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Abstract 

Exosomes are a subtype of extracellular vesicle (EVs) composed of a lipid bilayer which carry 
various cargoes such as nucleic acids, proteins, and bioactive lipids. Cancer cells release 
exosomes to promote cell communication and interaction with the extracellular matrix (ECM). 
ECM regulates the secretion and uptake of exosomes. Moreover, the cargo of exosomes can 
control ECM remodeling thus affecting cancer progression. Aside from the rearrangement of 
ECM, exosomal cargo also modulates different signaling pathways that maintain homeostasis 
and play a major role in tumor growth and immune evasion in the tumor microenvironment 
(TME). Exosomes are now widely recognized as circulating biomarkers for diagnosis and 
prognosis. Their role in cancer initiation, progression, and chemoresistance is becoming 
increasingly clear from preclinical and clinical investigations, hence gaining interest for their 
potential use as cancer diagnostics tools, but also for the development of future innovative 
cancer therapeutics. In this mini review we outline and discuss the correlation between 
exosomes, TME and cancer progression, while focusing on the potential role of exosomes as 
diagnostic and prognostic biomarkers, as well as therapeutic vehicles for drug delivery. 

 

Introduction 
Cell-cell communication drives cellular activities and tissue homeostasis in both physiological 
and pathological conditions. A part of this communication is carried out via the release of 
nanosized, membrane-bound vesicles, which can transfer different kind of cargo such as DNA, 
RNA, and proteins. These extracellular vesicles (EVs) are released by virtually all cells, as part 
of their normal function as well as after acquired disorders. A major category of EVs aiding in 
intercellular communication are exosomes, with a variety of sizes ranging from 40 to 120 
nanometers. Due to their size, they constitute an accessible and efficient source of cell 
information, compared to traditional biomarkers. Exosomes were first identified in the early 
80’s, when scientists observed that transferrin receptors related with microscopic vesicles are 
actually discarded into the extracellular environment by blood reticulocytes (Harding, C., Stahl, 
1983). In the human body these vesicles can be found in a variety of bodily fluids including 
plasma, saliva and breast milk (Chernyshev et al., 2015). 

Despite being once treated as cellular waste and therefore underappreciated, exosomes are now 
considered key vehicles of intercellular communication and it is well established that tumor 
microenvironment (TME) correlates to their formation and secretion (Karamanos et al., 2021). 
In addition, exosomes can affect tumor growth and metastasis directly through the exosome-
mediated signaling, but they can also have a significant impact on several and critical events of 
the metastatic cascade and the induction of epithelial-to-mesenchymal transition (EMT), 
mainly due to their cargo containing extracellular matrix (ECM) degradation enzymes 
(Giordano et al., 2020). In this article we present insights in respect to the formation of 
exosomes, their role in TME as well as the current outlook on exosome targeting strategies and 
clinical approaches. 

 

Exosome biogenesis and composition  
Exosome biogenesis is a unique protein quality control procedure that enables cells to remove 
proteins from the plasma membrane promptly and selectively. Once secreted from the cell, 
exosomes can become important components of the ECM and as a result, provide a way for 



cells to modify its composition and function. This way, they are able to both transmit signals 
and transfer chemicals via an intercellular vesicle trafficking pathway (Pegtel and Gould, 2019).  

Exosomes are formed by the double invagination of the cell membrane and the synthesis of 
intracellular multivesicular bodies (MVBs) that include intraluminal vesicles (ILVs). After the 
MVB fusion to the plasma membrane and exocytosis, ILVs are eventually released as 
exosomes. Τhe earliest step of the biogenesis procedure is the cup-shaped structure which is 
formed from the first invagination of the plasma membrane and includes cell-surface proteins 
as well as soluble proteins from the extracellular environment. This contributes to the de novo 
development of an early-sorting endosome (ESE), which can combine with a pre-existing ESE 
under specific conditions. The ESE's development and composition can further be modified by 
the trans-Golgi network and endoplasmic reticulum.  

Different processes are thought to be involved in the formation itself. To generate an inward-
budding vesicle within the endocytic system, namely exosomes, or in case of microvesicles, an 
outward-budding vesicle at the plasma membrane, lipid curvature must be induced in. The best-
known mechanism is the recruitment of the endosomal sorting complex necessary for transport 
(ESCRT) machinery, which consists of four protein complexes (ESCRT-0, -I, -II, and -III) and 
accessory proteins (Alix, VPS4, and VTA-1), to ubiquitinated proteins in the early endosome 
(Maas et al., 2017). Notably, some exosomes released from cells into the extracellular space by 
a process that is not dependent on ESCRT (Trajkovic, 2008). For example, exosome release is 
considered dependent on the sphingomyelinase enzyme rather than ESCRT. CD63, CD9 and 
CD81, as well as other plasma membrane proteins, are frequently detected in exosomes and are 
often concentrated in vesicles as compared to cell lysate (van Niel et al., 2011).  

