Bisphenol A alters differentiation of Leydig cells in the rabbit fetal testis

ALEXIS PAULINA ORTEGA-GARCÍA, VERÓNICA DÍAZ-HERNÁNDEZ, PEDRO COLLAZO-SALDAÑA and HORACIO MERCHANT-LARIOS

ACCEPTED MANUSCRIPT

The International Journal of Developmental Biology publishes a “Accepted” manuscript format as a free service to authors in order to expedite the dissemination of scientific findings to the research community as soon as possible after acceptance following peer review and corresponding modification (where appropriate).

A “Accepted” manuscript is published online prior to copyediting, formatting for publication and author proofing, but is nonetheless, fully citable through its Digital Object Identifier (doi®). Nevertheless, this "Accepted" version is NOT the final version of the manuscript.

When the final version of this paper is published within a definitive issue of the journal with copyediting, full pagination, etc. the new final version will be accessible through the same doi and this "Accepted" version of the paper will disappear.
Bisphenol A alters differentiation of Leydig cells in the rabbit fetal testis

Alexis Paulina Ortega-García¹, Verónica Díaz-Hernández², Pedro Collazo-Saldaña¹, Horacio Merchant-Larios¹∗.

¹ Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.

² Department of Embryology, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico City.

Short title: Effects of BPA on fetal Leydig cells.

Keywords: Bisphenol A, Leydig cells, testis, rabbit, steroidogenesis.

Abbreviations and symbols:

17β-HSD: 17β-hydroxysteroid dehydrogenase
3β-HSD: 3β-hydroxysteroid dehydrogenase
AR: androgen receptor
BPA: Bisphenol A
CYP11A1: Cytochrome P450 Family 11 Subfamily A member 1.
dpc: days post-coitus
dpp: days post-partum
en: endothelial cell
f: fibroblast
FAO: Food and Agriculture Organization of the United Nations
FLC: fetal Leydig cell
GW: gestational weeks
KO: knockout mice
Ld: lipid droplets
LOAEL: lowest-observed-adverse-effect level
M: molar
mt: mitochondria
Ncl: nucleolus
Nu: nucleus
RT: rete testis
SC: seminiferous cords
SF1: Steroidogenic factor1 nuclear receptor
StAR: Steroidogenic acute regulatory protein
TDS: testicular dysgenesis syndrome
WHO: World Health Organization

Corresponding author:
*Horacio, Merchant-Larios
Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México. Ciudad Universitaria, CP. 04510, Ciudad de México. Telephone: (+55) 56223833. Email: merchant@unam.mx

Authors Emails:
Alexis Paulina Ortega-García: paulina_ortega@comunidad.unam.mx
Verónica Díaz-Hernández: roveazdih@yahoo.com.mx
Pedro Collazo: pedrocollazzo@gmail.com
Abstract

The endocrine disruptor Bisphenol A (BPA) crosses the placental barrier and reaches the fetal organs, including the gonads. In the testis, fetal Leydig cells (FLC) produce testosterone required for the male phenotype and homeostatic cell-cell signaling in the developing testis. Although it is known that BPA affects cell proliferation and differentiation in FLC, results concerning the mechanism involved are contradictory, mainly due to differences among species. Fast developing fetal gonads of rodents lack cortex and medulla, whereas species with more extended gestation periods form these two tissue compartments. The rabbit provides a good subject for studying the disruptive effect of BPA in fetal Leydig and possible postnatal endocrine consequences in adult Leydig cells. Here, we investigated the impact of BPA administered to pregnant rabbits does, on the FLC population of the developing testes. Using qRT-PCR, we assessed the levels of SF1, CYP11A1, 3β-HSD, and androgen receptor (AR) genes, and levels of fetal serum testosterone were measured by ELISA. These levels correlated with both the mitotic activity and the ultrastructural differentiation of the FLC by confocal and electron microscopy, respectively. Results indicate that BPA alters the expression levels of essential genes involved in androgen paracrine signaling, modifies the proliferation and differentiation of the FLCs, and alters the levels of serum testosterone after birth. Thus, BPA may change the postnatal levels of serum testosterone due to the impaired FLC population formed by the proliferating stem and non-proliferating cytodifferentiated FLC.
Introduction

Due to prevalent use, BPA (BPA, 4,4'-dihydroxy-2,2-diphenyl propane) has become a ubiquitous environmental contaminant to which all organisms are extremely exposed. High temperatures induce the release of BPA monomers that contaminate human food and beverages and pollute the environment worldwide (Vom Saal et al., 2007). BPA enters the body through the respiratory tract, the skin, and orally, where it accumulates in various tissues (Geens et al., 2012). BPA crosses the placental barrier in both rodents and humans, meaning that maternal exposure to BPA may affect the developing fetus (Balakrishnan et al., 2010). In humans, BPA is present in urine, blood, amniotic fluid, and umbilical cord blood (Minatoya et al., 2017).

Male reproductive disorders, collectively known as the “Testicular Dysgenesis Syndrome” (TDS), result from alterations in testis development during fetal life (rev Skakkebaek et al., 2016). BPA modifies the metabolism of steroid hormones, their receptor proteins, and the gene transduction pathways, disturbing fetal development (N'Tumba-Byn et al., 2012). Thus, BPA is a potential candidate for engendering postnatal TDS. Fetal exposure to BPA can affect the establishment of the FLC population by disrupting the steroidogenic process in developing testis. Thus, even short interruption to the steroidogenic process in the fetal testis can lead to disturbing consequences in postnatal life (Shima et al., 2015).

SF1 regulates the expression of the genes that code steroidogenic enzymes such as CYP11A1 (P450 side-chain cleavage), CYP17A1 (cytochrome P450C17), 3β-
HSD (3β-hydroxysteroid dehydrogenase), 17β-HSD (17β-hydroxysteroid dehydrogenase) and StAR (steroidogenic acute regulatory protein) (Shima et al., 2015). Mild functional changes in SF1 are associated with severe reproductive phenotypes. SF1 deficient mice show defects in terms of gonad and adrenal gland development, indicating its essential role in the establishment of fetal steroidogenic tissue (Sadovsky et al., 1995).

