plastic or on type IV collagen), nor those explants cultured in plates coated with either BMP-2 alone or BMP-2+type IV collagen, produced bone, as evident by histological analysis of serial sections using direct red to visualize bone (Fig. 1A-D). Histochemical staining by Von Kossa’s method also indicated the absence of membrane bone in these specimens.

Discussion

Effects of BMP-2 implanted in vivo

To examine whether chondrogenesis of mandibular ectomesenchyme in vivo would be affected by exogenous BMP-2, agarose beads loaded with BMP-2 were implanted into the proximal region on one side of the mandible. Agarose beads have been previously used as a vehicle for slow release of peptides (Schreibert et al., 1986; Hayamizu et al., 1991; Vainio et al., 1993; Gañán et al., 1996). Our results indicate that exogenous BMP-2 suppressed the development of Meckel’s cartilage in the area adjacent to the implanted bead in a close-dependent manner. Highest activity was seen with 75-150 ng/μl. BMP-2 had no effect on cartilage development at concentrations below 10 ng/μl.

The development of membrane bone was also suppressed by exogenous BMP-2. It is important to note that, although BMP-2 caused retardation of the mandibular skeleton, it did not affect the development of the quadrate which is also a derivative of the first visceral arch. The adjacent hyobranchial skeleton was also unaffected. Therefore, BMP-2 acts within a limited concentration range and over a limited area. Francis-West et al. (1994) have reported that both BMP-2 and BMP-4 are expressed in a temporal sequence in the epithelium and mesenchyme mainly in the distal region of the mandibular primordia suggesting a possible role in mandibular development. Present study indicates that when BMP-2 is introduced in the proximal region of the mandibular primordium, it exerts a negative effect on chondrogenesis and osteogenesis as well as growth and morphogenesis of the mandible as a whole. Both temporal and spatial patterns of expression of BMP-2 influence mandibular development.

Mechanism of in vivo action of exogenous BMP-2

Complete absence of cartilage and bone in the area where a bead loaded with BMP-2 was implanted could be explained by either the death of ectomesenchymal cells or the inhibition of differentiation of ectomesenchymal cells into cartilage and bone caused by introduced BMP-2. No evidence for premature differentiation and removal of cartilage was found.

There are now a number of reports of BMP either inhibiting or slowing differentiation or initiating cell death or apoptosis. BMPs have been reported to cause cell death in neural crest cells. BMP-4, expressed in rhombomeres 3 and 5, upregulates Msx-2 and initiates apoptosis of neural crest cells in these rhombomeres, but not in adjacent, even-numbered rhombomeres (Graham et al., 1994; Lumsden and Graham, 1996). Interdigital apoptosis in the limb buds of developing chick embryos is also mediated by BMPs (Gañán et al., 1996; Zou and Niswander, 1996). The diastema of the rodent dentition, i.e. the area of the jaw in which teeth fail to develop, is a region in which BMP-2 and -4 and Msx-2 are downregulated as tooth primordia are removed by apoptosis (Tureckova et al., 1995).

BMP-2 has also been reported to promote expression of the inhibitor of differentiation (Id) gene in osteoblast-like cells (Ogata et al., 1993) and to inhibit myogenesis but promote chondrogenesis from chick limb bud cells (Duprez et al., 1996b). Of interest is the finding that overexpression of BMP-2 and BMP-4 in chick limb buds in vivo enhanced chondrogenesis by enhancing recruitment of adjacent cells, but inhibited chondrogenesis and osteogenesis (Duprez et al., 1996a), a finding that highlights the divergent actions that the same application of BMP can have on cell types at different stages of differentiation.

We observed that within one day after implantation, BMP-2 drastically reduces the size of the mandibular process. This indicates that BMP-2 reduces cell number. Cell death studies using neutral red and Nile blue sulfate show that in fact BMP-2 causes death of cells adjacent to the bead and that cell death is proportional to the concentration of BMP-2 applied. Control embryos that received beads without BMP-2 did not show cell death.

Neutral red and Nile blue sulfate have been previously widely used to study programmed cell death during development of chick embryo (Saunders and Gasseling, 1962). The death of ectomesenchymal cells caused by BMP-2 is a likely reason for suppression of development and growth of the skeleton as a whole in the implanted side of the mandible. Given that Meckel’s cartilage plays an important role in regulating mandibular growth (Hall, 1978, 1987b, 1988b, 1990; Richman, 1994), later deficiencies in mandibular growth may result from primary inhibition of development of Meckel’s cartilage.

