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The formation of somite compartments in
the avian embryo

BEATE BRAND-SABERI', JORG WILTING, CECILIA EBENSPERGER and BODO CHRIST

Anatomisches Institut der Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany

ABSTRACT The somites develop from the unsegmented paraxial mesoderm that flanks the
neural tube. They form in an intrinsic process which lays down the primary segmental pattern of
the vertebrate body. We review the processes of somitogenesis and somite differentiation as well
as the mechanisms involved in these developmental events. long before overt differentiation
occurs, different compartments of the still epithelial somites give rise to special cell lines and to
particular derivatives. By means of isotypic grafting between quail and chick embryos, it is possi-
ble to follow the fate of groups of somitic cells. In this way, the development of the myotome and
the back dermis from the dorsomedial quadrant and of the hypaxial body wall and limb muscula-
ture from the dorsolateral quadrant was established. The two ventral quadrants and the somito-
coele give rise to the chondrogenic/fibroblastic lineage of the sclerotome and form the vertebral
column. Somite compartments can first be visualized by the expression pattern of Pax genes. Pax-
3 is expressed in the dorsal part of the epithelial somite, while the ventral two thirds express Pax-
1, a marker of sclerotome development. Pax-3 expression is retained also in the premitotic myo-
genic cells that migrate into the limb buds. In differentiating myoblasts, Pax-3 expression is turned
down and taken over by the activation of MDF's. This initial event in myogenesis occurs in the
absence of local signals, whereas the expression of Pax-1 in the sclerotome can be shown to be
induced by signals from the notochord and floor-plate of the neural tube. Epaxial myotome differ-
entiation is supported by the neural tube, after the neural tube has received patterning signals
from the notochord. The hypaxial musculature and limb musculature differentiate independently
of the axial structures. The myogenic cells migrating within the limb buds respond to signals of
the lateral plate mesoderm which guide their distalward migration and pattern the muscle.
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Introduction

The somites are the most original and at the same time the
most characteristic structures of the vertebrate embryo. The for-
mer attribute holds true because they impose a primary seg-
mented pattern on the vertebrate body - a feature shared by its
ancestors, and the latter is reflected by the fact that the somites
give rise to the structures characterizing the whole taxonomic
group: the vertebrae.
The acquisition of an efficient motoric system including the evo-
lution of paired appendages was only possible by the elaboration
of a body pattern functionally combining stabilizing and contract-
ing elements: the vertebral column and the originally also seg-
mented system of skeletal muscle (Keynes and Stern, 1988;
Christ et al., 1990; Christ and Wilting, 1992; Wachtler and Christ,
1992). The significance of the somites for the evolution and func-
tional morphology of the vertebrates is undeniable and might by
itself justify the intense study of this developmental speciality by
the biologist and medical scientist, especially since many con-

genital defects originate from various problems during somite
development. Moreover, the somites fascinate the developmen-
tal biologist because they are examples of and allow the exami-
nation of nearly all major mechanisms involved in embryogene-
sis such as epithelia-mesenchymal transformation, cell-cell-
signalling, cell-matrix interactions, cell migration and cell differ-
entiation.

The somites as segmentation elements possess definite
boundaries delimiting each unit and, during further development,
their cells give rise to daughter cells that are also restricted to
these boundaries. Together with a spatially restricted gene
expression, these factors characterize the somites as develop-
mental compartments (Stern et al.. 1986; Lawrence. 1990). More
recently, investigations have shown that the early somite already
consists of different regions giving rise to particular derivatives in
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permissive conditions (Christ el al.. 1992; Ordahl and Le
Douarin, 1992; Brand-Saberi el al., 1994; Huang el al., 1994;
Wilting el al., 1995) and that during somite differentiation the pat-
tern of genes (Goulding et al., 1994; Williams and Ordahl, 1994;
Ebensperger et al., 1995; NeubOser et al., 1995) delineates
compartments within the somite. The process of compartmental-
ization is the first event in somite regionalization and represents
the prerequisite for differentiation. The idea of somitic compart-
ments explains the way in which the somites not only serve as
sources but also as distributors of their own derivatives. Since
this term was first applied to the avian somite and most of our
combined efforts as well as those of other groups were aimed at
this system, aspects of avian somitogenesis will be focused in
this review. We will highlight the processes of myogenesis, scle-
rotome formation, and cell migration into the limb buds on the
basis of our work involving microsurgical manipulations such as
quail-chick chimeras (Le Douarin, 1969) and other experimental
in ovo approaches. Problems of signal transduction, cell lineage
and directed cell migration in connection with developmental
mutants of the mouse will also be addressed.