A number of proteins and complexes are involved in the biogenesis of exosomes, such as the 
Ras-related protein GTPase Rab, Sytenin-1, phospholipids, tetraspanins, ceramides, 
sphingomyelinases, and soluble N-ethylmaleimide-sensitive factor attachment protein receptor 
(SNARE), although their functions and roles in exosome formation require additional 
investigation, particularly in vivo (Mathieu et al., 2019).Upon biogenesis, exosomes are picked 
up by recipient cells via endocytosis, receptor-ligand binding, or cell membrane fusion. 
Exosome uptake is controlled by interactions between exosome surface proteins and recipient 
cells. Exosome adhesion-associated molecules on the surface, such as tetraspanins and 
integrins, have been hypothesized to determine which cells receive exosomes (Zhang and Yu, 
2019).  

A variety of molecules, such as receptors, transcription factors, enzymes, ECM components, 
lipids, and nucleic acids can be found within exosomes, as well as on their surface (Fig.1). 
Exosome protein composition analysis indicates that some proteins are unique to the tissue or 
cell of origin, while others are found in almost all exosomes. They include adhesion molecules 
such as cell adhesion molecules (CAMs), integrins, tetraspanins, MHC class I/II, and transferrin 
receptors (TfRs) on the surface of B lymphocytes, dendritic cells and reticulocytes. Non-
specific exosome protein types include fusion and transferring proteins like Rab2, Rab7, 
flotillin, and annexin, heat shock proteins like Hsc70 and Hsc90, cytoskeleton proteins like 
actin, myosin, and tubulin, and proteins like Alix that mediate MVB formation (Van Niel et al., 
2006). Besides that, exosome lipid content is either cell-specific or conserved. Lipids are 
involved in exosome production as well as controlling homeostasis in recipient cells, in addition 
to maintain the exosome shape. (Mashouri et al., 2019). According to the most recent lists of 
the exosome online database ExoCarta (www.exocarta.org), exosomes contain a range of 
components, including 9769 proteins, 3408 mRNAs, 2838 miRNAs, and 1116 lipids.  

 



ECM as mediator of exosome secretion and uptake  
As already stated, exosomes facilitate cell-cell communication and cell-matrix interactions. In 
particular, cancer cells use this mode of communication for reprograming, located in often 
remote locations, such as bone marrow progenitor cells, cancer-associated fibroblasts (CAFs), 
tumor-related macrophages and neutrophils to form appropriate pre-metastatic niches (Qadir et 
al., 2018).  

The TME appears to modulate the formation and secretion of exosomes, hence participating in 
tumor progression. Notably, ECM hardening observed during tumor growth is associated with 
the risk of metastasis, due to the high deposition of ECM components, including collagen. 
Increased type I collagen accumulation and Apc mutation in colon adenocarcinoma (CRC) 
stimulate exosome release. This mutation also induces the Wnt signaling pathway, a critical 
pathway for the intestinal epithelium and enteric adenomas, further enhancing exosome release 
(Szvicsek et al., 2019). Moreover, the mechanical properties and the organization of collagen 
fibers affect the behavior of cancer cells (Jung et al., 2020). For instance, at early stages of 
breast cancer growth, collagen fibers are arranged in a parallel pattern, preventing cell invasion. 
As the tumor expands, the pressure exerted on the collagen fibers results in radially aligned 
fibrils, where exosomes are more easily diffused (Franchi et al., 2020). 

The observed synergy between exosomes and ECM can also directly affect cancer progression 
and growth. For instance, exosome-mediated signaling induces hypoxia, which in turn advances 
tumor progression, angiogenesis and metastasis. On the other hand, hypoxia can cause the 
production of exosomes by cancer cells through hypoxia inducible factor-1 alpha (HIF-1α). In 
addition, exosomes secreted by hypoxic cancer cells provoke focal adhesion and invasion, 
while also promoting cancer cell survival and metastasis, due to the modified secretion of 
epidermal growth factor that binds heparin via exosomes. This modification is induced by the 
activation of BHLHE40, indicating that this axis is an important mechanism, leading to breast 
cancer metastasis (Tan et al., 2021). Additionally, exosome levels in serum of breast cancer 
patients are higher in comparison to healthy individuals, while exosomes produced by 
fibroblasts determine breast cancer cells migration (Melo et al., 2014). 

