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ABSTRACT  Advanced technologies and models systems are improving our understanding of de-
velopmental processes. A primary example, hematopoiesis, classically represented by a hierarchi-
cal tree with a stem cell at the apex and more lineage restricted cells following each bifurcation 
has recently been shown to be capable of more adaptable fate decisions. Future research will 
identify key molecules underpinning this more adaptable or continuous model of hematopoiesis 
potentially leading to improved engineering of blood cells and therapies for malignant disease. The 
spatio-temporal, cell specific and exquisite reliance on gene dosage attributed to the HOX family 
promoted them as candidate master regulators of hierarchical hematopoiesis. Recent discoveries 
in the need to stimulate or retain HOX expression during engineered human hematopoiesis, sup-
ported by similar studies in mice and other developmental models, reinforces their importance 
at the single cell level. Likewise, dysregulation of HOX in single cells can result in blood cancers 
such as leukemia. It will be of interest to see what additional roles HOX family members and their 
regulators including morphogens, epigenetic modifiers and noncoding RNAs play in this evolving 
field and if these master regulators can be further harnessed for clinical benefit.
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Hematopoietic HOX genes

Mammalian Hox genes are a family of 39 homeodomain-con-
taining transcription factors, organised into four distinct clusters: 
Hoxa, Hoxb, Hoxc and Hoxd. With the exception of the Hoxd 
cluster, Hox genes have key roles in hematopoiesis, particularly 
in regulating primitive hematopoietic cells (Thorsteinsdottir et al., 
1997; Argiropoulos and Humphries, 2007). During hematopoei-
sis, Hox genes are mostly expressed in CD34+, hematopoietic 
stem cell (HSC)-enriched, populations and downregulated upon 
differentiation or lineage commitment (Sauvageau et al., 1994; 
Pineault et al., 2002).

Gain-of-function
Due to their high homology, overexpression studies in mouse 

have been useful in further elucidating the role of individual Hox 
genes in hematopoiesis. Overexpression of HOXB3 in mouse 
bone marrow cells resulted in impairment of T and B lymphocyte 
development and excessive myeloid proliferation in transplanted 
mice (Sauvageau et al., 1997). HOXB4 overexpression in murine 
bone marrow cells had a profound effect on HSC proliferation, 
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oncogene; NPM1, nucleophosmin-1; PBX, pre-B-cell leukemia homeobox; PRC, 
polycomb gene (PcG) repressor complex; PSC, pluripotent stem cell; RA, retinoic 
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enhancing HSC repopulating ability both in vitro and in vivo (Sau-
vageau et al., 1995). A similar positive regulation of hematopoietic 
cell growth was also seen in human cord blood stem cells, where 
constitutive expression of HOXB4 led to increases in CD34+ stem 
cell number (Buske et al., 2002). Similar to the studies of HOXB 
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cluster, transplantation of hoxa9-overexpressing mouse HSCs 
resulted in enhanced HSC self-renewal capacity and myelopoiesis 
(Thorsteinsdottir et al., 2002). Overexpression of HOXA9 in human 
embryonic stem cells (ESCs) had a positive outcome, enhancing the 
generation of hemogenic endothelium progenitors and subsequently 
primitive and total blood cells (Ramos-Mejía et al., 2014). Whereas, 
ectopic expression of HOXA5 and overexpression of HOXA10 in 
human CD34+ cord blood cells blocked erythroid differentiation and 
increased myelopoiesis (Crooks et al., 1999; Buske et al., 2001).

Loss-of-function
While these overexpression studies indicate a key role for HOXA 

and HOXB cluster genes in regulating the activity of primitive 
hematopoietic cells, knockdown studies, for the most part, do not 
support such a role. Despite its striking effect on HSC self-renewal 
in overexpression experiments, knockdown of hoxb4 had no ap-
parent effect on normal HSC activity. Moreover, knockdown of 
the majority of the hoxb cluster, from hoxb1-b9, did not affect the 
repopulating activity of fetal liver cells or result in any hematopoietic 
defective phenotype, implying the Hoxb cluster is nonessential for 
early hematopoietic cell function (Bijl et al., 2006). 