Somitogenesis

After gastrulation, mesodermal derivatives cCln be subdivided
topographically into five groups: the notochord, the paraxial
mesoderm, the intermediate mesoderm, the lateral plate and the
prechordal mesoderm of the head region. The origin of the
paraxial mesoderm from which the somites form, is still a matter
of controversy. According to Pasteels (1937) and Selleck and
Stern (1991) the medial and lateral portion of the paraxial meso-
derm derive from different populations of gastrulating cells,
whereby the medial half comes from cells passing through
Hensen's node, whereas the lateral half derives from cells pass-
ing through the cranial primitive streak. In contrast to this opin-

Fig. 1. Transverse fracture of a
stage 16 HH chick embryo at the
level of the forelimb buds.
Scanning EM view towards the cra-
nial end. 1 neural tube, 2 notochord.
3 somite, 4 intermediate mesoderm,
S lateral plate mesoderm. Bar. 100
~m
Fig. 2. Dorsal aspect of a chick
embryo at two days of incubation.
The sequence of somltes shows a
crania-caudal gradient of differentia-
tion with the most advanced stages
at the cranial end, and stili unseg-
mented paraxial mesoderm at the
caudal end. 1 neural tube. 2 last
somite, 3 unsegmented paraxial
mesoderm. Bar, 500/-im.
Fig. 3. Scanning EM view of an
epithelial somite of a chick
embryo at stage 16 HH. 1 neural
tube, 2 sam/tic epithelium. "somito-
coele. Bar, 25 pm

ion, Schoenwoll and co-workers (1992) were unable to detect
contributions from Hensen's node. In any case, gastrulation is
the event that renders cells from the epiblast competent to dif-
ferentiate into skeletal muscle in permissive conditions (Krenn et
al., 1988).

The paraxial mesoderm is located between the intermediate
mesoderm and the neural tube, its ventromedial portion borders
on the notochord (Fig. 1). The somites detach from the highly
proliferative cranial end of the unsegmented paraxial mesoderm
by compaction and epithelialization (Lash et al., 1984; Stern and
Bellalrs, 1984). The products of somitogenesis are epithelial
pseudostratified spherules, the outside of which is covered by a
basement membrane (Solursh el al., 1979), and the lumen
(somitocoele) at which is occupied by mesenchymal cells (Fig.
3). The process of somite formation proceeds from cranial to
caudal levels and the sequence of so mites reflects a cranio-cau-
dal gradient of developmental progress (Fig. 2). The number of
somites in an avian embryo has been used by Hamburger and
Hamilton (1951) as part of their stage classification syslem.
Since the developmental status of each pair of somites differs
along the cranio-caudal axis, a staging system has recently been
introduced to characterize each somite pair by its own develop-
mental stage (Ordahl, 1993; Christ and Ordahl, 1995).

The process of segmentation is an inherent capacity of the
paraxial mesoderm, since it undergoes segmentation in isolation
from all neighbouring structures. This means that the process is
not controlled by extrinsic signals (Bellairs, 1963, 1979; Christ et
al., 1972, 1973; Menkes and Sandor, 1977; Packard, 1978).
Moreover, the paraxial mesoderm conveys segmentation to oth-
er tissues such as the nervous system and the blood vessels
(Christ, 1975; Rickman el al., 1985; Stern el al., 1986). The fur-
ther differentiation of the somites is characterized by the segre-
gation of different cell lineages giving rise to two groups of skele-
tal muscle (epaxial and hypaxial), to cartilage, bone and



connective tissue of the vertebral column, to connective tissue of
the dorsal skin, and to endothelial cells and smooth muscle
(Christ and Jacob, 1980; Wachtler et al., 1981; Brand et al.,
1985; Solursh et al., 1987; Lance-Jones, 1988; Schramm and
Solursh, 1990; Noden, 1991; Brand-Saberi et al., 1994; Wilting
at al., 1995).