In contrast to previous reports indicating cartilage and bone inducing activity of BMPs in postnatal animals (Wang et al., 1990; Wozney, 1992, 1993; Sasano et al., 1993; Hirota et al., 1994), our study shows that exogenous BMP-2 does not induce chondrogenesis in vivo or in vitro from chick embryonic ectomesenchymal cells at stage 22.

BMP-2 and -4 have been reported to have varying functions during embryonic development, depending on the developmental stage of the embryo. For example, BMP-4 plays a role in gastrulation and mesoderm formation in mouse (Winnier et al., 1995) and dorso-ventral patterning of Xenopus at the gastrula stage (Dale et al., 1992; Jones et al., 1992). Somewhat later during development, BMP-2 and -4 are expressed in regions of inductive interactions between epithelium and mesenchymal tissues (Lyons et al., 1989, 1990; Jones et al., 1991) and are involved in patterning the chick limb (Lyons et al., 1990; Jones et al., 1991; Francis et al., 1994). Once cytodifferentiation occurred, both BMP-2 and -4 are found in more mature perichondrium, periosteum and in odontoblasts (Wozney, 1992). Given these diverse roles of DPP-related BMPs, it is not surprising to see effects of BMP-2 on embryonic ectomesenchymal cells not seen in adults.

Exogenous BMP-2 and epithelial-mesenchymal interactions

Epithelial-mesenchymal interactions that occur between mandibular ectomesenchyme and the overlying epithelium are essential for the development of membrane bones in the chick mandible (Hall, 1987b). These interactions are completed by HH stage 24, after which mesenchyme no longer requires the epithelium for osteogenic differentiation (Hall et al., 1983; Hall, 1987b). Signaling molecules involved in these interactions are little understood, however, epithelial basement membrane mediates these interactions (Hall et al., 1983).
Fig. 8. Expression of type X collagen by mandibular ectomesenchymal cells in explant culture either with or without BMP-2. (A-D) Sections of 15 day-old cultures, stained with a monoclonal antibody against chicken type X collagen followed by FITC-conjugated secondary antibody. (E-H) Phase contrast images of (A-D) respectively. BMP-2-treated and control cultures express type X collagen. (A) Control, cultured on tissue culture plastic. (B) Control, cultured in culture plates coated with type IV collagen. (C) Ectomesenchyme cultured in plates coated with BMP-2. (D) Ectomesenchyme cultured in plates coated with both BMP-2 and type IV collagen. Bar: A-D, 30 μm; E-H, 33 μm.
We examined whether BMP-2 could replace mandibular epithelium and induce osteogenic differentiation of mandibular ectomesenchymal cells by culturing ectomesenchymal explants from a stage prior to in vivo epithelial-mesenchymal interaction on a substrate coated with BMP-2. In addition, for the reasons that: (1) BMPs bind to type IV collagen with high affinity (Paralkar et al., 1990, 1991, 1992; Vukicevic et al., 1994); and (2) that type IV collagen is the main collagen in basement membranes (Linsenmayer, 1981), we cultured some ectomesenchymal explants on a substrate coated with both type IV collagen and BMP-2. However, neither of these culture conditions induced formation of bone by mandibular ectomesenchymal cells. Mineralized tissue present in both control and BMP-treated specimens is not bone, but mineralizing cartilage, evident by immunohistochemical localization of type X collagen and visualization of mineralized cartilage matrix.

BMP-2 and BMP-4 have been localized in embryonic sites such as tooth, hair follicle, gut and urinary bladder where epithelial-mesenchymal interactions occur (Lyons et al., 1990; Jones et al., 1991). Furthermore, exogenous BMP-4 induces expression of msx-1, msx-2 and Egr-1 in dental mesenchyme in a manner similar to that caused by dental epithelium (Vainio et al., 1993), while BMP and Msx are both downregulated in the tooth-free diastema (Tureckova et al., 1995). While previous studies suggest that BMP-2 and BMP-4 may play a role in epithelial-mesenchymal interactions, the present study indicates that BMP-2 alone or BMP-2+type IV collagen are not sufficient to replace mandibular epithelium. Epithelial-mesenchymal interactions occur as a cascade of mutual signaling between the epithelium and the mesenchyme, causing gradual developmental progression of both tissues. Molecules involved in this cascade of signaling are just beginning to be understood. The hedgehog family of proteins have been shown recently to be expressed early in this cascade and may in turn regulate expression of some BMPs (Bitgood and McMahon, 1995).