The binding and uptake of exosomes by receptor cells is carried out through ECM proteins and 
their receptors. This is confirmed by the fact that enrichment of pancreatic adenocarcinoma-
derived exosomes with VCAM-1 and integrin α4 increase their binding and uptake by 
endothelial cells. In addition, various studies have shown that receptor cells not expressing cell 
surface proteoglycans (PGs) cannot internalize exosomes as effectively as those that express 
them. These PGs bind to lectins on the surface of exosomes, whereas the absence of heparan 
sulfate proteoglycan receptors reduces the uptake of exosomes (French et al., 2017). 
Nevertheless, among PGs, cell-membrane syndecans can also affect the formation of exosomes 
via ESCRT III, as it binds to the protein ALIX by the small cytosolic adapter protein syntenin. 
Moreover, the cleavage of heparan sulfate chains by heparanase leads to the accumulation of 
syndecans that activate exosome production by the syndecan-ALIX-ESCRT axis (Bebelman et 
al., 2018). Therefore, heparanase is an important regulator of the secretion, composition and 
function of exosomes. The presence of heparanase has also been shown to increase exosome 
production and affect the synthesis of exosome proteins. In addition, exosomes derived from 
cancer cells, with high levels of heparanase expression, modify cancer cells behavior 
(Piperigkou et al., 2021). Finally, exosome delivery can be regulated by the ASPH (asparaginyl 
β-hydroxylase)-Notch axis. This axis causes ECM remodeling through the action of MMPs and 
ADAMs, promoting cell invasiveness and directing the delivery of exosomes (Tan et al., 2021). 
In particular, it appears that ASPH leads malignant breast cancer cells to synthesize and produce 



exosomes with a specific cargo, which will bring about changes in key processes of the less 
malignant cells (Lin et al., 2019). 

 

Exosomal cargo affects ECM remodeling promoting cancer  
The exosomal cargo can contain proteins, signaling molecules and microRNAs. These 
components are involved in cytoskeletal remodeling, invasiveness and cell motility, while also 
controlling signaling pathways that regulate migration and angiogenesis and direct primary 
cancer cells to specific metastatic sites.  

Cancer cell-derived exosomes can contain metabolic products, which directly induce rapid 
growth and proliferation of cancer cells in a paracrine manner. (Tan et al., 2021). In addition, 
exosomes are rich in ECM degradation enzymes like metalloproteinases (MMPs). Notably, it 
has been shown that the transfer of exosomes from high metastatic MDA-MB-231 breast cancer 
cells  to non-tumorigenic MCF-10A epithelial breast cancer cells  leads to increased expression 
of MMP-2 and MMP-9 and induction of EMT (Galindo-Hernandez et al., 2014; Yang et al., 
2020). Similarly, ovarian cancer exosomes contain MMP-2, MMP-9 and uPA, leading to ECM 
degradation (Rilla et al., 2019). In cancer cells and CAFs, the major MMP regulating collagen 
degradation is MT1-MMP, mainly found in actin-rich invasive cell structures, termed 
invadopodia. The release of proteinases from exosomes induces the maturation and stability of 
invadopodia, ECM degradation and favors cell invasion (Hoshino et al., 2013). Thus, it seems 
that there is a direct correlation between invadopodia formation and exosome release (Winkler 
et al., 2020).  

Besides MMPs, another enzyme found in exosomal cargo is heparanase, allowing its release in 
distant areas. Since this enzyme induces angiogenesis and metastasis, its transport via exosomes 
is crucial for the formation of pre-metastatic niches, where cancer cells will settle and grow 
(Piperigkou et al., 2021). miRNAs transferred by exosomes are important factors for cell 
communication as well as the regulation of metastasis, angiogenesis, TME formation and 
remodeling (Tan et al., 2021).  What is more, exosomes derived from metastatic cancer cells 
can penetrate the blood-brain barrier and disrupt its function. For example, vascular endothelial 
cell-derived exosomes, contain miR-105 and miR-181c, are able to destroy vascular endothelial 
barriers, causing tumor metastasis to the brain (Tai et al., 2018). 