Somite compartments

By means of homotopic interspecific grafting, it was shown

that the different quadrants of the unsegmented paraxial meso-
derm and of the epithelial somite give rise to particular structures
of the embryonic body (Fig. 4). Both chondrogenic and myogenic
lineages comprise subdivisions of cells that can be attributed to
individual somitic compartments (cartilage, connective tissue or
muscle) and give rise to distinct derivatives. In this way, the dor-
somedial quadrant alone differentiates into the epaxial intrinsic
back muscle and the dorsolateral quadrant contains the precur-
sor cells of the hypaxial muscle of the ventral body wall, and the
skeletal muscles of the limbs (Ordahl and Le Douarin, 1992). In
contrast to the dorsolateral quadrant, the dorsomedial quadrant
also gives rise to the connective tissue surrounding the muscle
groups that are derived from it. The connective tissue of the limb
muscles originates from the lateral plate mesoderm (Christ et al.,
1977). The dorsomedial quadrant also gives rise to the back
dermis through the dermomyotome. Thus the dorsal half of the
epithelial somite (and the still unsegmented paraxial mesoderm)
is dedicated to the myogenic, fibrogenic and angioblastic lin-
eages, whereas the two ventral quadrants yield material of the
vertebral column including the intervertebral discs and parts of
the ribs. Both structures receive contributions from the somito-
coelic celis (Huang at al., 1994). The ventromedial quadrant con-
tains the chondrogenic precursor cells of the vertebral body,
pedicle and proximal rib (rib homolog, respectively), whereas the
ventrolateral quadrant yields the main portion of the ribs.
Regarding its participation in the formation of particular body
structures, as was demonstrated by orthotopic grafting (Huang
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at al., 1994), the somitocoele must be counted as a separate
compartment.

Regarding the cranio-caudal axis, several studies show that
somitic compartments can also be distinguished here (Keynes
and Stern, 1984; Ranscht and Bronner-Fraser, 1991). Only the
celis in the caudal half of the somite possess peanut agglutinin
(PNA) receptors (Keynes and Stern, 1984). Neural crest cells

and axons only invade the cranial half of the epithelial somite
and later migrate through the cranial sclerotome. At the stage of
sclerotome formation, the cranial portion can be distinguished
from the caudal portion also by differences in proliferation
indices and the distribution of chondroitin-6-sulphate (CSPG-6),
tenascin, and versican (Wilting at al., 1994, Landolt at al., 1995;
Fig. 5, 6). CSPG-6, PNA-receptors, and versican in the caudal
half are thought to act as repellents for neural crest cell and axon
invasion (Stern at al., 1986; Oakley and Tosney, 1991; Landolt at

al., 1995).
The basic helix-loop-helix gene twist has been found to be

strongly expressed in the caudal half of the sclerotome
(Fuchtbauer, 1995).

Differentiation

Differentiation can be defined at the biochemical level as the
diversification of precursor cells by the accumulation of tissue-
specific proteins (luxury molecules; Grant, 1978) and at a histo-
logical level referring to the arrangement of cells. Moreover,
since it has been possible to visualize the developmental bias of
a cell at the level of gene transcription, one might argue that
another -transient- kind of differentiation precedes the two afore-
mentioned ones: the expression of control genes. In the somites
these are genes of the Hox-, Pax- and the basic helix-loop-helix
(bHLH) transcription factor family.

Hox-gene expression is involved in regional specification of
the somite sequence (Kessel, 1991; Kessel and Gruss, 1991),
whereas Pax-genes appear to playa role in the early differenti-
ation of each individual somite. The unsegmented paraxial
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Fig. 4. Somitic compartments and
their derivatives. Cells In the centre
of the epithelial somite are somito-
coele cells.
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mesoderm expresses Pax-3 and Pax-7 (Bober et al., 1994;
Goulding et al., 1994; Williams and Ordahl, 1994).

After the somites have formed, the expression of Pax-3
becomes restricted to the dorsal third, while the ventral two
thirds and the somitocoele accumulate Pax-1 and Pax.9-tran-
scripts (Goulding et al., 1994; Williams and Ordahl, 1994;
Ebensperger et al., 1995 Neubuser et al., 1995). As we will dis-

cuss in the following chapter, these changes depend on local
signalling (cell-cell interactions or diffusible factors). Thus, Pax-
gene expression in the epithelial somite is closely correlated with
the future fate of its compartments: The ventral Pax-1-positive
portion of the epithelial somite breaks up into mesenchymal cells

which form the sclerotome, whereas the most dorsal Pax-3-pos-
itive portion retains its epithelial character and forms the der-
momyotome (Fig. 7). Pax-1 expression is initiated in the third
somite from caudal (Fig. 8).