BMPs may act as heterodimers as these have been shown to be more potent inducers than the respective homodimers (Aono et al., 1995; Lyons et al., 1995). BMP-2 and BMP-4 as well as other BMPs, are known to promote the osteoblastic phenotype while suppressing the myoblastic phenotype in established lines of multipotential progenitor cells (Yamaguchi et al., 1991; Ohta et al., 1992; Ahrens et al., 1993; Wang et al., 1993; Katagiri et al., 1994; Yamaguchi, 1995). BMPs also enhance the osteoblastic phenotype in primary cultures of rat calvarial osteoblasts and bone marrow cells (Amédée et al., 1994; Rickard et al., 1994; Aono et al., 1995; Centrella et al., 1995; Harris et al., 1995). However, it is important to note that these cell types are at a developmentally more advanced status than uninduced, embryonic, mandibular ectomesenchymal cells. Carrington (1994) suggested that the effect of BMPs may depend on the developmental status of the responding cell. Indeed, in some cases, BMP inhibits osteoblastic differentiation (Ogata et al., 1994).

Effect of BMP-2 on chondrogenesis in vitro

Both control explants and those explants cultured on a substrate coated with BMP-2 produced cartilage. However, the morphology of the cartilages was different. In control cultures, it was rod-like, resembling Meckel's cartilage in vivo. Rod-like cartilage morphology was abolished in cultures treated with either BMP-2, or BMP-2+type IV collagen. In the latter case, nodules of cartilage with intervening fibroblasts formed. Formation of nodules is not caused by type IV collagen, since the explants cultured on type IV collagen alone did not produce cartilage nodules.

Mandibular ectomesenchyme at HH stage 22 contains prechondrogenic cells, which can undergo chondrogenesis even under clonal culture conditions (Ekanayake and Hall, 1994a). Therefore, it was not surprising to see chondrogenesis in control cultures. However, disruption of the rod-like morphology of Meckel's cartilage by BMP-2 is both surprising and interesting.
Mandibular ectomesenchymal cells have been shown to produce cartilage nodules in micromass culture (Ekanayake and Hall, 1994a,b; Langille, 1994). When cultured as micromasses, mesenchyme is first dissociated into single cells in a suspension and plated as drops of cells at a high density. During this process, organization of subpopulations of cells such as prechondrogenic cells, premlyogenic cells and fibroblasts is disrupted and cells are plated as a mixture. Therefore, rather than forming a continuous rod of cartilage as in vivo, chondrogenic cells aggregate to form nodules, separated by non-chondrogenic cells. In contrast, when ectomesenchyme is cultured as an explant, cellular order is maintained undisrupted and cells produce a rod-like cartilage.

That BMP-2 alters the rod-like morphology of cartilage to nodules in explant culture may indicate that there are more non-chondrogenic cells in these cultures than in control cultures. Non-chondrogenic cells would disrupt the continuity of a cartilage rod, forcing groups of chondrocytes to form nodules. BMP-2 may suppress chondrogenesis of some cells in the prechondrogenic population. Langille (1994) demonstrated that BMP-7 promotes chondrogenesis of rat mandibular mesenchymal maintained in micromass cultures. BMP-3 and 4 stimulate cartilage formation from HH stage 24-25 chick limb bud mesenchymal cells in vitro (Carrington et al., 1991; Chen et al., 1991b), while BMP-2 and 4 promote chondrogenesis of established cell lines of multipotential progenitors (Ahrens et al., 1993; Wang et al., 1993). Luyten et al. (1994) suggested the presence of functional receptors for BMP-4 in articular chondrocytes. The possibility that BMP acts through cell surface molecules such as N-CAM, which is known to modulate skeletal morphogenesis (Hall and Miyake, 1995; Fang and Hall, 1995, 1996) is worth exploring.

Chondrogenesis inhibitory action of BMP-2 seen in the present study could be due to one or more of:
1) the developmentally immature status of the ectomesenchymal cells used,
2) BMP-2 may play an inhibitory role at the condensation stage even though it enhances chondrogenesis later in differentiation (Hall and Miyake, 1995), and/or,
3) BMP-2 may mediate the known inhibition of chondrogenesis by mandibular epithelium (Coffin-Collins and Hall, 1989; Mina et al., 1994).

Materials and Methods

BMP bead implantation and shell-less culture of chick embryos

Fertilized eggs of the domestic fowl (*Gallus domesticus*) obtained from Long Pine Farm (Truro, Nova Scotia, Canada) were incubated in a 'model 50 Humidaire' incubator at 37°C and 95% relative humidity for approximately 4 days to obtain embryos at HH stage 22.

