An aspartic proteinase in *Drosophila*: maternal origin and yolk localization

MIGUEL MEDINA and CARMEN G. VALLEJO

Instituto de Investigaciones Biomédicas del CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain

ABSTRACT. An aspartic proteinase activity has been found in *Drosophila* oocytes and embryos. The proteinase is maximally active at pH 3.5 and has been characterized by its sensitivity to specific inhibitors and by the specificity of cleavage. The activity is very low and has been localized in the yolk granules. The proteinase is detected in mature oocytes (i.e., it is of maternal origin) and remains essentially constant during embryogenesis. This suggests that the *Drosophila* aspartic proteinase functions mainly before embryogenesis.

KEY WORDS: *Drosophila* aspartic proteinase, yolk granules associated proteinase, maternal origin

Although it is thought that proteolytic mechanisms must be involved in the control of early development, the data available on the regulation of proteolytic activities in different developmental systems is scarce. In *Drosophila*, we have described a cathepsin B-like proteinase which is developmentally regulated and we have linked it with yolk degradation (Medina *et al.*, 1988; Medina and Vallejo, 1989a). We have studied a serine proteinase (Medina and Vallejo, 1989b) that is also regulated during development and we suggested its involvement in the initial activation of the cathepsin B-like proteinase. In this report, we shall discuss a cathepsin D-like proteinase activity that is present in the mature oocyte and which appears to remain constant during embryogenesis.

The proteinase activity we have found in *Drosophila* embryos has optimum activity at pH 3.5 (Fig. 1). Different characteristics of the proteinase are outlined below.

Developmental regulation

The assay of the proteinase in mature oocytes and after fertilization indicated that the activity remained essentially constant during embryogenesis (Table I). The fact that the activity was detected in the mature oocytes indicates that the enzyme is of maternal origin. The activity was very low and represented about 1% of the activity of the other acidic proteinase — the cathepsin B-like proteinase (Medina *et al.*, 1988), with both proteinases measured in optimal conditions. The sensitivity of the method (Garesse *et al.*, 1979) made it possible to carry out the measurements with precision.

Subcellular distribution

The study of the subcellular distribution of the protei-}

* Address for reprints: Instituto de Investigaciones Biomédicas del CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, Madrid 28029, Spain
© UBC Press, Leica, Spain
TABLE 1
THE ACTIVITY OF THE ASPARTIC PROTEINASE OF DROSOPHLA DURING EMBRYOGENESIS

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Activity (Units/10⁷ embryos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>178</td>
</tr>
<tr>
<td>1</td>
<td>311</td>
</tr>
<tr>
<td>3</td>
<td>498</td>
</tr>
<tr>
<td>6</td>
<td>338</td>
</tr>
<tr>
<td>9</td>
<td>284</td>
</tr>
<tr>
<td>12</td>
<td>222</td>
</tr>
<tr>
<td>18</td>
<td>293</td>
</tr>
<tr>
<td>21</td>
<td>302</td>
</tr>
</tbody>
</table>

The activity was assayed in the homogenates of embryos of the times indicated. The value detected in oocytes is probably low, due to the difficulty in assaying proteolytic activity in the yolk granule before entering degradation (Medina et al., 1988; Medina and Vallejo, 1989b).

Aspartic proteinase also found in Drosophila (Medina and Vallejo, 1989b). These two proteinases cleave by arginine. Aspartic proteinases cleave hydrophobic residues (Barrett and McDonald, 1980). Protamine is very poor in hydrophobic residues (only one residue of the 32 amino acids of the molecule). Of the two substrates cleaved, casein is richer in hydrophobic residues (about 30%) than albumin (23%) (Devereux et al., 1984). Therefore, the specificity of cleavage supports the specificity of inhibition.