Studies on the role of the androgen receptor (AR) during fetal testis development indicate that the spatiotemporal cellular specificity of AR expression differs between species (Rouiller-Fabre et al., 2015). In mice, AR is expressed in germ cells and peritubular cells (Merlet et al., 2007). Although in AR knockout (KO) mice, FLC develops normally, maturation of adult Leydig cells (ALC) is impaired (Kaftanovskaya et al., 2015). Organ culture studies reported that BPA reduces the endocrine activity of the fetal testis in humans, rats, and mice (N'Tumba-Byn et al., 2012) and in vitro studies in Leydig TM3 cells indicated that BPA inhibits the action of androgens via the AR (Teng et al., 2013).

Fetal Leydig cells develop during fetal life, their main function is to produce testosterone, and they are responsible for the masculinization of the male urogenital system. The FLC is differentiated from the interstitial tissue (rev Habert et al., 2001). In mice, the first FLC population appears at 12.5 dpc (days post-coitus). It starts producing testosterone (Merchant-Larios and Moreno-Mendoza, 1998), in rats at 15 dpc, and in humans at eight weeks (Voutilainen, 1992). Their
number increases considerably in early fetal testis, and subsequently, FLCs gradually enter mitotic arrest, and the population stabilizes, to almost disappear during the perinatal period (Barsoum et al., 2013). However, there are important variations according to different species, in terms of the effects of in utero exposure to BPA on FLC and steroidogenic fetal testis function (Table 1).

The effect of BPA on the proliferative activity of Leydig cells remains controversial. Whereas during the prepubertal period, Leydig cells in rats increased their proliferation \textit{in vivo} and \textit{in vitro} (Chen et al., 2018), other studies reported that BPA inhibits the proliferation of Leydig cells \textit{in vitro} (Nanjappa et al., 2012). Moreover, the effect of BPA on the FLC in mice, rats, and humans are qualitatively similar; however, the lowest no observed adverse effect level (NOAEL) is more than 100-fold lower in humans than rodents. Furthermore, specific signaling pathways for BPA differ between rodents and humans (N’Tumba-Byn et al., 2012).

Thus, those concerned about the prevalent use of rodents as models to assess the risk of endocrine disruptors on human fetal testis (rev in Habert et al., 2014), have recommended using alternative animal models in which the fetal testis shows a developmental pattern closer to humans (Rouiller-Fabre et al., 2015). Compared to the mouse, the rabbit has advantages for evaluating the effects of toxic agents on early testis development (rev Madeja et al., 2019). For example, the gonadal pattern of development in the rabbit resembles that of humans; both form a bipotential gonad with two tissue compartments: the medulla and the cortex, in
which the somatic-germ cell interactions occur according to the compartment (Díaz-Hernández et al., 2019).

Importantly, in contrast to the almost synchronized germ cells in mice (Bullejos and Koopman, 2004), the proliferating germ cell population coexists for a long time with germ cells entering meiosis or mitotic arrest in ovary and testis, respectively (Frydman et al., 2017). Thus, compared to rodents, the effect of BPA can differ in species with a longer gestation period. Like humans, the FLC population contains proliferating stem cells and non-proliferating differentiated cells. Thus, stem and differentiated Leydig cells are simultaneously exposed to BPA, when critical paracrine somatic-germ cell interactions occur (Díaz-Hernandez et al., 2008; Daniel-Carlier et al., 2013).

Here, we investigated the effect of BPA on the fetal steroidogenic process during proliferation and differentiation of the FLC population, using the rabbit as an animal model. For this purpose, we measured the expression profiles of the SF1, CYP11A1, 3β-HSD and AR genes, and serum testosterone levels. Moreover, the proliferation pattern of the FLC was correlated. Our results indicate that BPA alters the expression patterns of essential genes involved in steroid paracrine signaling, modifies the proliferation and differentiation of the FLC, and alters the levels of testosterone after birth.
Results

Levels of SF1, CYP11A1, and 3β-HSD were lower in BPA treated testis at 27 and 28 dpc

In order to discern how the BPA may perturb the regulatory pathways of steroidogenesis during the establishment of the fetal Leydig population, the expression levels of three factors were analyzed: a nuclear receptor SF1, and the steroidogenic enzymes CYP11A1, and 3β-HSD. High levels of SF1 expression were detected at 17 dpc in both control and BPA groups (Fig. 1A). Subsequently, although the levels decreased in both groups, the BPA treated group showed significantly higher levels than controls at 26 dpc. Then, the expression profile of the BPA group diminished and remained similar to, or lower than the control group, up to 31 dpc. However, at three dpp, the relative levels of SF1 in the BPA group decreased significantly below the controls (Fig. 1A).

Likewise, even though CYP11A1 was detected in the testes of both groups at 17 dpc, levels in the BPA group appeared significantly lower (Fig. 1B). In contrast, four days later, at 21 dpc, the levels of CYP11A1 in the BPA group increased to match those of the control group. The levels of the BPA group then decreased again, down to 27 dpc, when levels registered as significantly lower than the controls. The difference between groups of CYP11A1 levels was not significant, up to 3 dpp (Fig. 1B). Like CYP11A1, the transcript profile of 3β-HSD was significantly lower in testes treated with BPA than among controls. Overall, the BPA expression profile was below the profile of the controls, with significant differences at 17, 27, and 28
However, levels of 3β-HSD increased at three dpp (Fig. 1C). Interestingly at 17 dpc, AR levels were similar in both BPA treated and control testes. After that, the levels decreased significantly at 27 dpc in the BPA group, remaining similar in both groups up to day 31. In contrast, after birth, AR expression increased significantly in puppy testes of BPA treated mothers, compared to their controls (Fig 1D).

