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ABSTRACT The secreted growth factor pleiotrophin (PTN) is expressed in all species and is evolutionarily 
highly conserved, suggesting that it plays a significant role in the regulation of important processes. The 
observation that it is highly expressed at early stages during development and in embryonic progenitor 
cells highlights a potentially important contribution to development. There is ample evidence of the 
role of PTN in the development of the nervous system and hematopoiesis, some, albeit inconclusive, 
evidence of its role in the skeletomuscular system, and limited evidence of its role in the development 
of other organs. Studies on its role in the cardiovascular system and angiogenesis suggest that PTN has 
a significant regulatory effect by acting on endothelial cells, while its role in the functions of smooth or 
cardiac muscle cells has not been studied. This review highlights what is known to date regarding the role 
of PTN in the development of various organs and in angiogenesis. Wherever possible, evidence on the 
crosstalk between the receptors that mediate PTN’s functions is also quoted, highlighting the complex 
regulatory pathways that affect development and angiogenesis.
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Abbreviations used in this paper: ALK, anaplastic lymphoma kinase; CAH, 
carbonic anhydrase domain; cAMP, Cyclic adenosine monophosphate; c-Src, 
proto-oncogene tyrosine-protein kinase cellular sarcoma; ERK1/2, extracellular 
signal-regulated kinases; FNIII, fibronectin type III domain; GR, glycine-rich do-
main; HARP, heparin affin-regulatory peptide; HB-GAM, heparin binding growth-
associated molecule; HBGF-8, heparin binding growth factor-8; HBNF, heparin 
binding neurotrophic factor; HSCs, hematopoietic stem cells; MAM, meprin 
A-5, μ domain; MK, midkine; NCL, nucleolin; NK cells, natural killer cells; OSF-1, 
osteoblast specific factor; PTN, pleiotrophin; PTPRZ1, receptor protein tyrosine 
phosphatase zeta 1; RAS, rat sarcoma virus pathway; SDC1, syndecan-1; SDC2, 
syndecan-2; SDC3, syndecan-3; SDC4, syndecan-4; TSR-1, thrombospondin 
type I repeat; VEGFA, vascular endothelial growth factor A; VEGFR2, vascular 
endothelial growth factor receptor 2.

Introduction

the secreted growth factor pleiotrophin (Ptn) was initially iso-
lated from bovine uterus and fetal mouse brain by different groups 
in 1989. it was given several different names, but the one that 
dominated and is currently being universally used is Ptn (Fig. 1).

Ptn is highly conserved among species and shows high amino 
acid homology with midkine (mk), the other member of the same 
family of heparin-binding proteins. the mature peptide consists 
of 136 amino acids, following cleavage of the signal peptide, and 
contains 24% cationic amino acids mainly at the amino- and carboxy-
terminals, as well as 10 cysteines involved in the formation of 5 
disulfide bonds. PTN comprises of two β-structures linked by a 
flexible region. Each β-structure contains three antiparallel β-folds, 
homologous to the thrombospondin type i repeat (tsr-1) motif. 
the ends of the molecule have numerous basal amino acids and 
lack configuration. The carboxy terminus of PTN has been shown 
to be responsible for its interaction with chondroitin sulfate chains. 
the human ptn gene has been identified on chromosome 7, in arm 
q33, is at least 42 kb and contains 7 exons. The open reading frame 

includes 4 exons, mostly exons 3 and 4, and the borders between 
introns/exons are well maintained. different Ptn isoforms have 
been suggested but have not been studied. despite high homol-
ogy in the coding region, the 3΄ and 5΄ untranslated regions differ 
between species. the promoter of the human ptn gene contains 
response elements for myogenic differentiation factor 1, trihelix 
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Fig. 1. Timeline representation 
of PTN discovery. Important 
time points of the discovery of the 
molecule and the different names 
used during the years. The figure 
was created with BioRender.com.

transcription factor gt-1, activator protein 1, serum, homeobox a5 
and Sox10. Possible binding sites for nuclear receptor κB, cAMP 
binding protein, serum response factor and retinoic acid have been 
suggested but not proved (revised in Papadimitriou et al., 2009; 
2016). in relation to the latter, experimental evidence suggests that 
Ptn expression is not enhanced by retinoic acid (li et al., 1992) and 
this notion is supported by our data showing that all-trans retinoic 
acid inhibits Ptn expression (theodorakopoulou et al., 2006).