Furthermore, exosomes contain adhesion receptors on their surface, such as integrins. Through 
integrins, exosomes bind to fibronectin and thus local secretion of exosomes promotes adhesion 
and contributes to increased cell migration. It is important to note that integrins expressed by 
breast cancer cell exosomes target specific organs where they attach, defining the location of 
future metastasis (Winkler et al., 2020). Likewise, exosomal fibronectin has been shown to 
facilitate breast cancer metastasis in vivo. This is achieved by increasing the production of 
proinflammatory cytokines and MMP-9 (Tan et al., 2021). Apart from fibronectin, exosomal 
integrins can interact with other ECM components, such as laminins. The deposition of 
laminins increases cell adhesion, facilitating the colonization of cancer cells (Guo et al., 2019). 
Similarly, exosomes derived from pancreatic and colon cancer cells have been found to carry 
an adhesion protein, CD44v6, which interacts with integrins α6 and β4 to enhance cell 
migration and invasion (Paolillo and Schinelli, 2017).  

 

 



Exosomes in disease diagnosis and therapy 
The heterogeneity of exosome cargo could be used as disease diagnosis and prognosis tools. 
Therefore, exosomes make suitable candidates as cancer biomarkers. For instance, exosomal 
miRNAs can be a useful tool for prognosis and/or grading during cancer progression. Several 
miRNAs could serve as biomarkers, including miR-451a, miR-21, miR-499, miR-133, miR-
208, miRNA-34a, and miR-638 (Zhang et al., 2020). Apart from miRNAs, other types of RNAs 
in exosomes that can be used as prognostic markers, including long noncoding RNA (lncRNA) 
and circRNAs (Dai et al., 2020).  

Regarding therapeutic strategies, exosomes have emerged as a promising vehicle for the 
transport and transfer of drugs, miRNAs, small interfering RNA (siRNAs), short hairpin RNAs 
(shRNAs), and other molecules for the treatment of malignancies or other diseases. Owing to 
their microscopic size, exosomes can avoid phagocytosis of mononuclear macrophages and can 
also penetrate the blood vessel wall and extracellular matrix. Therefore, they can act as a natural 
biological carrier that is stable and membrane permeable, transferring therapeutic cargos more 
efficiently and with fewer off-the mark effects compared to other bio-vehicles, such as 
liposomes. 

Researchers reported an outstanding example of exosomes that had a cargo of siRNAs or 
shRNAs and use up oncogenes to suppress tumor CD47+ development (Kalluri and LeBleu, 
2020). On top of that, exosomes can deliver or confer antigens derived from tumors that activate 
cytotoxic T cells, making them an attractive prospect for anticancer vaccination. Given the 
ability of exosomes originated from cancer cells to cause angiogenesis, promote metastasis, and 
change pre-metastatic niches, taking away them from the circulatory system to prevent cancer 
metastasis is another potential clinical application of exosomes (Zhang and Yu, 2019). 

Enrichment of engineered ligand in exosomes may also be utilized to activate or inhibit 
different signaling pathways in recipient cells or to target specific cell types. Based on the 
observation that miRNA from exosomes effectively activates target mRNA and inhibits gene 
expression in recipient cells, the technology of exosome engineering has been developed to 
provide specific miRNA or siRNA payloads for CNS diseases and cancer. Exosomes’ 
involvement in the polarization of the tumor immune microenvironment has also helped the 
design of therapeutic exosomes aimed at enhancing the anti-tumor immune response (Kalluri 
and LeBleu, 2020). In general, a wide range of therapeutic materials, including siRNAs, 
antagomirs, recombinant proteins, and anti-inflammatory medicines, can be encapsulated for 
exosome-mediated delivery using several methods  (Zhang Y et al., 2019).  

The improvement of effectiveness in cancer treatment is necessary for the successful delivery 
of drugs to tumor cells. To that end, examples of studies on engineered exosomes for potential 
therapeutic applications are presented in Table 1. Nanotechnology-based medication delivery 
systems are one of the most favorable clinical methods for accomplishing this purpose. 
Exosomes have been applied as vectors for drug and functional RNA delivery in cancer 
treatment because of their innate delivery capabilities. They can be taken up by cells and stably 
transfer drugs. For instance, Paclitaxel, an antimitotic chemotherapeutic treatment, can be 
delivered into exosomes. Anticancer drugs and/or external non-coding RNA (ncRNA) could 
directly target cancer cells or cancer stem cells specific pathways after being loaded into 
exosomes, preventing tumor progression. Furthermore, the surfaces of exosomes can be 
modified using ligands that correlate to receptors expressed on cancer cell surfaces, increasing 
exosome cellular absorption efficiency by them (Batrakova and Kim, 2015; Dai et al., 2020). 