Fetal testosterone level is higher in BPA-treated puppies at 3 dpp

To define whether the steroidogenic disrupting effect of BPA affects the testosterone secreted by the developing testis, the levels of serum testosterone in fetuses and newborns were determined. Figure 2 presents testosterone levels measured in serum from samples of the fetus at 17, 21, 27, and 28 dpc and newborns at 1-3 dpp. Even though during the fetal period, testosterone levels were similar in the testes of both BPA and control groups, a significantly higher level was evident in puppies born from BPA treated mothers, at three dpp (Fig. 2).

The number of proliferating fetal Leydig cells is lower in BPA-treated testes

To study the effect of BPA on steroidogenic tissue in developing rabbit testis, we correlated the expression of CYP11A1 and KI67. As the antibody against CYP11A1 marks the first enzyme in the steroidogenic process, this probably identifies younger proliferating and non-proliferating mature Leydig cells, respectively. As differentiated Leydig cells cease proliferating and gradually enter quiescence, an analysis of proliferating and non-proliferating Leydig cells reveals
the effect of BPA on the normal time course during the establishment of the Leydig cell population in situ. Two populations of Leydig cells were counted: (1) proliferating Leydig cells, positive to KI67 (CYP11A1 + / KI67 +) and (2) non-proliferating Leydig cells, negative to KI67 (CYP11A1 + / KI67 -). The ratio of proliferating Leydig cells in the control population appeared similar in BPA treated and control testis at 19 dpc. Subsequently, however, the number of proliferative Leydig cells became significantly lower in BPA treated testes than in controls at 21-28. Once again, differences were not significant at day 31 and among newborn puppies (Fig. 3).

As the Leydig cell count presented in Figure 3 was made using 30 µm thick frozen sections (Suppl. Fig. 1), stacks of 2.0 µm thick confocal images were made to increase the resolution of proliferating and non-proliferating Leydig cells. Figure 4 shows representative frozen sections of control and BPA treated embryo at 21 dpc. Figure 5 shows a representative immunofluorescent colocalization in fetal Leydig cells of a control testis at 28 dpc. Leydig cells identified with CYP11A1 (green) were expressed in mitochondria. KI67 (red) was localized in the nucleus of all types of proliferating cells in the testis. The confocal merge image ensured precise identification of proliferating and non-proliferating Leydig cells.

Fetal Leydig cell clusters contain differentiated cells with abundant smooth endoplasmic reticulum and less differentiated cells with the predominant rough endoplasmic reticulum
We undertook an ultrastructural study in order to assess cytodifferentiation in proliferating and non-proliferating Leydig cells, during BPA treatment. At 21 dpc, rabbit testis shows the seminiferous cords surrounded by the stromal tissue, among which clusters of Leydig cells are undergoing differentiation (Fig. 6A and 6B). Besides being larger than other stromal cells, the differentiated Leydig cells develop two conspicuous cell organelles: the mitochondria and the smooth endoplasmic reticulum. In contrast to the mitochondria of adult Leydig cells with tubular cristae, the fetal and newborn Leydig cells of the rabbit mostly maintain lamellar cristae in their mitochondria (Figs. 7B and 8C). However, the smooth endoplasmic reticulum gradually displaces other organelles and occupies most of the cytoplasmic space (Fig. 7B and 8C). As fetal testes grow considerably with age, mainly due to the increased space occupied by the stromal tissue (blood vessels, fibroblast, and extracellular matrix), the clusters of Leydig cells at 28 dpc become more dispersed (Fig.7A). Interestingly, the clusters included Leydig cells with different degrees of the smooth and rough endoplasmic reticulum. Cells with predominantly rough endoplasmic reticulum probably correspond to Leydig cells that are still proliferating (Fig. 7B).

Discussion

Studies of the toxicity of BPA on development and reproduction among rodents led the World Health Organization (WHO) and the Food and Agriculture Organization of the United Nations (FAO) to propose that 50 mg/kg per day represent the lowest-observed-adverse-effect level (LOAEL) in mammals. Accordingly, we treated pregnant rabbit females daily with 50 mg/kg BPA. The treatment started at
15 dpc, corresponding to the establishment of embryonic genital ridges, followed by the onset of specification of Sertoli and Leydig cells in the rabbit (Díaz-Hernández et al., 2008). To assess the effect of BPA on the differentiation of the FLC population, we analyzed the expression profiles of three gene encoding factors involved in testosterone production: SF1, CYP11A1, 3β-HSD and the AR, during the fetal period and at day three post-partum (3 dpp).

Reports employing rodent models found that SF1 plays a central role in the specification of Leydig cells, regulating the genes that encode steroidogenic enzymes (Hatano et al., 1994; Leers-Sucheta et al., 1997). Changes in SF1 levels alter the differentiation and steroidogenic capacity of Leydig cells during the fetal stage, which in turn compromises the population of adult Leydig cells (Barsoum et al., 2013). The expression of SF1 in Leydig cells lasts throughout fetal development in rodents, whereas in humans, SF1 continues to be expressed at constant levels during the first trimester of pregnancy (Mamsen et al., 2017).

Current results from the rabbit fetal testis control showed the highest levels of SF1 at 17 dpc; then, levels decreased but showed considerable variations throughout the period analyzed. As SF1 during testis determination dimerized with SRY and AMH in preSertoli and Sertoli cells, respectively, the level of SF1 profiles detected in the current study, correspond to two kinds of cell populations. The testis is determined by preSertoli cells and specifies the stem FLCs also. Thus, the significantly higher levels of SF1 seen at 27 dpc and the lower levels detected at
three dpp in BPA-treated rabbits, possibly result from alterations to the two kinds of
testicular cells, induced by the endocrine disruptor.

Besides the fact that the transcript levels of SF1 correspond to Sertoli and Leydig
cells in the rabbit fetal testis, the lack of a direct correlation between the levels of
SF1, CYP11A1, 3β-HSD, and AR may be due to the multiplicity of pathways
involved in the regulation of the steroidogenic process that can be altered by BPA.
At the testicular level, BPA acts as an androgen receptor antagonist
(Wolstenholme et al., 2011), and can inhibit CYP11A1 and 3β-HSD expression
(Peretz and Flaws 2013; Ye et al., 2011). Furthermore, BPA disrupts the steroid
hormone balance in the testis, altering the levels of CYP11A1 and CYP19
throughout the JNK/c-jun signaling pathway, independently of SF1 (Lan et al.,
2017).