    
PTN receptors

Ptn has been shown to act through numerous receptors (Fig. 
2). The first molecule identified as a functional PTN receptor in 
brain neurons was n-syndecan or syndecan-3, sdC3), which was 

found to interact with Ptn in a solid phase binding assay. using 
a similar assay, Ptn was also found to interact with sdC1 in a 
heparan sulfate-dependent manner. it was later shown that the 
chondroitin sulphate chains on sdC1 and sdC4 are involved in 
their interaction with Ptn, while the core protein of sdC1 may also 
play a role. a cooperative action of both tsr-1 domains of Ptn 
is required for its interaction with the heparan sulphate chains of 
sdC3 and the regulation of synaptic plasticity. despite these studies 
showing interaction of Ptn with different syndecans, only interac-
tion with sdC3 has been linked to Ptn functions, as discussed 
later (revised in Papadimitriou et al., 2009; 2016; Pantazaka and 
Papadimitriou, 2014).

Another promptly identified PTN receptor in the nervous system is 
receptor protein tyrosine phosphatase zeta 1 (PtPrZ1). Ptn binds 

Fig. 2. Schematic represen-
tation of the known PTN 
receptors and their proven 
biological effects upon PTN 
binding. All shown receptors 
are functional PTN recep-
tors that mainly affect the 
PTN-mediated regulation of 
migration of different types 
of cells. SDC1 and SDC4 have 
been shown to interact with 
PTN but there are no data on 
their involvement in any PTN 
actions; therefore, they are not 
presented in this figure. Data 
on ALK as a PTN receptor are 
conflicting (see text), but PTN 
may activate ALK through 
PTPRZ1 and it seems that ALK 
mediates some of PTN’s ac-
tions. NCL conformation and 
exact mode of localization on 
the cell surface is not known. 
The figure was created with 
BioRender.com.
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to high and low-affinity sites that involve both the chondroitin sul-
phate chains and the protein core of PtPrZ1. the carboxy-terminal 
Ptn domain seems to be involved in the interaction with the PtPrZ1 
chondroitin sulphate structures, which differ during development 
or in pathologies (revised in Pantazaka and Papadimitriou, 2014; 
Papadimitriou et al., 2016). Binding of Ptn to PtPrZ1 increases 
tyrosine phosphorylation of numerous downstream molecules, 
such as c-Src and Fyn kinases, β-catenin, β-adducin, ανβ3 integrin, 
focal adhesion kinase, phosphoinositide 3-kinase and activation 
of protein kinase C alpha, beta or delta, Erk1/2 kinases (reviewed 
in Papadimitriou et al., 2009; 2016) and cyclin dependent kinase 5 
(lampropoulou et al., 2018). it was initially suggested that binding 
of Ptn to PtPrZ1 inhibits the phosphatase activity of the receptor 
through dimerization/oligomerization (revised in Papadimitriou 
et al., 2016), and in response to the doubts with regard to how 
the highly negatively charged chondroitin sulphate moieties on 
PtPrZ1 could allow dimerization, it has been suggested more 
recently that the positively charged ligand Ptn may neutralize 
electrostatic repulsion between chondroitin sulphate chains, thus 
inducing PtPrZ1 clustering, an effect also observed after removal 
of the PtPrZ1chondroitin sulphate chains (kuboyama et al., 2016). 
However, this point requires further study and clarification, since 
it is also possible that the PtPrZ1 downstream signalling results 
from the regulation of tyrosine kinase receptors autophosphoryla-
tion by PtPrZ1. such a mechanism has been described for the 
neuregulin receptor ErbB4 that interacts with PtPrZ1 through 
postsynaptic density-95 and results in decreased tyrosine phos-
phorylation of ErbB4 (Fujikawa et al., 2007). Similarly, PTPRZ1 has 
been shown to dephosphorylate anaplastic lymphoma kinase (alk) 
autophosphorylation sites, an effect that may be inhibited upon 
Ptn binding to PtPrZ1 or following PtPrZ1 deletion or tyrosine 
phosphatase inhibition, leading to alk activation (Xia et al., 2019; 
ntenekou et al., 2020).

alk has been suggested as a Ptn receptor in ligand-receptor 
binding studies performed in cell-free assays and in intact cells, 
in which Ptn was shown to bind to the alk extracellular domain. 
although direct Ptn binding to alk has been questioned by numer-
ous studies, alk seems to be activated by Ptn and to be involved 
in Ptn’s signaling and actions. it has been suggested that Ptn 
may activate alk through PtPrZ1 (Papadimitriou et al., 2016; Xia 
et al., 2019) but the exact pathway requires further study. 