Embryos were taken from their shells, established in shell-less culture (Tuan and Lynch, 1983) and beads were implanted. To prepare for shell-less culture, eggs were carefully cracked open into sterile 100 mm diameter culture plates so that the yolk remained intact with the embryo on top. Shells were discarded. Shell-less embryos were kept in an incubator at 37°C with 95% humidity and 5% CO₂ until bead implantation. In shell-less culture, embryos are easily accessible and beads could be implanted under a stereo microscope, without damaging adjacent tissues. Since chick embryo usually lies on the yolk with the right side of the body uppermost, beads with or without BMP-2 were implanted in the proximal region of the right half of the mandibular arch through a hole made in the amniotic membrane. As seen even a small amount of bleeding can cause death, extra caution was taken not to damage the heart and the main blood vessels that are in the proximity to the developing mandible. Once the bead was in place, embryos were returned to the incubator, maintained as shell-less cultures, and examined daily over an 8-day period.

Treatment of beads with BMP-2

Recombinant human BMP-2 protein was donated by The Genetics Institute Inc. (Cambridge, MA, USA). Because human, mouse and chick BMP-2 share some 80% amino acid identity, the human protein can be used in the other species. In the present study, a wide range of concentrations of BMP-2, including those concentrations that have been shown to be physiological in other systems such as tooth and limb primordia in the developing mice and the chick, were used to treat the beads. (Vainio et al., 1993; Gafn et al., 1996). Stock solution (1.33 mg/ml of 0.5 mM arginine-HCl, 10 mM histidine; pH 5.6 Buffer) was diluted to 5-150 ng/ml PBS (pH 7.3) containing 0.1% BSA. However, it should be noted that the actual concentration of BMP released by the implanted bead to the tissues is much less than the concentration used to treat the beads. Agarose beads have been used previously as a vehicle for slow release of peptides (Schreiber et al., 1986; Hayamizu et al., 1991; Vainio et al., 1993; Gafn et al., 1996).

Affi-Gel blue agarose beads (100-200 mesh, 75-150 μm diameter; Biorad) in PBS (pH 7.3) were counted under a stereo microscope (200 beads/visual), washed once with PBS, and pelleted. Beads were incubated with solutions of BMP-2 (200 beads per 10 μl) and incubated at 37°C for 30 min (Vainio et al., 1993). Control beads were treated in the same way but incubated in PBS containing 0.1% BSA (vehicle) without BMP-2. Treated beads were either used immediately or stored at 4°C for more than one week before being implanted. Storage had no effect on activity. Because bead size varied between 75 and 150 μm diameter, beads in the mid-diameter range were selected under a microscope prior to implantation. Beads were rapidly washed in culture medium and implanted using a pair of very fine forceps (Watchman #5).

Isolation and explant culture of mandibular ectomesenchyme

Mandibular processes were dissected from HH stage 22 embryos and treated with a mixture of trypsin and pancreatin (13:2 ratio) at a concentration of 1.5% in Ca²⁺- and Mg²⁺-free Tyrode's solution at 4°C for 1.25 h to facilitate removal of the epithelium (Tyler and Hall, 1977). The epithelium was manually removed from each mandibular process under a dissecting microscope and discarded. The remaining mandibular ectomesenchyme was placed, one mesenchyme per well, as an explant in 24-well culture plates previously coated with either BMP-2 alone or BMP-2-type IV collagen as described below. Some ectomesenchymal explants were maintained as controls and cultured in either uncoated plates or on plates coated with type IV collagen. Each culture group contained approximately 24 ectomesenchymal explants. Culture medium used was Ham's F12 and BGJt with 1.5% in Ca and Mg free Tyrode's solution at 4°C for 1.25 h.

Coating culture plates with BMP-2

Tissue culture plates coated with type IV collagen (Bio-coat Cell ware) were purchased from Collaborative Biomedical Products. Stock solution of BMP-2 (1.33 mg/ml of 0.5 mM arginine-HCl, 10 mM histidine; pH 5.6 Buffer) was diluted to 25 μg/ml in culture medium with 10% FBS. 250 μl of this solution was placed in each well of 24-well tissue culture plates and incubated for 1 h at 37°C. The BMP-2 solution was then aspirated out, plates were rinsed once with culture medium and returned to a 37°C incubator with fresh medium until explants were placed in the wells. Both regular 24-well tissue culture plates and type IV collagen coated Bio-coat 24-well tissue culture plates were coated with BMP-2 in this manner.
Analysis of specimens