Most mechanistic studies of the effect of BPA in Leydig cells correspond to studies
in vitro or involving postnatal rodents. In the present work, the experimental design
to observe the effect of BPA on fetal Leydig cells intended to mimic the real
condition in which BPA affects the fetal testis from a holistic point of view. As the
BPA was orally supplied to pregnant rabbits, the alteration of both proliferation and
steroidogenesis of the fetal Leydig cell population found here results from multiple
factors. BPA may disrupt the gene expression of SF1 and the steroidogenic
enzymes CYP11A1 and 3β-HSD, through alternative signaling pathways, including
JNK/c-jun, steroid feedback control, and hormone metabolism. Thus, the lack of
parallel correlation between the gene levels of the nuclear receptor SF1 and the
steroidogenic enzymes may be explained by the multifactorial effects of BPA on the developing fetal Leydig cell population.

Although BPA has adverse effects on steroidogenic enzymes of Leydig cells, results vary depending on the animal model and the experimental design. Treatment \textit{in utero} of pregnant rats with 400 mg/Kg of BPA, downregulated their levels of \textit{CYP11A1} mRNA and protein (Lv \textit{et al}., 2019). Among male mouse pups exposed to 50 mg/Kg/day of BPA during the prenatal period, there was an evident decrease in levels of \textit{CYP11A1} in the testis (Xi \textit{et al}., 2011).

In mice, the testicular amplification of both \textit{CYP11A1} and 3β-HSD was detected from 13 to 20 \textit{dpc} (Greco and Payne, 1994). Recent work reported that in human testis, the expression of \textit{CYP11A1} and 3β-HSD can be detected after the 8th to 9th gestational weeks (GW). However, although \textit{CYP11A1} showed significant activation at 11-12 GW, levels of 3β-HSD were constant until 12 GW (Savchuk \textit{et al}., 2019).

In pregnant does, C21 steroids of placental origin are potential precursors for testosterone biosynthesis before the start of this function in the fetal testis, where the initiation of testosterone synthesis by 3β-HSD occurs between 17 and 19 \textit{dpc} (Wilson and Siiteri, 1973). Using qRT-PCR in control rabbit FLCs, we confirmed that the levels of \textit{CYP11A1} and 3β-HSD start at 17 \textit{dpc} and peak at 21 \textit{dpc}.
Subsequently, the transcript expression levels of the two genes oscillate by up to 3
\(dpp\).

In contrast, to control testes at 17 \(dpc\), two days after initiation of treatment, levels
of \(CYP11A1\) and \(3\beta-HSD\) were significantly lower in BPA-treated testes. Although
the levels increase at 21 and 26 \(dpc\), on day 27, \(CYP11A1\) becomes significantly
lower than in controls, whereas \(3\beta-HSD\) is lower at 27 \(dpc\) and 28 \(dpc\). Finally,
although during the perinatal period (20 \(dpc\) to 3 \(dpp\)), the different transcript levels
of the two genes appeared among control and BPA treated testes, these are not
significant.

A proposed mechanism for the anti-androgenic effect of BPA is that it competes
with androgens for AR, preventing its translocation to the cell nucleus. Thus, the
BPA inhibits the formation of functional complexes required for transcription (Teng
\textit{et al.}, 2013). Moreover, BPA antagonizes the interaction of AR with co-repressors
such as SMRT and NCoR in Fetal Sertoli cells (Wang \textit{et al.}, 2017).

Besides Sertoli cells, peritubular cells and gonocytes also express the AR in fetal
testis. Thus, the disturbing effects caused by BPA in the differentiation,
proliferation, and steroidogenic activity of the FLC population also impair the
signaling timing among cells, which may differ among species (Hazra \textit{et al.}, 2013).
Leydig cells of human fetal and testes of newborns express the AR (Boukari \textit{et al.},
2009). In contrast, FLCs in rodents are independent of androgens (Shima \textit{et al.},
2015). In male fetal rat gonad, the AR was expressed at 17 \(dpc\) and subsequently
increased. Our current results show that compared to the controls, the AR levels of BPA treated animals are significantly lower at 27 \textit{dpc}. However, after birth, the testes of puppies at three \textit{dpp} manifest significantly higher levels. Like human patients with androgen insensitivity syndrome (Brinkman, 2001), AR knockout mice (ArKO) show male to female sex reversal (Yeh \textit{et al.}, 2002). Although ArKO mice develop smaller fetal testis with degenerated Sertoli and germ cells, the Leydig cells become hypertrophic. This result suggests a paracrine interaction between the three kinds of cells for healthy testis development. Although we found that the levels of the AR in BPA-treated rabbit fetal testis appeared considerably disrupted, the postnatal consequences remain unknown.

The enzyme CYP11A1 is the first and rate-limiting step that regulates the conversion of cholesterol to pregnenolone in the mitochondria. Then the 3\(\beta\)-HSD, together with other enzymes located in the smooth endoplasmic reticulum, complete the synthesis of testosterone. At the ultrastructural level, differentiated FLCs in the rabbit have roundish mitochondria, most of them with lamellar cristae and abundant cisterns of the smooth endoplasmic reticulum. However, in developing rabbit testis, FLCs represent a heterogeneous population in terms of differentiation. At 21 \textit{dpc}, most cells of the FLC population contain less smooth cisterns of the smooth endoplasmic reticulum; however, they formed more massive interstitial clusters than FLC population cells in the later fetal testis. Interestingly, at 21 \textit{dpc}, the levels of \textit{CYP11A1} and 3\(\beta\)-\textit{HSD} are higher, as are the number of proliferating FLCs. Thus, although the proliferating Leydig cells are less
differentiated, their more significant number correlates with the significantly higher levels of the two steroidogenic genes.