Another cell surface protein that was identified at an early stage 
and has been discussed as a low affinity PTN receptor is nucleolin 
(nCl). nCl is a ubiquitous nucleolar protein that regulates several 
aspects of the dna and rna metabolism, ribosome assembly and 

the development of various tissues and organs. nCl is present 
on the surface of activated endothelial and cancer cells following 
ανβ3 integrin activation by Ptn. Cell surface nCl interacts with 
ανβ3 and PtPrZ1 and seems to affect both Ptn signaling and its 
translocation to the nucleus (koutsioumpa and Papadimitriou, 2014; 
Papadimitriou et al., 2016) through mechanisms that remain unclear.

integrins are heterodimeric cell-membrane receptors that 
mediate cell-cell interactions and adhesion between the extracel-
lular matrix and the cytoskeleton and play important roles during 
development (maartens and Brown, 2015). integrins that have 
been characterized as PTN receptors are αvβ3 on endothelial cells 
(mikelis et al., 2009) and αmβ2 on leukocytes (shen et al., 2017), 
mediating functions of PTN related to angiogenesis and inflamma-
tory responses, respectively. Ptn interacts with the extracellular 
domain of the β3 integrin subunit through its carboxy-terminal 
domain (mikelis et al., 2011), and with the α5-β5 loop of the αmi-
domain through its amino-terminal domain (Feng et al., 2021). in 
endothelial cells, ανβ3 interacts with PtPrZ1 even in the absence 
of Ptn, and this interaction is not affected by Ptn (mikelis et al., 
2009 and Fig. 3), although PTN induces PTPRZ1-dependent β3 
Tyr774 phosphorylation (Mikelis et al., 2009).

Neuropilin-1, a receptor for semaphorins that has significant 
role(s) in embryonic development of the nervous and the vascular 
system (Jubb et al., 2012) has been shown to bind Ptn. this in-
teraction requires the tsr-1 domains of Ptn and leads to Erk1/2 
activation and enhancement of endothelial cell migration (Elahouel 
et al., 2015), but has not been studied further.

more recently, we have shown that Ptn selectively binds to vas-
cular endothelial growth factor receptor 2 (vEgFr2) in endothelial 
and other types of cells, and inhibits vascular endothelial growth 
factor A (VEGFA)-induced VEGFR2 phosphorylation at Tyr1175 
(lamprou et al., 2020).

    
Expression and functions of PTN and its receptors during 
development

Without a doubt, the highest Ptn expression is observed in 
the nervous system, the pituitary, the heart, the eye, the placenta, 
the seminal tissue and the testis, the bladder, and the stomach. 
PTPRZ1 is significantly expressed in the nervous system, the skin, 
and the eye. they are both highly expressed in induced pluripotent 
stem cells and embryonic stem cells (Papadimitriou et al., 2016), 
suggesting important role(s) in early development. however, only 
in few cases has a causal relationship between Ptn and its recep-
tors been linked to specific functions.

      

Fig. 3. PTPRZ1 interacts with ανβ3 in 
endothelial cells independently of PTN. 
Serum-starved human umbilical vein endo-
thelial cells were incubated with PTN (100 
ng/ml) for 10 min. Formation of β3-PTPRZ1 
complexes as evidenced by in situ proximity 
ligation assay are shown on the left. The box 
plots shown on the right indicate the median, 
mean and range of the detected signals (n = 
10-12 image fields with 4-5 cells per image 
per sample type, each sample run in dupli-
cate). Details on the methodology used can 
be found at Koutsioumpa et al., 2015. Scale 
bar corresponds to 10 μm.
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Nervous system
since its discovery, Ptn has been implicated in brain develop-

ment and maturation. during development, it is highly expressed 
in the nervous system at sites of active mitogenesis, initially in the 
developing neuroepithelium and later in both glial cells and neurons 
in developing axonal tracts. In zebrafish embryos, overexpression of 
Ptn induces extensive neurite outgrowth with complicated branch-
ing patterns. in the perinatal period, it is expressed by neurons, 
astrocytes and oligodendrocytes and has been characterized as 
a potent stimulator of neurite outgrowth in central nervous system 
neurons (revised in Winkler and Yao, 2004; gonzález-Castillo et 
al., 2015) and in spiral ganglion neurons (Bertram et al., 2019). a 
recent study showed that neural stem cells secrete Ptn into the 
niche and that this contributes to the newborn neurons’ maturation 
(tang et al., 2019). In adults, PTN expression is limited to specific 
neuronal subpopulations in the brain cortex, the hippocampus, the 
cerebellum, and the olfactory bulb (gonzález-Castillo et al., 2015).