Through the lateral folding of the embryo, the ventral somite
derivative - the sclerotome - becomes shifted medially and the
dorsal derivative - the dermomyotome - comes to lie most lat-
erally (Fig. 9). The cells located in the medial part of the sclero-
tome migrate towards the notochord, surround it and later form
vertebral bodies and intervertebral discs. The more laterally sit-
uated sclerotome cells participate in the formation of the neural
arches, pedicles and ribs (Verbout, 1985; Christ and Wilting,
1992). Changes in the extracellular matrix are thought to be
involved in the early steps of sclerotome formation by the syn-
thesis of hyaluronic acid in the disrupting ventral epithelium
(Solursh et al., 1979). Most extracellular differentiation products
characteristic of chondrogenic development only appear much
later in the sclerotome, like CSPG-6 around day five.

The dermomyotome is the source of dermal connective tissue
and skeletal muscle. First, it generates the myotome by prolifer-
ation and by elongation of cells at its cranial lip. The myotome
represents a second layer underneath the dermomyotome/der-
matome and consists of longitudinally arranged cells (Fig. 10).
Myotome celis are first detectable in the cranio-medial corner of
the somite and gradually extend caudally. This process contin-
ues in a ventro-Iateral direction (Kaehn et al., 1988). At this time,
myotome cells are post-mitotic and express muscle-specific pro-
teins such as desmin and early skeletal myosin. Before this his-
tological and biochemical differentiation occurs, the precursor
compartment of the myotome can already be distinguished by
the presence of mRNA for myogenic basic helix-loop-helix tran-
scription factors in the dorso-medial quadrant (Ott et al., 1991;
Pownall and Emerson, 1992). Interestingly, the dorso-Iateral
quadrant does not express myoD, although it will also give rise
to skeletal muscle (hypaxial and limb muscle). Moreover, the
population of cells expressing myoD at later stages lies in the
dorsa-medial lip of the dermomyotome and is therefore not the
population of immediate myotome precursor cells, since

myotome cells arise at its cranial lip (Kaehn et al., 1988; Christ
and Ordahl, 1995).

The differentiation of the cells located in the dorsa-lateral
quadrant is preceded by cell migration and proliferation. The pre-
mitotic myogenic precursor celis for the limb musculature leave
the lateral margin of the dermomyotome, cross the Wolffian duct
and the intermediate mesoderm and invade the limb bud meso-
derm in a proximo-distal direction (Grim, 1970; Christ et aI.,
1974, 1979; Chevallier et al., 1977; Jacob et al., 1978, 1979;
Brand et a/., 1985). The epithelio-mesenchymal transition of the
lateral edges of the dermomyotomes at limb bud levels has been
shown to be mediated by the c-met receptor tyrosine kinase
which is expressed in the dermomyotome (Bladt et al., 1995). At
the time of migration, myogenic cells express Pax-3 (Bober et
al., 1994a; Williams and Ordahl, 1994). Within the limb bud,
myogenic cells follow a proximo-distal gradient of "juvenility"
(Brand, 1987; Brand-Saberi et al., 1989). An involvement of Pax-
3 in myogenic cell invasion is supported by the fact that the
murine Pax-3-mutant splotch does not possess myogenic cells
in the limb bud, although these cells seem to have been gener-
ated by the dermomyotome (Franz et al., 1993; Bober et a/.,
1994a). This observation makes it likely that Pax-3 somehow
regulates the expression of molecules involved in cell migration,
such as cell adhesion molecules, and only shortly before histo-
logical and biochemical differentiation myoD is expressed by the
muscle precursor celis after they have entered the post mitotic
phase.

Also at the cervical and flank levels, the dorsolateral quadrant
of the so mites gives rise to skeletal muscle. Epithelial buds from
the dermomyotome together with the underlying myotome
migrate ventrally into the abdominal wall (Fischel, 1895; Christ et
al., 1983, 1986). Finally, dermal fibroblasts leave the dermomy-
otome dorsally as individual cells, so that the myotome remains
to mark the original segment boundaries.