 



Concluding remarks 
Over the past few years, the knowledge of exosomes’ effects in cell-cell communication has 
significantly evolved. Exosomes play critical roles in both physiological and pathological 
processes due to their mediation of cell–cell communication, their release from a plethora of 
cell types, and their existence in virtually all body fluids. Exosome production and secretion 
appears to be influenced by the tumor microenvironment, which in turn plays a role in tumor 
development. Worthy to notice that exosomes can regulate metastasis and ECM remodeling, as 
well as promote the upregulation of inflammatory molecules, induce angiogenesis and 
infiltration, and control immunological response. 

As it turns out, the interaction of exosomes with ECM and TME for cancer progression is a 
dynamic interplay, taking place from both sides; on one hand, hypoxic conditions in TME and 
collagen remodeling modulate exosome formation and secretion, while their binding to receptor 
cells is regulated by proteins and ECM receptors. On the other hand, exosome cargo transferred 
to receptor cells makes exosomes important tools for metastasis. Thus, exosomes being rich in 
active components, such as heparanase, MMPs and other enzymes, miRNAs, metabolic 
products, and ECM components, can contribute to cancer progression by affecting key cellular 
functions and promoting angiogenesis and EMT. 

Consequently, the exosome capacity to encapsulate these components make them an up-coming 
diagnostic biomarker and therapeutic tool for cancer and other diseases. Exosome-based 
treatments include the use of naturally produced immune cell exosomes to inhibit cancer cells, 
suppress cancer cell-derived exosomes activities, and their use as gene or drug carriers. Further 
research is required however, focusing on engineering exosomes for drug delivery with features 
like high drug loading capacity, high specificity, non-cytotoxic effect, and low immunogenicity 
using in vivo models. While there are still obstacles to overcome, it is obvious that exosomes 
have a unique and prominent use in diagnostic and therapeutic approaches. 
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Table 1: Exosomes engineered for potential therapeutic applications with regards to targeting 
molecules or cells, theirs contents, and desirable purposes. 

 

Figure 1: Schematic representation of the roles of exosome cargo in cancer progression. Cancer 
cells secrete exosomes containing ECM degradation enzymes such as MMPs, heparanase and 
other proteinases, miRNAs, and metabolic products. These components in turn affect cell 
function, promote EMT, form pre-metastatic niches, and induce angiogenesis and metastasis. 
Additionally, the integrins on the exosome surface can interact with ECM components, 
stimulating cell adhesion and migration. 

 

  



Targeting 
molecule / cell 

Cargo Purpose Reference 

Survivin Survivin-T34A 
mutant 

Induction of apoptosis (Aspe et al., 
2014) 

iRGD Doxorubicin Targeting and inhibition of 
tumor growth 

(Tian et al., 2014) 

exoDOX Doxorubicin Inhibition of tumor growth (Hadla et al., 
2016) 

IL-3 Imatinib and CRABL 
siRNA 

Inhibition of tumor growth (Bellavia et al., 
2017) 

AS1411 
aptamer 

let-7 and VEGF 
siRNA 

Targeting tumor tissues (Wang et al., 
2017) 

CD47–SIRPα SIRPA variants Stimulate immune response (Koh et al., 2017) 

RGD Ac4ManNAz Angiogenesis therapy 
 

(Wang et al., 
2017) 

Anti-
HER2scFvs 

CFSE Targeting to cells (Longatti et al., 
2018) 

AA-PEG Paclitaxel Targeting cancer cells upon 
systemic administration 

(Kim et al., 2018) 

miR-335 miR-335-5p Targeting hepatocellular 
carcinoma 

(Wang et al., 
2018) 

Darpins TPD52 siRNA Delivering siRNA and 
downregulation of TPD52 

(Limoni et al., 
2019) 

M1-exosomes  Paclitaxel Antitumor activities of 
chemotherapeutics 

(Wang et al., 
2019) 

HT1080 Doxorubicin Targeting tumor 
tissues 

(Qiao et al., 
2020) 

HER2+ breast 
cancer cells 

5-FU and MiR-21 
inhibitor 

Enhancing the cytotoxicity of 
5-FU and reversing 

drug resistance 

(Liang et al., 
2020) 

 

 

  



 