A specific role of PTN has been described in relation to dopa-
minergic neurons. it is highly expressed in neural stem cells of 
mouse ventral mesencephalon and promotes the production of 
dopaminergic neurons (gonzález-Castillo et al., 2015). it has also 
been shown to induce the differentiation of human umbilical cord 
mesenchymal stem cells into dopaminergic neuron-like cells (Yang 
et al., 2013), and in combination with stromal cell-derived factor 
1, insulin-like growth factor 2, and ephrin B1, to promote the dif-
ferentiation of human embryonic stem cells to functional tyrosine 
hydroxylase-positive neurons (vazin et al., 2009). Ptn is overex-
pressed in neurodegenerative diseases and confers a protective 
and/or nourishing effect on dopaminergic neurons in vivo and in 
vitro (mourlevat et al., 2005). the effects of Ptn on the develop-
ment of the nigrostriatal dopaminergic pathway are shown to be 
mediated by sdC3 and PtPrZ1 (gonzález-Castillo et al., 2015).

PtPrZ1 during brain development is expressed mainly to the 
ventricular and subventricular zone (levy et al., 1993), on both 
neuronal and glial cells (Canoll et al., 1993). Ptprz1-knockout 
mice show neurological abnormalities and differences in behavior 
and learning, including increased exploratory activities to novelty, 
deficits in spatial and contextual learning, and reduced responses 
to methamphetamine (tanga et al., 2019). Ptn also maintains 
the self-renewing phenotype of oligodendrocyte progenitor cells 
through PtPrZ1 (mcClain et al., 2012), which has made a signifi-
cant contribution to the survival and recovery of oligodendrocytes 
from demyelinating disease (harroch et al., 2002). more recently, 
PtPrZ1 has been shown to be important for the perineuronal net 
structures that are important for both development and plasticity 
of the brain in the adult (Eill et al., 2020).

Ptn has been shown to mediate the neurite stimulating activ-
ity of the peptide Y-P30 by binding to sCd2 and sdC3 (landgraf 
et al., 2008). Phosphacan, the alternatively spliced extracellular 
PtPrZ1 domain, inhibits neurite outgrowth (margolis et al., 1996), 
and Ptn has been shown to convert the neurite growth inhibitory 
effect of chondroitin sulfate proteoglycans into an activating effect 
(Paveliev et al., 2016). the expression pattern of Ptn, PtPrZ1 
and SDC3 in the postnatal mouse cerebellum appears to confirm 
their involvement in the morphogenesis of Purkinje cells, as well 
as in the control of the granule cell migration (Basille-dugay et al., 
2013), while disruption of Ptn distribution extracellularly alters 
the development and function of the neuronal circuits of the cer-
ebellum (hamza et al., 2016). Besides the central nervous system, 

Ptn is highly expressed in the peripheral nervous system during 
development and seems to promote the repair of neurons after 
injury of peripheral nerves. It may also have a significant role in 
muscle innervation, based on the observations that it is present 
at the neuromuscular junction and contributes to acetylcholine 
receptors clustering (revised in Jin et al., 2009). 

the effects of Ptn on neural development and neurite outgrowth 
have also been shown to be mediated by alk (Yanagisawa et al., 
2010). alk has been implicated in the nervous system develop-
ment, signaling during neuromuscular junction development in C. 
elegans, affecting the establishment of iridophores and normal 
pigmentation patterns in zebrafish, and neurogenesis in mice. It 
is highly expressed during embryonic mouse and chick develop-
ment, in both the central and peripheral nervous system, while alk 
expression levels are decreased after birth (revised in kalamatianos 
et al., 2018). Whether any of these functions are related to Ptn 
has not been studied.