Local interactions

In contrast to somitogenesis which is an inherent process of
the paraxial mesoderm, somite differentiation depends on local
signalling between neighbouring structures (Avery et al., 1956;
Ellison et al., 1969a,b; O'Hare, 1972a,b,c; Packard and
Jacobson, 1976; Hall, 1977; Kenny-Mobbs and Thorogood,
1987; Christ et al., 1992). Early observations concerning the sig-
nificance of interactions between the axial structures and the
somites go back to Holtzer (1952), Watterson and coworkers
(1954) and Strudel (1955). Further experiments were carried out
by Christ and coworkers (Christ et al., 1972; Jacob et al., 1974).
However, first analyses at the molecular level have become pos-
sible in recent years. Most of the interactions described in this
chapter have been established by microsurgical manipulations

Fig. 5. Anti chondroitin-6 sulphate-proteoglycan staining. Frontalsection of a 5 day chick embryo. Reactivirv is stronger in the caudal sclerotome.
Courtesy of H.H. Epperlein. 1 notochord. 2 myotome. 3 spinal nerve. Bar, 50 pm.

Fig. 6. Anti-tenascin staining of a 5 day chick embryo. Frontal section showing tenascin-positive reaction in the caudal sclerotome. Courtesy of
H.H. Epperlein. 1 notochord. 2 myotome. Bar, 50 pm.
Fig. 7. Stages of somite differentiation in the avian embryo. Diagram showing putative regulatory genes expressed during somite formation and
differentiation into dermomyotome and sclerotome. 1 neural tube, 2 notochord, 3 unsegmented paraxial mesoderm. 4 epithelial somite, 5 der-

momyotome. 6 myotome, 7 sclerotome. 8 myogenic cells.

Fig. 8. Whole-mount-in situ hybridization with a quail Pax-1 probe in a stage 10 HH quail embryo. Ventral aspect. Pax-1 starts to be expressed
in the third somite cranial to the unsegmented paraxial mesoderm (arrow). Specimen provided by Thomas S. Mueller. Bar, 100 JJm.
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such as removal of structures and isotopic interspecific grafting
or heterotopic insertion of extra-structures followed by immuno-
histochemical and molecular studies. By replacing a dorsal half
of an epithelial somite by a ventral half (double ventral somites),
it is possible to show that local signals control the differentiation
of the so mites, since the ventral half yields a normal dermomy-
otome and myotome (Christ eT al.. 1992).

In order to get a more detailed insight into the source and
nature of these interactions, different experimental set-ups
were chosen: The ectopic implantation of an extra-notochord of
a quail embryo laterally or medially to the unsegmented parax-
ial mesoderm leads to a suppression of myotome formation at
the level of the operation (Brand-Saberi et aT., 1993; Pourquie
et al., 1993). Instead of a myotomal epithelium, a loose mes-
enchyme is formed. Moreover, the Pax-1 expressing domain is
extended in the vicinity of the grafted notochord, while desmin-
immunoreactivity is negative (Figs. 11 and 12). This phenome-
non has been interpreted as a ventralizing effect of the noto-
chord, which it exerts on the somites as well as on the neural
tube.

After experimental removal of the notochord prior to neural
tube patterning, the acquisition of Pax-1 positivity in the ventral
part of the somite is lost (Ebensperger et al.. 1995), These find-
ings led us to conclude that the expression of Pax-1 as a medi-
ator of vertebral column formation is induced by the notochord.
This function is taken over by the ventral part of the neural tube
(Brand-Saberi et al., 1993), during the process of neural tube
patterning (van Straaten et al., 1988; van Straaten and Hekking,
1991; Gouldin9 et al., 1993). Recent observations have shown
that the interaction is mediated by sonic hedgehog protein
(Johnson et al., 1994). However, sonic hedgehog does not pre-
vent muscle differentiation in the somites, suggesting that Pax-1
expression is only one aspect of notochord signalling. The induc-

Fig. 9. During development, the
somite undergoes rotation as a
result of the lateral folding
process of the embryo. The dorsa-
medial quarter (1) of the somite
comes to lie more dorsally and the
dorso-Iateral quarter (2) comes to lie
more ventrally. A. Situation in the
two-day embryo, B. Situation in rhe
3-day embryo.

tive interaction between notochord and Pax-1 expression in
avian embryos is closely paralleled by defects found in the ver-
tebrae of the murine Pax-I-mutant, undulated (Balling et al.,

1988). The interplay of notochord, Pax-I, and sclerotome (verte-
bral column) development is also seen in a murine notochord
defect mutant, Danforth's short tail (Sd). In this mutant, the noto-
chord degenerates prematurely which results in severe malfor-
mations, mainly in the lumbar and sacral region (Koseki et al.,
1993).