Using a Leydig cell regeneration model in rats, Chen et al. (2018) found that BPA accelerates the differentiation of postnatal Leydig cells without affecting their proliferation. In contrast, current results in the rabbit show altered differentiation and a significantly decreased proliferation of fetal Leydig cells in BPA treated mothers. Besides species differences, the two experimental designs differ considerably. Studies focused on the BPA effect on the rat analyzed the regeneration of postnatal Leydig cells in the two-month-old testis. In contrast, here, we analyzed the earlier fetal Leydig cells in developing testis of BPA treated mothers. Thus, the different developmental responses to BPA are hardly surprising, considering the spatio-temporal testis contexts of the two populations of Leydig cells: inside and outside the uterus.

In the rabbit, the Müllerian and Wolffian ducts develop similarly in both sexes between 15 and 20 dpc. Present results show that Leydig cells start producing testosterone as early as 17 dpc. In classical experiments, rabbit male fetuses were castrated at 19–21 dpc and developed a female phenotype (Jost, 1947). Our present results show no significant differences in fetal testosterone serum levels among BPA-treated and controls. Thus, the male somatic phenotype was undisturbed.
Levels of serum testosterone measured in BPA treated rat fetuses at 21 dpc appeared lower than controls (Lv et al., 2019). Similarly, our results show that the serum levels of testosterone were more moderate in both control and BPA-treated fetus at 17 and 21 dpc. Subsequently, levels increased in both BPA-treated and untreated testes without significant differences up to 28 dpc. However, significant differences occurred three days after birth, being higher in the testis of BPA-treated rabbits. The substantial increase in serum testosterone in postnatal pups, correlates positively with the increased levels of AR in BPA treated FLCs.

Bjerregaard et al. (1974) state in their ultrastructural study that the development of Leydig cells in the rabbit fetal testis, can be divided into three phases: Phase 1 (16-17 dpc) immature Leydig cells appear, Phase 2 (18-21 dpc), the fetal Leydig cells become differentiated with growing presence of smooth endoplasmic reticulum and decreasing rough endoplasmic reticulum and Phase 3 (22 dpc onwards). The authors stated that during phases 1 and 2, differentiation in the Leydig cells was nonsynchronous, subsequently evolving into synchronous differentiation at phase 3.

However, our current results show that the differentiating rabbit fetal Leydig cells persist as a nonsynchronous population, during phase 3. We found that besides the variable presence of the smooth endoplasmic reticulum among the Leydig cells, the proliferative capacity of the less differentiated Leydig cells suggests the presence of an asynchronous Leydig cell population. Therefore, the disrupting effect of BPA acting on an asynchronous fetal Leydig cell population probably
increases the multifactorial disturbing effect of BPA on the normal steroidogenic pathway.

Overall, the current results demonstrate the complexity of the BPA disrupting effects inflicted on developing fetal Leydig cells in situ, from a holistic perspective. We found that in the rabbit, the fetal Leydig cells constitute a nonsynchronous population that may compensate for the harmful effects caused to the normal steroidogenic pathway during the fetal period. However, although most cytodifferentiated fetal Leydig cells disappear at around 10 dpp, the levels of AR and serum testosterone were higher in BPA treated puppies at 3 dpp. Thus, the long-lasting effects of BPA on adult Leydig cells remain to be studied.

Materials and Methods

Animals and treatment

Individually caged New Zealand rabbits received food and water at libitum. As rabbits have mount-induced reflex ovulation, copulation day was considered day "0" of pregnancy. Pregnant females received daily oral doses of 50 mg/kg/day of BPA (Sigma-Aldrich, USA), dissolved in ethanol, from 15 to 31 days post-coitus (dpc). Pregnant females in control received only ethanol. Treatments began at 15 dpc, corresponding to the onset of genital ridge establishment (Díaz-Hernández et al., 2008). Pregnant females and newborns were euthanized with an overdose of sodium pentobarbital (PiSA, Mexico). Fetal testis was sampled at 17, 21, 26, 27, 28, 29, 30, and 31 dpc and postnatal puppies at 1, 2, and 3 dpp. From pairs of
gonads removed from at least five dissected animals, one was processed for immunofluorescence and the other for RNA extraction. Sex of undifferentiated gonads at 17 and 21 dpc, was identified using an SRY amplification, as described by Díaz-Hernández et al. 2008. Subsequently, testes and ovaries were visually identified. All experimental procedures were approved by the Institutional Animal Care and Use Committee at the Instituto de Investigaciones Biomédicas, UNAM.

RNA Extraction and cDNA synthesis and qPCR
Dissected testes were quickly frozen and stored at -70°C. Total RNA was extracted using the RNeasy Mini Kit (Qiagen, Germany) following the manufacturer's instructions. RNA was treated with RNase-Free DNase (Qiagen) at room temperature for 30 min. The concentration and quality of the total RNA were assessed by determining the optical density at A260: A280 ratio (2.0 ± 0.15) in a NanoDrop 2000 spectrophotometer (Thermo Scientific) and by gel electrophoresis (1.5% agarose gel with ethidium bromide). For cDNA synthesis, total RNA (2 µg) was placed in 20 µl of 10 UI of transcriptor reverse transcriptase (Roche, Life Science). Negative controls were prepared without the template.

Gene expression determined with real-time PCR system (Applied Biosystems, California, USA) at 17, 21 26-31 dpc, and 3 dpp. The primers were created from rabbit specific sequences SF1, CYP11A1, 3β-HSD, and AR. Four housekeeping genes were tested (Table 2): oligonucleotides of H2AX and YWHAZ, designed by Daniel-Carlier et al. (2013). As under our conditions, HPRT turned out to be the most stable option; it was used as an internal control to validate the levels of gene expression.
expression. Primers and melting temperatures are presented in Table 2. Optimal alignment of the primers was determined on a temperature gradient, as well as the amplification efficiency of each gene obtained, to standardize the qPCR conditions for each gene. Fragment authenticity was verified by sequencing.