      
Muscle

outside the nervous system, soon after its discovery, Ptn was 
found to be expressed in human intestinal smooth muscle cells (li 
et al., 1992) and in satellite cells (Wanaka et al., 1993). however, 
although a potential role of Ptn in myogenesis was suspected at 
an early stage, the first evidence came from studies showing that 
Ptn mrna and protein expression are increased during myogenesis 
and regeneration after crushing, in newly formed myotubes and in 
activated myoblasts before fusion in vivo. In vitro, Ptn expression 
increases during the differentiation process, being maximal on 
fusion of myoblasts into myotubes (Caruelle et al., 2004).

Ptn expression is found to increase during postnatal heart 
development and Ptn increases postnatal cardiomyocytes’ dna 
synthesis (Chen et al., 2004), suggesting that Ptn may have a role 
in myocardial development and regeneration. Ptn overexpression 
in slow-twitch soleus muscle leads to an increased number of pure 
type 1 fibers and decreased number of pure type 2A and 2X fibers, 
as well as increased sulfonylurea receptor 1, citrate synthase and 
cycloxygenase iv gene expression and increased vascularization, 
suggesting a shift toward a more oxidative metabolism and im-
proved muscle performance (Camerino et al., 2013). the role of 
Ptn receptors in heart development has not been studied. We have 
unpublished evidence using two different animal models, as well as 
human data showing that PtPrZ1 is expressed in the embryonic 
but not in the adult heart and plays a role in heart morphogenesis 
and subsequent function (katraki-Pavlou et al., unpublished).

as is also mentioned above, Ptn is a muscle protein present at 
the neuromuscular junction in close contact with the acetylcholine 
receptors and may have a significant role in muscle innervation 
(Jin et al., 2009).

      
Skeletal system

a role of Ptn in bone development was suggested at an early 
stage on the basis of studies showing expression of its mrna dur-
ing bone growth in ancestral cartilage and pulp. Ptn has initially 
been considered important for new bone formation on the basis of 
observations that it induces osteoblast attachment to the extracel-
lular bone material through binding to a specific receptor, which 
may be sdC3. it was also shown to induce hypertrophy during the 
chondrogenetic differentiation of human bone marrow progenitor 
cells, an effect that has been associated with both alk and PtPrZ1. 
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Ptn enhances the release of heparin-binding epidermal growth fac-
tor, which then activates its receptor in precursor osteoblasts and 
osteoblast-type cells, increases alkaline phosphatase activity and 
inhibits dexamethasone-induced cell death. Ptn overexpressing 
transgenic mice develop a phenotype characterized by increased 
bone growth and higher salt and bone density. When Ptn is over-
expressed solely in the mouse skeletal system, increased bone 
length and maturation are observed at the early stages of bone 
development, a balanced phenomenon in adult life. PTN-deficient 
mice appear to have bone growth retardation at two months, and 
osteopenia and resistance to bone remodeling in adult life (revised 
in lamprou et al., 2014). in transgenic mice that overexpress Ptn, 
bone loss due to estrogen deficiency (Masuda et al., 1997) or 
almost zero gravity (tavella et al., 2012) is compensated, in line 
with the observation that estrogen enhances Ptn expression (Xi 
et al., 2020). it has been suggested that the increased expression 
of Ptn and PtPrZ1 in osteoblasts depleted of insulin-like growth 
factor binding protein-2 helps maintain, partially at least, normal 
bone mass in female mice (Xi et al., 2020). 

Ptn is also involved in odontogenesis. it was initially shown 
that Ptn is expressed during initiation, morphogenesis and cytodif-
ferentiation stages of incisor development at structures that are 
important for tooth morphogenesis (mitsiadis et al., 2008). Ptn 
is also expressed in epithelial and mesenchymal dental cell lines 
and its expression is regulated by bone morphogenetic proteins. 
during maturation of the ameloblasts and odontoblasts, Ptn is 
expressed in the inner enamel epithelium; Ptn is also expressed 
in the terminally differentiated and enamel matrix-secreting amelo-
blasts and odontoblasts of the adult mouse incisors and molars 
(Erlandsen et al., 2012). more recently, it has been shown that 
Ptn positively regulates dental pulp stem cell proliferation and 
potential to differentiate (Jin et al., 2020), protecting them from 
senescence (Zhang et al., 2021).

