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ALEX SOBKO*

Ofakim, Israel

ABSTRACT  In a previous study, we characterized Dictyostelium SUMO targeted ubiquitin ligase 
(StUbL) MIP1 that associates with protein kinase MEK1 and targets SUMOylated MEK1 to ubiqui-
tination (Sobko et al., 2002). These modifications happen in response to activation of MEK1 by the 
chemoattractant cAMP.  Second site genetic suppressor of mek1- null phenotype (SMEK) was also 
identified in Dictyostelium. MEK1 and SMEK belong to the same linear pathway, in which MEK1 
negatively regulates SMEK, which then negatively regulates chemotaxis and aggregation. RNF4 
is mammalian homologue of MIP. RNF4 interacts with hSMEK2, the human homologue of Dictyo-
stelium SMEK. We propose the existence of an evolutionarily conserved MEK1-SMEK signaling 
complex that upon MEK1 activation and SUMOylation, recruits ubiqutin ligase MIP1/RNF4, which, 
in turn, ubiquitinates SMEK and targets this protein for proteasomal degradation. This could be a 
mechanism for negative regulation of SMEK by MEK1 signaling. 
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Cell motility and primitive mode of amoeboid migration are funda-
mental and ancient cellular behaviors that contribute to multicellular 
development, inflammation, immune responses, cancer metastasis 
and are conserved between mammals and non-mammalian model 
organisms, such as Dictyostelium discoideum (Stuelten et al., 
2018). Dictyostelium presents a simple model to study directed cell 
migration (chemotaxis). The evolutionary conservation of canonic 
signaling pathway modules, accessible genetics (now including 
knock-outs, knock-ins, expression of engineered sequences, RNAi 
and CRISPR perturbations) (Sekine et al., 2018) and amenability 
to live imaging make Dictyostelium an important model to examine 
basic molecular mechanisms that govern chemotaxis. This organ-
ism permits direct observation of cells moving in complex native 
environment and allows large-scale genetic and pharmacological 
screening, as well as extensive biochemical and cell biology studies. 
Among genetically dissected pathways, MAP kinase pathways are 
central in control of aggregation and chemotaxis. The fundamental 
architecture of MAP kinase pathway is conserved between Dic-
tyostelium and other eukaryotes, and this presents researchers 
with the opportunity to investigate conserved functions and com-
mon components, including protein kinases, kinase substrates, 
molecular scaffolds and regulatory proteins. Significant insights 
into functions of MAP kinase pathway were obtained using other 
genetically tractable model organisms, such as S. cerevisiae, C. 
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elegans, and D. melanogaster. This cross-species data allows now 
to make comparisons between the phenotypes of these models, 
in which specific components of the pathway were perturbated 
(Shilo, 2014). It is also noteworthy, that ubiquitination machinery 
relevant for our discussion below has been extensively studied in 
Dictyostelium (Pergolizzi et al., 2019), and our study provides one 
important paradigm of how ubiquitination regulates protein kinase 
signaling and cellular functions (Sobko et al., 2002).

SUMO-targeted Ubiquitin Ligases (StUbLs) that recruit SU-
MOylated substrates to ubiquitination machinery have been 
characterized in fission and budding yeast, Drosophila and mam-
mals (Sriramachandran and Dohmen, 2014), (Abed et al., 2018). 
In each system, specific individual substrates of StUbLs and their 
cellular functions were identified. In our previous study (Sobko et 
al., 2002), we characterized Dictyostelium StUbL MIP1 that associ-
ates with protein kinase MEK1 and targets SUMOylated MEK1 to 
ubiquitination. These modifications happen in response to activation 
of MEK1 by chemoattractant cAMP. Another study from Firtel lab 
characterized SMEK – second site genetic suppressor of mek1- null 
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phenotype (Mendoza et al., 2005, Mendoza et al., 2007). Deletion 
of mek1 gene results in the phenotype, in which cells fail to ag-
gregate properly and form very small aggregates, due to severe 
chemotaxis defect. Suppressor phenotype of SMEK implies that 
aggregation/chemotaxis defect of mek1 null cells is rescued upon 
deletion of smek gene in mek1- null cells. According to Mendoza 
et al., the analysis of smek phenotype shows, that not all effects 
of SMEK occur via MEK1 signaling. Nevertheless, at least in part, 
MEK1 sends the signal to SMEK, which, in turn, negatively affects 
chemotaxis and aggregation. Therefore, we propose the following 
scenario: MEK1 and SMEK belong to the same linear pathway, in 
which MEK1 negatively regulates SMEK, which then negatively 
regulates chemotaxis and aggregation.

Curiously, human SMEK1 and SMEK2 encode evolutionarily 
conserved isoforms of regulatory subunits of serine/threonine-
protein phosphatase 4, that among other functions, were implicated 
in control of cell migration (Martin-Granados et al., 2008, Gingras et 
al., 2005), (see also entries for SMEK1 and SMEK2 in GeneCards 
database for more information), (Rebhan et al., 1998). 

In C.elegans, SMEK homologue was shown to function down-
stream FOXO transcription factor DAF-16 in canonical Insulin/
IGF-1 signaling pathway, regulating longevity and stress responses 
(Wolff et al., 2006). 