After extirpation of the neural tube, myotome differentiation is
suppressed (Christ et al., 1992). Although a second epithelial
layer forms under the dorsally fused unpaired dermomyotome,
the cells are reduced in number. They are not longitudinally
arranged, and desmin expression is vestigial. However, the ini.
tiation of myogenesis is independent of the presence of the

..~...

Fig. 10. Diagram showing the stage of myotome formation in the
avian embryo. In the first somite on the right the dermomyotome (3) is
partially removed to show myorome cells in the cranio-medlal corner of

the somIte. Myogenic cells (5) migrating from the ventrolateral der.

momyotome towards the limb buds. 1 neura! tube, 2 notochord, 3 der-
momyotome. 4 myotome, 5 myogeniC cells, 6 Wolffian duct, 7 ecto-
derm (partially removed), 8 lateral plare mesoderm (parriaffy removed)
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Fig. 11. Anti-desmin staining of a chick embryo with additional notochord (arrow) after 2 days of reincubation. The dermomyotome is miss-
ing at the operated side_ Bar. 50 11m.

Fig. 12. Pax-1 expression two days after grafting an additional notochord (arrow) laterally to the unsegmented paraxial mesoderm. The

transverse section shows expression of Pax-' In the sclerotomes on both sides. but the expression at the operated side is extended compared to
the control side. Dark-field. Bar; 50/-lm.

neural tube and even occurs in the neighbourhood of a grafted
notochord. Transcripts of the avian homolog of myoD, CMDI,
have been found in neural tube-extirpated embryos. In recipi-
ents of extra-notochords, transcripts are detectable in the
myotome-like areas or in desmin-negative rudiments (Bober et
al.. 1994a).

While we have been able to get insight into the control of
epaxial muscle formation, the factors involved in the differentia-
tion of muscle in the hypaxial domain are still largely unknown.

Somite Compartmentalization
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Since these muscle groups differentiate normally in the absence
of axial organs, their development is assumed to be either con-
trolled by different mechanisms or to take place autonomously.
In this respect, we have found that two closely related genes, 101-
listatin and flik (Iollistatin-like gene) are differentially expressed
in the dorsal compartments of the somites and are controlled by
different signals.

If local interactions are involved in analogy to epaxial muscle,
controlling signals might emanate from neighbouring structures
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such as the ectoderm, the intermediate mesoderm, the Wolffian
duct or the lateral plate mesoderm. Evidence for such an influ-
ence on the lateral half of the paraxial mesoderm has recently
been given by Pourquie et al. (1995) as well as by in vitro exper-
iments (Gamel et al., 1995).

Regarding the limb muscles, evidence exists that at least their
patterning which involves migration and local arrangement into
muscle blastemata is controlled by the limb mesoderm.

The myoblasts encounter various substrates, during their
directed migration to and within the limb buds, such substrates
include the ECM surrounding the somites and the intermediate
mesoderm and Wolffian duct, and the cells and ECM within the
limb buds. The muscle precursor cells respond to signals on
their migration routes and follow them in a distal direction (Brand
et al., 1985; Brand-Saberi et al., 1989). Fibronectin is necessary
for this process, since migration ceases when antibodies against
the main fibronectin binding site are applied (Brand-Saberi et al.,
1993). However, directionality is believed to be inferred from the
distribution not of fibronectin, but of hyaluronic acid (Krenn et al.,
1991; Brand-Saberi and Krenn, 1991) and cellular components,
possibly cell adhesion molecules. Recently, N-cadherin was
demonstrated to be present on myogenic cells and on the cells
of the distal dorsal and ventral limb bud mesoderm (Brand-
Saberi et al., 1995). Differentiation of limb muscle cells does not
depend on a completed migration within the limb bud, but correct
patterning of the musculature needs signals from the lateral
plate mesoderm (Jacob et al., 1982; Brand-Saberi and Krenn,
1991).

To fully understand some of these complex interactions
between early embryonic structures at the morphogenetic, tran-
scriptional and differentiation level has become one of the most
challenging tasks in developmental biology. The establishment
of the primitive body plan is a rewarding model system to study
such interactions combining traditional and modern techniques.
We have given here an overview on topical concepts concerning
the prerequisites and the consequences of somite compartment
formation. The isolation of further genes that show a compart.
ment-specific expression promises new insights into the control
of somite differentiation.
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