      
Hematopoiesis and immune system

Ptn promotes hematopoietic stem cell (hsC) expansion in vitro 
and hsC regeneration in vivo (himburg et al., 2010) via PtPrZ1-
mediated activation of the ras pathway (himburg et al., 2014), 
supporting a role of the Ptn/PtPrZ1 axis in hemopoiesis. the 
main source of Ptn during steady-state hematopoiesis is the leptin 
receptor expressing bone marrow stromal cells, but regeneration 
of hsCs depends on endothelial cell-derived Ptn (himburg et 
al., 2018). in the same line, Ptn secreted into the human tonsil 
mesenchymal stem cells conditioned medium increases hsC 
transplantation efficacy (Kim et al., 2020). it has been also shown 
that loss of stromal Ptn results in changes in expression of genes 
that lead to myeloid engraftment dominance, suggesting that Ptn 
plays a role in maintaining the balance of myeloid and lymphoid 
potential of regenerating hsCs (istvanffy et al., 2011).

Ptn is mitogenic for human peripheral blood mononuclear cells, 
and this initial observation suggested that it may be involved in the 
growth regulation of cell mediated immunity (achour et al., 2001), 
further supported by a subsequent study showing enhanced expres-
sion of inflammatory cytokines, such as tumor necrosis factor α 
and interleukins 1β and 6 by PTN (Achour et al., 2008). a role of 
Ptn in adaptive immunity was corroborated by the observation 
that interferon γ induces PTN expression by macrophages (Li et 
al., 2010) and a role in innate immunity has been suggested by its 
bactericidal properties (svensson et al., 2010; guyot et al., 2016). 

PTN has also been suggested as a potent regulator of neuroinflam-
mation through PtPrZ1 (herradon et al., 2019), and a regulator of 
the levels of functional cytokines in both m1 and m2 type microglia 
cells, strengthening m1/m2 transformation (miao et al., 2019). 

mice that are knockout for PtPrZ1 have a higher number and 
proportion of mature B cells, and signaling of mk through PtPrZ1 
leads to B cell survival (Cohen et al., 2012). Whether Ptn has such 
an effect on B cells has not been studied. it has been only shown 
that PTN expression is significantly increased in B cells from both 
chronic and acute leukemia patients compared to healthy controls 
and suppression of Ptn activity induced apoptosis of B cells from 
both leukemia patients and cell lines (du et al., 2014).

      
Urogenital system

in the human mammary gland, Ptn is expressed in epithelial 
and endothelial cells (ledoux et al., 1997) and helps maintain the 
mammary epithelial cells in a progenitor phenotype, thus delaying 
mammary gland maturation (Rosenfield et al., 2012). its expres-
sion in the uterus depends on the estrous cycle and is upregulated 
by progesterone (milhiet et al., 1998). in the endometrial stromal 
cells, it is upregulated during decidualization (Bany and schultz, 
2001), apparently having a vital role in the progesterone-induced 
decidualization pathway (Yu et al., 2018). high mobility group box 
3 regulates uterine stromal cells proliferation and differentiation by 
targeting Ptn (Wang et al., 2019), further supporting a physiologi-
cal role of Ptn in uterine decidualization. Cd49a+ Eomes+ natural 
killer (nk) cells in the human and mouse uterus secrete Ptn and 
enhance fetal growth during early stages of fetal development (Fu 
et al., 2017). The CD49a+ PBX homeobox 1 enhances Ptn transcrip-
tion in decidual nk cells, thus promoting fetal growth (Zhou et al., 
2020). Female mice that are deficient in both PTN and MK show 
reproductive abnormalities (muramatsu et al., 2006). 

Ptn is expressed in testicular leydig cells and plays a normal 
role in spermatogenesis. Male mice deficient in PTN are charac-
terized by infertility, atrophic testes and apoptotic sperm cells 
(Zhang et al., 1999). Ptn mrna and protein are expressed in 
ventral mesenchymal pad and prostatic mesenchyme surround-
ing ductal epithelial tips that undergo branching morphogenesis 
in vivo. In vitro, Ptn is upregulated by androgens and stimulates 
both stromal and epithelial cell proliferation, as well as branching 
morphogenesis (orr et al, 2011).

in the embryonic kidney, Ptn is expressed in the developing 
kidney mesenchyme (mitsiadis et al., 1995) and localizes onto 
the basement membrane of the developing ureteric bud (sakurai 
et al., 2001).