MIP1 is Dictyostelium RING Finger protein, which belongs 
to recently discovered evolutionarily conserved group of StUbL 
proteins, that contain also SUMO Interactive Motif (SIM) and 
drive SUMOylated proteins to ubiquitination and subsequent 
proteasomal degradation (Sobko et al., 2002, Sun et al., 2007, 
Geoffroy & Hay, 2009). 

RNF4 is mammalian homologue of MIP. It also contains SIM 
and RING Finger domains and it is most likely functions as StUbL. 
Recently, RNF4-interacting proteins were systematically identified 
in high throughput proteomics/mass spectrometry study (Kumar 
et al., 2017). Intriguingly, the data of this study shows that RNF4 
interacts with human homologue of Dictyostelium SMEK – hS-
MEK2. This raises the possibility, that such complex is conserved 
in evolution, and exists in both human and Dictytostelium cells. If 
in human cells RNF4 interacts with hSMEK2, then, MIP1 possibly 
interacts with SMEK in Dictyostelium. We propose that MEK1 and 
SMEK interact not only genetically, but also physically. Moreover, 
the mechanism of negative regulation of SMEK by MEK1 could be 
based on the existence of MEK1-SMEK complex that upon MEK1 
activation and SUMOylation, recruits StUbL MIP1. It is possible, 
that MIP1 ubiquitinates SMEK and targets this protein for protea-
somal degradation. This could be a basis for negative regulation 
of SMEK by MEK1 signaling. 

Indeed, the data of high-throughput proteomics analysis of 
post-translational modifications (PTMs) indicates that SMEK ho-
mologues interact with each other (BioGRID database of protein-
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protein interactions), (Oughtred et al., 2019, Huttlin et al., 2017) 
and are ubiquitinated on multiple lysine residues that have been 
characterized (entries for SMEK1 and SMEK2 in PhosphoSitePlus 
database), (Hornbeck et al., 2015, Akimov et al., 2018, Povlsen 
et al., 2012, Wagner et al., 2011, Mertins et al., 2013, Udeshi et 
al., 2013).

Moreover, SMEK2 is also SUMOylated on one of the lysine 
residues, Lys726 (PhosphoSitePlus database), (Lumpkin et al., 
2017), and both SMEK1 and SMEK2 possess putative unchar-
acterized SUMOylation sites, that fit the consensus SUMOylation 
motif (ψKXD/E, where ψ is a large hydrophobic amino acid, K is 
the target lysine, X is any amino acid and D/E is aspartate or glu-
tamate), suggesting that MEK-SMEK complex might be subject to 

Fig. 1.  The MEK1-MIP1-SMEK signaling complex. (A) Regulation of chemotaxis by putative MEK1-
MIP1-SMEK signaling complex. The known and the hypothetical connections (the latter in red text). 
(B) The known and hypothetical interactions within multiprotein signaling complexes.

SUMOylation that serves as a signal to bind 
StUbl MIP1/RNF4, which likely targets the 
complex to subsequent ubiquitination and 
proteasomal degradation.

This data needs to be further validated 
under relevant physiological conditions 
and stimuli, such as exposure to the che-
moattractant. In our future studies, using 
Dictyostelium chemotaxis and aggrega-
tion, as experimental system, we would 
like to apply immune affinity purification 
and co-immunoprecipitation of tagged 
expressed proteins to prove that, MEK1, 
MIP and SMEK indeed form multi-protein 
complex. We would like to verify whether 
SMEK is SUMOylated and ubiquitinated 
upon chemoattractant stimulation. It will be 
curious to check the dynamic composition of 
SMEK-MIP1 complexes over the time course 
after chemoattractant stimulation. It will be 
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instrumental to compare steady-state levels of SMEK ubiquitination 
under the same conditions in cells either overexpressing MIP1 or 
possessing mip1 gene deletion.

It will be also important to validate RNF4 – hSMEK2 interac-
tions and existence of the complex in human cells (using suitable 
cell lines with high expression levels of these proteins). One may 
hypothesize that RNF4-SMEK complex also interacts with the 
protein kinase of one of mammalian MAP kinase pathways. Acti-
vation of this kinase would be expected to trigger SUMOylation, 
ubiquitination and proteasomal degradation of SMEK and possibly 
other components of the complex. For example, we would need to 
establish whether putative RNF4-hSMEK2 complex also contains 
mitogen-activated protein kinase kinase kinase, MAP3K7, which 
was found reciprocally as either “bait” or “pray” in mass spectrometry/
proteomics study of RNF4-interacting proteins (BioGRID entries for 
RNF4 and MAP3K7), (Tan et al., 2015). MAP3K7 is known to be 
ubiquitinated in response to cytokine activation and signaling. Does 
MAP3K7 ubiquitination require RNF4, as a component of StUbL? 
Is MAP3K7 also SUMOylated? Is SUMOylation a prerequisite for 
ubiquitination? All these questions await further experimentation. 
Ultimately, we would like to apply systems biology analysis of 
protein-protein interactions and molecular pathways to identify other 
putative components of these conserved multi-protein signaling 
complexes and explore their functions. 

The availability of data from global studies of protein-protein 
interactions and PTMs of protein kinases and other signaling 
proteins now makes it possible to predict and validate functional 
connections between the kinases, their putative substrates, modu-
lators and other proteins (Sobko, 2006). 
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