The qPCR reactions were implemented using SYBR Select Mix (Applied Biosystems, California, USA) 1X, oligonucleotides (10mM), 1µl of cDNA diluted in 9 µl of RNase-free water, and ultrapure water in a total volume of 10 µl. In all tests, negative controls were conducted without a template, and reactions were performed in triplicate. Conditions for cycles were set at 50°C for 2 min, 95°C for 2 min, then 40 cycles of 95°C for 15 s and 60°C for 1 min. Melting curves were generated to ensure the amplification of a single product. Gene expression was quantified by Ct relative comparison. Ct is defined as the fractional cycle number at which reporter fluorescence reaches a certain level. The $2^{-\Delta\Delta Ct}$ method was applied to calculate relative changes in expression.

Immunofluorescence and measurement of Leydig cell proliferation

For immunofluorescence, samples were fixed in 4% paraformaldehyde in PBS, dehydrated in saccharose gradient, and embedded in Tissue-Tek®. Frozen samples were stored at –70°C. Colocalization of anti-KI67 (M740, clone MIB-1, Dako, Denmark) as a nuclear marker and anti-CYP11A1 (sc-18043, Santa Cruz, Biotechnology) as a cytoplasmic marker were used to analyze Leydig cell proliferation. Testes at 19, 21, 27, 28, and 31 dpc and 1, 2, and 3 dpp were
processed. 30 µm thick serial sections of longitudinally oriented testis were
alternately placed on one of four slides, to include adjacent sections of each testis
on each slide (Suppl. Fig. 1). The slides were washed with ethanol to remove lipid
droplets. Heat-induced antigen retrieval was performed by placing slides for 45 min
at 90°C in Tris-buffer pH 10. These were then transferred into PBS and 0.5% Triton
X-100 in PBS in a rack sequence for immunofluorescence. 10% of horse serum in
PBT (0.5% Triton 100X/PBS) for two h at room temperature to block unspecific
staining. Subsequently, sections were washed and incubated overnight at 4°C with
primary goat anti-CYP11A1 antibody, diluted at 1:70. These were then incubated
with the Alexa Fluor 488 donkey anti-goat secondary antibody (A11055, Molecular
Probes, Invitrogen) for 20 min at room temperature and left overnight at 4°C, with
the second primary mouse monoclonal anti-KI67, diluted at 1:150. The Alexa Fluor
555 donkey anti-mouse (A31570, Molecular Probes, Invitrogen) was used as a
secondary antibody. Cell nuclei were counterstained with TOTO-3 iodide (blue)
(T3604, Molecular Probes, Invitrogen) and mounted with fluorescent medium
(S3023, Dako, Agilent Technologies, Denmark). Images were collected and
processed with a confocal Zeiss Pascal LSM5 microscope. In negative controls,
the primary antibodies were omitted and incubated exclusively with secondary
antibodies. Leydig cells were stained green, and KI67 were stained red. The
number of cells labeled with colocalized CYP11A1 and KI67 was measured with
Zeiss LSM5 Image Software on four cryosections for each testis (n= 4 testis per
age category). Labeled cells were identified in 3D confocal stacks of 3.0 µm optical
sections, and their number per unit area (325.67 µm²) was counted.
Serum collection and testosterone assay

The blood collected in Eppendorf tubes without anticoagulant was allowed to stand for 1 hr at room temperature to promote coagulation and then kept at 4°C for 24 h, centrifuged 15 min at 3000 rpm at 4°C, and stored at -20°C until use. Samples from at least five animals in each age category were analyzed. Serum testosterone was quantified by competitive ELISA immunoassay (ENZO, testosterone ELISA kit, Farmingdale, NY) according to the manufacturer’s instructions.

Semi-thin sections and transmission electron microscopy

Testes from each group were fixed in Karnovsky solution and subsequently postfixed with 1% OsO4 in Zetterqvist’s buffer. After, the testes were dehydrated with an ascending series of ethanol concentrations and embedded in Epon 812. Semithin sections (1 µm thick) were cut with an ultramicrotome (Power Tome Microtomy XL, RMC) and stained with toluidine blue. Thin sections (60nm) were stained with uranyl acetate and lead citrate. Images were collected and processed either with a light or transmission electron microscope (Jeol EM1010).

Statistical Analysis

Data are presented as mean and standard error (SE). Statistical differences between groups were evaluated and compared using a one-way ANOVA test, followed by Welch's correction. Statistical significance was set as p<0.05.

Acknowledgments
This publication is required for the accomplishment of the Ph.D. degree of Alexis Paulina Ortega García to the Programa de Doctorado en Ciencias Biomédicas, UNAM. She received a fellowship from CONACYT 587621. This study was supported by CONACYT 166012, Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica PAPIIT-UNAM IN201218 and IN209520. The authors acknowledge Alejandro Marmolejo-Valencia, Miguel Tapia Rodríguez, Adriana Castro, and Patricia de la Torre, for their technical assistance.

References

of the endocrine-disruptive effects of bisphenol A in human and rat fetal

- BOUKARI K, MEDURI G, BRAILLY-TABARD S, GUIBOURDENCHE J,
 CIAMPI ML, MASSIN N, MARTINERIE L, PICARD JY, REY R, LOMBÈS M,
 YOUNG J (2009). Lack of androgen receptor expression in Sertoli cells
 accounts for the absence of anti-Mullerian hormone repression during early

- BULLEJOS M, KOOPMAN P (2004). Germ cells enter meiosis in a
 rostrocaudal wave during the development of the mouse ovary. *Mol Rep
 Dev* 68: 422-428.

- CHEN L, ZHAO Y, LI L, XIE L, CHEN X, LIU J, LI X, JIN L, LI X, GE RS
 (2018). Bisphenol A stimulates differentiation of rat stem Leydig cells in vivo

- DANIEL-CARLIER N, HARSCHOËT E, THÉPOT D, AUGUSTE A,
 PAILHOUX E, JOLIVET G (2013). Gonad differentiation in the rabbit:

 expression in the supporting cells at the onset of meiosis in rabbit gonads.
 Sex Dev 34: 775-789.

- DÍAZ-HERNÁNDEZ V, LEÓN DEL RÍO A, ZAMORA M, MERCHANT-
 LARIOS H (2008). Expression profiles of SRY and SOX9 in rabbit gonads:
 the classical model of mammalian sex differentiation. *Sex Dev* 2: 152-166.