      
Respiratory system

Ptn and PtPrZ1 have been shown to be highly expressed 
in mesenchymal and epithelial cells of fetal lungs, respectively. 
Ptn promotes fetal type ii cell proliferation and inhibits their 
trans-differentiation into alveolar epithelial type i cells, through 
multiple signaling pathways that include β-catenin and Notch 
(Weng et al., 2009). 

      
Eye

Ptn is mitogenic for bovine lens epithelial cells (delbé et al., 
1995), and blocks or promotes rod or bipolar cell differentiation 
respectively (roger et al., 2006). in drosophila, overexpression of 
the mk/Ptn orthologue miple leads to defective eye patterning 
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through Ptp99a, the drosophila ortholog of PtPrZ1 (muñoz-soriano 
et al., 2013). during embryonic development, Ptn is expressed in 
the iris mesenchyme, the optic nerve, and the neural retina, sug-
gesting that it may have a role in epithelial-mesenchymal interac-
tions and affect optic nerve and retinal development. among Ptn 
receptors, sdC1, and sdC3 are expressed in the cornea, whereas 
all receptors including rPtPZ1 and alk are expressed in the retina 
(Cui and lwigale, 2019) but a causal relation to the Ptn effects 
on the eye has not been studied.

      
Liver

PTN was initially identified as a mitogen for adult hepatocytes 
(sato et al., 1999) and parenchymal cells in both adult and embryonic 
liver (asahina et al., 2002). it is expressed by mesenchymal cells in 
fetal liver; its expression is gradually reduced during development 
(asahina et al., 2002; ito et al., 2014) and seems to play a role in liver 
regeneration (asahina et al., 2002; michelotti et al., 2016) through 
its receptor PtPrZ1 (michelotti et al., 2016). it was recently shown 
that in myofibroblasts, there is decreased expression of several 
growth factors, including PTN, compared to fibroblasts, and this 
leads to reduced hepatoblast proliferation and induced maturation 
of the differentiated cholangiocytes (Wang et al., 2020).

      
Other organs

PTN expression has been identified during all embryonic stages 
in the neurohypophysis primordium. it is expressed only in neuro-
hypophyseal cells and might be involved in pituitary development 
(Fujiwara et al., 2014).

Ptn mrna is strongly expressed in the mouse cochlea one 
week after birth and gradually decreases, being undetectable by 
week 8 after birth. Ptn knockout mice exhibit low to moderate 
auditory deficits and have higher hearing thresholds compared to 
the wild-type mice, with an almost normal appearance of the stria 
vascularis but weak expression of the kir4.1 potassium channel 
(Zou et al., 2006). mice knockout for both Ptn and mk also ap-
pears with severe vacuolar degeneration in the intermediate cells 
(sone et al., 2011).

      
PTN and angiogenesis

the vascular system is very important for fetal development 
and there is evidence that PTN has a significant regulatory role in 
vascular homeostasis, although the exact pathways involved are 
still being explored. 

the initial evidence came from in vitro studies showing that 
Ptn is mitogenic for endothelial cells. the mitogenic effect of 
Ptn was questioned in subsequent studies and it seems that it 
may be cell-type and cell-context specific or depend on the origin 
of the recombinant protein used (revised in Papadimitriou et al., 
2004; 2009). Ptn induces endothelial cell migration and differen-
tiation into tubes in various substrates in vitro, through its receptor 
PTPRZ1, which forms a functional complex with αvβ3 integrin on 
the surface of endothelial cells and leads to cell surface transloca-
tion of nCl (revised in Papadimitriou et al., 2009; 2016). Ptn has 
also been shown to enhance vEgFa expression (koutsioumpa 
et al., 2012; Palmieri et al., 2015) and this may contribute to its 

Fig. 4. Schematic repre-
sentation of the up to date 
known PTN-induced path-
way in endothelial cells. 
PTN has a moderate stimu-
latory effect on endothelial 
cell migration via PTPRZ1/
ανβ3/cell surface NCL (Mike-
lis et al., 2009; Koutsioumpa 
et al., 2013) but an inhibi-
tory effect through VEGFR2 
(Lamprou et al., 2020). The 
figure was created with 
BioRender.com.