Histology

Explant cultures were scraped from the bottom of the culture plates, fixed in neutral-buffered formalin (NBF), dehydrated in ethanol, embedded in Paraplast, and serially sectioned at 6 μm. Sections were stained using a multiple staining procedure consisting of celestine blue, hematoxylin, Alcian blue and direct red to examine for the presence of cartilage and bone (Hall, 1986). Alcian blue binds with sulfated proteoglycan in cartilage matrix (Lev and Spicer, 1964). Direct red parallels the distribution of alkaline phosphatase as a marker for osteogenesis. Embryos from shell-less culture were separated from the yolk, decapitated, fixed in NBF and processed for paraffin sectioning. Six μm sections were stained with the same multiple staining procedure.

Immunohistochemistry of type II and type X collagens

Both cryosections and wax sections were used for immunohistochemistry. For cryosectioning, unfixed cultures were quick frozen in O.C.T. compound (Tissue-Tek 4583, Miles Scientific Division, Naperville, IL, USA) and sectioned (6 μm) in a cryostat. Sections were fixed in 100% acetone for 10 min., air dried, and stored at -20°C until use. Acetone-fixed sections were mostly used for collagen II staining. For wax embedding, specimens were fixed in NBF at 4°C, dehydrated in ethanol at 4°C, embedded in X-tra (low melting point) Paraplast and sectioned. Mineralized cultures were demineralized prior to wax embedding following Bourque et al. (1993).

Briefly, specimens were fixed overnight at 4°C in a freshly prepared periodate-lysine-paraformaldehyde fixative (2% paraformaldehyde containing 0.075 M lysine and 0.01 M sodium periodate), washed in phosphate buffered saline (PBS), decalcified in a solution of ethylenediamine tetraacetic acid (EDTA, 0.5 M) and glycerol (15%) at pH 7.3 for 4-6 days at 4°C, washed in PBS, dehydrated in ethanol, embedded in X-tra Paraplast and sectioned. Wax sections were dewaxed in Histoclear and rehydrated in a series of ethanol at prior to antibody staining.

Antibody staining

Cryosections and rehydrated wax sections were rinsed in PBS and digested for 30 min at 37°C with bovine testicular hyaluronidase at 0.5 mg/ml in 10 mM potassium and sodium phosphate buffer (Jacencki and Tuan, 1986a). Sections were then incubated with monoclonal antibodies to either chicken type II or X collagen raised in mice (donated by Dr. T. Linsenmayer, Tufts University, Boston, MA, USA) for 2 h at room temperature followed by fluorescent-conjugated rabbit anti-mouse IgG (Sigma) for 30 min at room temperature and mounted in Vectashield (Dimensions Lab.).

Histochemical staining for mineralized tissue

To distinguish mineralized tissues, paraffin sections of explant cultures were stained histochemically with Von Kossa’s method (Page, 1962). In short, sections were stained with 1% AgNO₃, exposed to strong light to develop positive silver staining, and counter stained with safranin ‘O’.

Whole-mount staining

Heads of embryos implanted with beads were fixed in NBF, stained with Alcian blue to visualize cartilage, digested with trypsin, stained with alizarin red S to visualize bone, transferred to glycerine for clearing and storing (Hanken and Wassersug, 1981), examined, and photographed.

Cell death studies by Nile blue sulfate and neutral red staining

One day after implanting beads, some embryos were detached from the extra-embryonic membranes and underlying yolk, rinsed briefly in Ringer’s saline and stained for 60 min at room temperature with either Nile blue sulfate or neutral red, both at a concentration of 0.01% in Ringer’s saline. Embryos were transferred to Ringer’s saline, destained at 4°C overnight to remove stain taken up by viable cells (Saunders and Gasseling, 1962), examined, and photographed.

Acknowledgments

The human recombinant BMP-2 protein was provided by the Genetics Institute, Cambridge, MA. Antibodies against collagen types II and X were kindly provided by Dr. T. Linsenmayer, Tufts University. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada (Grant A5058) and by the Killam Trust, Dalhousie University.

References

FRANCIS-WEST, P.H., TATLA, T. and BRICKELL, P.M. (1994). Expression patterns of the Bone Morphogenetic Protein genes Bmp-4 and Bmp-2 in the developing chick face suggest a role in outgrowth of the primordia. Dev. Dynamics 201: 168-175.

Received: October 1996
Accepted for publication: December 1996