- ELADAK S, MOISON D, GUERQUIN MJ, MATILIONYTE G, KILCOYNE K,
 NTUMBA-BYN T, MESSIAEN S, DECEUNINCK Y, POZZI-GAUDIN S,
 BENACHI A, LIVERA G, ANTIGNAC JP, MITCHELL R, ROUILLER-FABRE
 V, HABERT R (2018). Effects of environmental Bisphenol A exposures on
 germ cell development and Leydig cell function in the human fetal testis.

HORSTMAN KA, NACIFF JM, OVERMANN GJ, FOERTSCH LM, RICHARDSON BD, DASTON GP (2012). Effects of transplacental 17-α-...

- WOLSTENHOLME JT, RISSMAN EF, CONNELLY JJ (1010). The role of Bisphenol A in shaping the brain, epigenome and behavior. *Horm Behav* 59: 296-305.

Table 1. Effects of in utero exposure to BPA on fetal Leydig cells and steroidogenic fetal testis function

<table>
<thead>
<tr>
<th>Species</th>
<th>Doses of BPA and Experimental design</th>
<th>Major effects induced by BPA</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat (IGS strain)</td>
<td>4, 40, and 400 mg/kg administered by gavage at 6 dpp through lactation day 20. Testis analyzed at 9 and 36 weeks old.</td>
<td>Increased testosterone levels in serum.</td>
<td>Watanabe et al., 2003</td>
</tr>
<tr>
<td>Rat (Long-Evans strain)</td>
<td>2.4 µg/Kg/day of BPA administered 12 dpc-21 dpp. Testis analyzed at 90 dpp</td>
<td>Decreased testosterone levels in serum.</td>
<td>Akingbemi et al., 2004</td>
</tr>
<tr>
<td>Rat (Sprague-Dawley strain)</td>
<td>0.002–400 mg BPA/kg/day administered at 11 -20 dpc. Testis analyzed at 20 dpc.</td>
<td>BPA induced downregulation of StAR, CYP17A1, and CYP11A1. The expression of 3β-HSD was not modified.</td>
<td>Naciff et al., 2005</td>
</tr>
<tr>
<td>Rat (Sprague-Dawley strain)</td>
<td>0.2, 2, 20, and 200 µg/mL BPA daily in drinking water at 1-22 dpc. Testis analyzed at 22 or 23 dpp (2 hours after birth).</td>
<td>200µg/mL of BPA exposure decreased serum T levels only in newborn rats 2 hours after birth.</td>
<td>Tanaka et al., 2006</td>
</tr>
<tr>
<td>Human fetal testis of GW 6-11. Rat Mouse</td>
<td>10^{-12} to 10^{-5} M of BPA In vitro organ culture of fetal testis and culture during 72 h with BPA.</td>
<td>Only in human fetal testis: A dose of 10^{-8} M reduced testosterone secretion regardless of the age of the fetus.</td>
<td>N'Tumba-Byn et al., 2012</td>
</tr>
<tr>
<td>Rat (Long-Evans strain) and Leydig cell culture</td>
<td>2.5 or 25 µg/kg/day BPA administered at 12-21 dpc. Testis analyzed at 21 dpc and 35 and 90 days of age.</td>
<td>-Increased Leydig cell numbers at 90 days of age -Testosterone production of the Leydig cell decreased. However, the levels of serum T were similar to controls.</td>
<td>Nanjapa et al., 2012</td>
</tr>
<tr>
<td>Previously exposed to BPA</td>
<td>Rat (Sprague-Dawley strain)</td>
<td>Human testis of 8 – 12 GW</td>
<td>Mouse (Kunming strain)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>0.02, 0.5, and 400 mg/kg/day BPA 11 dpc, subcutaneously. Testis analyzed at 16, 18, and 20 dpc.</td>
<td>Organ culture incubated 72 h with 10^{-5}, 10^{-6}, 10^{-7}, and 10^{-8} M of BPA. Testis analyzed at 8 weeks of age.</td>
<td>50, 500, or 2500 mg/kg/day. BPA from day 1-21 dpc. Testis analyzed at 8 weeks of age.</td>
</tr>
<tr>
<td></td>
<td>400mg/kg/day of BPA decreased the amount of StAR protein in Leydig cells and gene expression at 20 dpc.</td>
<td>inhibited testosterone production</td>
<td>Serum T reduced and was negatively correlated with the dosages of BPA. mRNA levels of StAR decreased. Doses of 50 and 2500 mg/kg/day: the expression of CYP11A1 decreased. -500 mg/kg/day: the expression of Cyp11a1 increased.</td>
</tr>
</tbody>
</table>
- Down-regulated mRNA expression of *Insl3*, 17β-*HSD*, *CYP11A1*, and *CYP17A1*.
- Down-regulated protein expression of LH receptor, *CYP17A1*, and 17β-*HSD*.

<table>
<thead>
<tr>
<th>Mouse (Kunming)</th>
<th>2.5, 5, 10, 20, and 40 mg/kg/day. BPA at 0.5–17.5 dpc. Testis analyzed at 21 and 56 dpp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Doses of 20mg/kg BPA significantly reduced serum testosterone levels Wei et al., 2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rabbit (New Zealand)</th>
<th>50mg/kg/day. BPA administered orally at 15 – 31 dpc. Testes analyzed at 17, 21, 26, 27, 28, 29, 30, 31 dpc and 1-3 dpp (proliferative and differentiated) fetal Leydig cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BPA treated testes decreased levels of CYP11A1, 3β-HSD, and AR at 27 dpc and reduced the number of proliferating Leydig cells at 21-28 dpc. Increased level of serum T at 3 dpp. Leydig cell clusters are formed by both differentiated cells with abundant SER and less differentiated cells with predominant RER in both control and BPA-treated testes. Current results, 2020</td>
</tr>
</tbody>
</table>