BioRender.com
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angiogenic activities, although the receptors/pathways involved 
in this action have not been studied. in contrast to the initial char-
acterization of Ptn as an angiogenesis-promoting growth factor, 
later studies suggested that Ptn may also limit the angiogenic 
effect of vEgFa (héroult et al., 2004; koutsioumpa et al., 2015). 
this possibility was further supported by data showing that vEgFa 
competes with Ptn for binding to PtPrZ1 (koutsioumpa et al., 
2015). Binding of vEgFa to PtPrZ1 inhibits endogenous Ptn 
levels (Poimenidi et al., 2016) that limit the angiogenic effects of 
vEgFa, thus enhancing vEga-induced endothelial cell migration 
(koutsioumpa et al., 2015; Poimenidi et al., 2016). more recently, 
we have shown that Ptn selectively binds vEgFr2 and inhibits 
its activation by vEgFa, highlighting another mechanism through 
which Ptn limits the angiogenic effect of vEgFa (lamprou et al., 
2020). Although the cross talk between PTPRZ1, ανβ3 and vEgFr2 
is still being studied, our up-to-date data support a model through 
which Ptn has a moderate stimulatory effect on endothelial cells 
via PTPRZ1/ανβ3/cell surface nCl but limits the angiogenic effects 
of vEgFa through vEgFr2 (Fig. 4).

in line with a balancing effect on angiogenesis,, Ptn has had 
moderate effects on in vivo animal models of angiogenesis, such 
as the rabbit cornea, the chorioallantoic membrane of the chick 
embryo, the ischemic myocardium in rats, a model of acute poste-
rior muscle ischemia, slow-twitch soleus and fast-twitch extensor 
digitorum longus muscles, and numerous tumor models (revised 
in Papadimitriou et al., 2009; 2016). When expressed by mono-
cytes, it has been shown to lead to a decrease in the expression 
of monocyte markers and an increase in endothelial cell markers, 
inducing differentiation of monocytes into functional endothelial 
cells (Sharifi et al., 2006). a role played by Ptn in angiogenesis is 
also supported by the expression of Ptn and its receptors PtPrZ1, 
alk, sdC1 and sdC3 in mesenchymal cells, fetal macrophages, 
and fetal vessels, in line with increasing levels of Ptn in maternal 
bloodstream as pregnancy progresses (Ball et al., 2009). Ptn has 
been also suggested as a promising factor for inducing angiogen-
esis during aging based on the observation that it restores the 
age-related attenuation of angiogenesis in the aortic ring model 
(Besse et al., 2013).

most discussion of the role of PtPrZ1 in angiogenesis has been 
based on its function as a Ptn and vEgFa receptor, as mentioned 
above. We have recently shown that PtPrZ1 knockout mice show 
enhanced angiogenesis in several organs, such as lung, heart 
and the retina, and microvascular endothelial cells isolated from 
the lungs of these animals have enhanced angiogenic properties 
(ntenekou et al., 2020; katraki-Pavlou et al., unpublished). 

    
Conclusions

Ptn is a highly conserved, ubiquitously expressed protein that 
seems to play a notable role in the development and maturation 
of the nervous system. data from several other organs show that 
it is also involved in epithelial-mesenchymal interactions during 
development and is expressed by endothelial cells, regulating an-
giogenesis. due to the high degree of homology with mk, the one 
compensates for the other in several but not all cases, and this 
adds to the complexity of studying Ptn. another point of complex-
ity is the increasing number of receptors that have been identified 
as mediating the effects of Ptn in several different types of cells 
and organs, forcing researchers to try to clarify the interactions 

and the crosstalk of the different receptors/pathways involved in 
each case. Moreover, the PTN receptors identified to date are not 
specific for PTN and mediate the effects of several other molecules 
besides Ptn and mk (revised in Pantazaka and Papadimitriou, 2014; 
Papadimitriou et al., 2016), suggesting that Ptn may regulate the 
effects of other growth factors, as has been shown for vEgFa in 
endothelial cells (koutsioumpa et al., 2015; Poimenidi et al., 2016). 
although Ptn does not seem to be indispensable for survival, it 
seems to play important roles in several pathological conditions, 
affecting pathways that are deranged in pathological settings, and 
this is still an open field to study. Meticulous in vitro work combined 
with high throughput assays and loss- or gain-of-function in vivo 
studies will shed light on many unidentified aspects related to 
the role of Ptn in development, angiogenesis, and pathologies.
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