The aim of this report is to communicate the presence of an aspartic proteinase in Drosophila. The activity is very low and this has precluded a more extensive study of the enzyme. An aspartic proteinase has been involved in the accumulation of yolk protein in Xenopus (Opresko and Karpf, 1986). If the same were true for Drosophila, it would explain why the activity is not regulated during embryogenesis. This could also explain its localization in the yolk and its maternal origin. It is therefore likely that the aspartic proteinase functions mainly before embryogenesis. This report completes the description of the proteinase activities we have detected during embryogenesis of Drosophila.

![Fig. 1. pH-dependent activity of the aspartic proteinase of Drosophila. The proteinase was assayed in 50 mM buffer citrate (● - ●) and acetate (▲ - ▲) at the pH indicated. The homogenate of 3.5 h old embryos was used as source of the enzyme.]

TABLE 2
THE CHARACTERIZATION OF THE ASPARTIC PROTEINASE OF DROSOPHLA

<table>
<thead>
<tr>
<th>BY INHIBITORS</th>
<th>BY SUBSTRATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Activity</td>
</tr>
<tr>
<td>Leupeptin 2.5 μg/ml</td>
<td>100</td>
</tr>
<tr>
<td>STI 0.1 mg/ml</td>
<td>0</td>
</tr>
<tr>
<td>Pepstatin 2.5 μg/ml</td>
<td>0</td>
</tr>
<tr>
<td>DANME 2 mM</td>
<td>19</td>
</tr>
<tr>
<td>OH-Hg-BzOH 2.5 mM</td>
<td>106</td>
</tr>
</tbody>
</table>

The characterization was carried out with the enzyme from embryos of 3.5 h of development. The characterization by inhibitors was determined using 0.5 mg/ml casein as substrate in the presence of leupeptine (2.5 μg/ml) to avoid the activity of the cysteine proteinase (Medina et al., 1988) and soybean trypsin inhibitor (STI, 0.1 mg/ml) to avoid the activity of the serine proteinase (Medina and Vallejo, 1989b).
Homogenization and fractionation. Embryos and oocytes were dechorionated, unless otherwise indicated, prior to hand homogenization in 2-4 vols of a medium (Vallejo et al., 1981) composed of 0.3 M sucrose, 15% Ficoll 400, 25 mM Hepes buffer, 60 mM KCl, 15 mM NaCl, 5 mM MgCl2, 0.5 mM CaCl2, 1 mM sodium borate, adjusted to pH 7.5. This medium has been proven to preserve the embryonic subcellular structures (Vallejo et al., 1981; Roggen and Slegers, 1985). Subcellular fractionation was accomplished by centrifuging the homogenates at 2500 rpm 20 min (500xg fraction). The supernatant was further centrifuged at 15000 rpm 30 min (27000xg fraction) and the resulting supernatant was spun at 36000 rpm 60 min giving a pellet (100000xg fraction) and a supernatant (soluble fraction).

Proteinase assay. The proteinase activity in the resuspended particulate fractions was assayed after disruption by vortexing followed by 4-5 cycles of freezing and thawing. The assay was carried out routinely at 37°C in a final volume of 1 ml, with α-casein (Sigma, 0.5 mg/ml) and 50 mM potassium citrate buffer, pH 3.5 in the presence of leupeptine (2.5 μg/ml) to block the activity of a cysteine proteinase (Medina et al., 1988) and of soybean trypsin inhibitor (0.1 mg/ml) to block the activity of a serine proteinase (Medina and Vallejo, 1989b), according to the fluorescent-based method of Garesse et al., (1979). One unit is, as defined previously (Garesse et al., 1979), the amount of proteolysis equivalent to the increase in fluorescence observed after labeling with fluorescamine the new-α-amino-groups produced during the hydrolysis of protamine by 7 ng of trypsin IX Sigma at 37°C for 10 min. The activity on albumin and protamine (Sigma) was also determined with fluorescamine. The effect of inhibitors was determined after 20 min preincubation with the enzyme at 4°C, using caselain as substrate.

Acknowledgments

This work was supported by a grant from the Comision Asesora de Investigacion Cientifica y Tecnica.

References