Table 2. Primer sequence

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primers 5'→ 3.'</th>
<th>Length</th>
<th>Melting temperature</th>
<th>Sequence reference NCBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroidogenic factor 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF1</td>
<td>F: CGCAGGTGCATGGTCTTCAA</td>
<td>112 bp</td>
<td>60°C</td>
<td>XM_008273334.2</td>
</tr>
<tr>
<td></td>
<td>R: CGTACTGGATCTGGCGGTAG</td>
<td></td>
<td>60°C</td>
<td></td>
</tr>
<tr>
<td>Cytochrome P450 family 11 subfamilies A member 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP11A1</td>
<td>F: CCGTGGTATCCTCTACAGCC</td>
<td>136 bp</td>
<td>60°C</td>
<td>XM_008253734.2</td>
</tr>
<tr>
<td></td>
<td>R: CCCCATCTCACAGGTGCC</td>
<td></td>
<td>60°C</td>
<td></td>
</tr>
<tr>
<td>3 beta-Hydroxy-steroid dehydrogenase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3β-HSD</td>
<td>F: CAGGTGTCATTACCCAGGACA</td>
<td>131 bp</td>
<td>60°C</td>
<td>XM_002715686.3</td>
</tr>
<tr>
<td></td>
<td>R: GTTGGGTCCAGCTACCCCA</td>
<td></td>
<td>60°C</td>
<td></td>
</tr>
<tr>
<td>Androgen receptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>F: GTGCCCTATCCCAATCCCAAG</td>
<td>107 bp</td>
<td>60°C</td>
<td>NM_001195724.1</td>
</tr>
<tr>
<td></td>
<td>R: ACGTGTCCTAGCGTCTCTC</td>
<td></td>
<td>60°C</td>
<td></td>
</tr>
<tr>
<td>Hypoxanthine guanine phosphoribosyltransferase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPRT</td>
<td>F: GCAGAACCTTGCTTTCCCTT</td>
<td>103 bp</td>
<td>60°C</td>
<td>EF219063.1</td>
</tr>
<tr>
<td></td>
<td>R: GTCTGGCCTGTATCCAAGACT</td>
<td></td>
<td>60°C</td>
<td></td>
</tr>
<tr>
<td>Sex-determining region Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRY</td>
<td>F: GTGGTCCCAACATCAGA</td>
<td>202 bp</td>
<td>56°C</td>
<td>Díaz-Hernández et al., 2008</td>
</tr>
<tr>
<td></td>
<td>R: ACCTCGTCGGAAAGTTAAAATC</td>
<td></td>
<td>56°C</td>
<td></td>
</tr>
</tbody>
</table>

F= forward primer, R= reverse primer.
Figure 1. Effects of BPA on gene expression levels of (A) SF1, (B) CYP11A1, (C) 3β-HSD and (D) AR. Each bar represents the mean of relative expression of each gene to HPRT ± SEM. Asterisks indicate a significant difference to the control. *P < 0.05.
Figure 2. Effects of BPA on testosterone concentration, measured in serum. The significantly higher level was evident in puppies born from BPA treated mothers at three dpp. The asterisk indicates significant differences compared to the respective control. Bars represent the mean ± SEM, *P < 0.05.
Figure 3. The ratio of proliferating Leydig cells in the control and BPA-treated testis. There are apparent significant differences in the number of proliferative Leydig cells in BPA-treated testes compared to controls at 21-28 dpc, (*p<0.05).

Bars represent the mean ± SEM.
Figure 4. Representative immunostained frozen sections of testis of control (A) and BPA treated (B) embryo at 21 dpc. Proliferating Leydig cells, positive for KI67, are enclosed in white circles. Yellow arrows point to proliferating Leydig cells in which the red nucleus is in another optical layer of the confocal stack.
Figure 5. This image shows a high-resolution immunofluorescent colocalization of CYP11A1 (green) and Ki67 (red) to identify proliferating (circle) and no-proliferating (arrows) fetal Leydig cells of a control testis at 28 dpc. Leydig cells express CYP11A1 in the mitochondria and Ki67 in the nucleus.
Figure 6. Representative light and electron microscope images of control rabbit fetal testes at 21 dpc. (A) Semi-thin section stained with toluidine blue shows the seminiferous cords (SC) connected to the rete testis (RT), surrounded by clusters of Leydig cells (LyC) among the stromal tissue. (B) This electron micrograph shows a Leydig cell beginning to form smooth endoplasmic cisterns (yellow arrows). The inset in Fig A shows a high magnification of the white square area on Fig B. mt: roundish mitochondria; Nu: nucleus; Ncl: nucleolus.
Figure 7. Light and electron micrographs of a BPA-treated testis at 28 dpc.

(A) Semi-thin section showing the seminiferous cords (SC) surrounded by clusters of Leydig located among stromal tissue (LyC). (B) Ultrastructure of part of the cytoplasm of two attached Leydig cells in a cluster. The red points indicate the intercellular space. The upper cell shows predominant smooth endoplasmic reticulum (SER). In contrast, the cell at the bottom has predominant rough endoplasmic reticulum (RER), which probably corresponds to non-proliferating and proliferating cells, respectively.
Figure 8

Control testis at 28 dpc

Figure 8. Immunofluorescence and electron microscopy of a control testis section at 28 dpc. (A) Immunostained CYP11A1 (green), localized in the mitochondria of the Leydig cell, the nuclei are stained with toto-3 iodide (blue). (B) Electron micrograph displaying a cluster of stromal cells: three Leydig cells (1, 2, and 3), a cross-sectioned fibroblast (f), and an endothelial cell (en). (C) Ultrastructure of a Leydig cell, the cytoplasm, shows abundant prominent mitochondria with lamellar cristae, smooth endoplasmic reticulum (SER), and lipid droplets (Ld). Nu: nucleus.
Supplementary Figure 1. The design for counting proliferating and no-proliferating Leydig cells in frozen sections: testes at 19, 21, 27, 28, and 31 dpc and 1, 2, and 3 dpp were fixed and embedded. 30 μm thick serial frozen sections of longitudinally oriented testis alternately placed on slides 1, 2, 3 and 4, to analyze adjacent sections of different regions.