Functional redundancy within the Hox network may hamper such 
knockout studies and explain the lack of abnormal phenotypes. 
However, while knockdown of most HOX genes have little effect 
on hematopoiesis, Hoxa9 knockdown produces the most profound 
effect, with disturbances in differentiation and HSC self-renewal 
(Alharbi et al., 2013). Hoxa9 knockout mice have depleted my-
eloid, erythroid and B cell progenitors in the bone marrow and a 
30 – 40% reduction in leukocytes (Lawrence et al., 1997). HSCs 
obtained from hoxa9-/- mice have diminished repopulation ability in 
contrast to hoxa10-/- HSCs where repopulating activity was unaf-
fected. (Lawrence et al., 2014). Additionally, the repopulating ability 
of HSCs derived from either hoxa9 or compound hoxa9/hoxb3/
hoxb4 null mice were similarly reduced (Magnusson et al., 2007). 

Interestingly, deletion of the whole Hoxa cluster in mice reduced 
hematopoietic stem and progenitor cell (HSPC) proliferation in vitro 
and engraftment potential in vivo, however, HSPC activity could be 
partially restored to wild-type levels through overexpression of hoxa9 
(Lebert-Ghali et al., 2016). These studies clearly demonstrate a 
role for Hoxa9 in regulating HSC function and in vivo engraftment.

Embryonic hematopoietic development 

The in vitro differentiation of mouse embryonic stem cells (ESCs) 
to cells of the hematopoietic lineage has been found to largely 
parallel hematopoiesis in the developing mouse embryo (Keller, 
1995). As such, recapitulation of this natural pathway using plu-
ripotent stem cell (PSC) cultures is regarded as the best method 
to generate bona fide HSCs (Yoder, 2014). Hematopoiesis takes 
place in three distinct waves in the mouse embryo.

Primitive hematopoiesis
In the first wave, BMP4, FGF2, Wnt and Nodal signalling are 

crucial in patterning of the primitive streak and formation of early 
mesoderm. Migrating mesoderm from the early primitive streak, 
marked by co-expression of kinase inert domain-containing factor 
(KDR) and Brachyury, forms the yolk sac followed by blood islands 
and endothelium (Ferkowicz and Yoder, 2005; Ackermann et al., 
2015). The yolk sac generates the first hematopoietic cells, primitive 

erythroid progenitors. These progenitors subsequently give rise to 
primitive erythroblasts, macrophages and megakaryocytes but do 
not generate HSCs or lymphoid cells. As such, the first wave is 
also described as ‘primitive hematopoiesis’ (Yoder, 2014). Hoxa9 
and hoxc9 were identified as being highly expressed in the visceral 
yolk sac (E7.5) and subsequently dispersed within the yolk sac 
and embryo (E8.5) associated with insulin induction and primitive 
erythroblast formation (Mcgrath and Palis, 1997).

Transient definitive hematopoiesis 
The second wave (E8.25-E10.5) is marked by the appearance 

of erythromyeloid progenitors from the hemogenic endothelium 
in the blood island capillaries of the yolk sac. Erythromyeloid pro-
genitors initially develop as clusters of cells in the blood islands, 
which then detach and enter blood circulation (Yoder, 2014). Cells 
of the hemogenic endothelium are capable of generating B and T 
lymphoid progenitors (Böiers et al., 2013). Since erythromyeloid 
cells have multi-lineage differentiation potential, the second wave 
is considered ‘transient definitive hematopoiesis’, distinguished 
by specific globin expression in their progeny (McGrath and Palis, 
2005). However, these transient cells lack self-renewal capacity 
and lymphoid potential (Kyba and Daley, 2003; Mikkola, 2006).

Definitive hematopoiesis 
The third wave is considered ‘definitive hematopoiesis’ as it 

gives rise to definitive HSCs, capable of long-term repopulation and 
generating all hematopoietic cell types. HSCs arise from a subset 
of specialised hemogenic endothelial cells in the dorsal aorta of 
the aorta-gonad-mesonephros (AGM) through an endothelial-to-
hematopoietic transition (EHT) (Ackermann et al., 2015). In the 
process of EHT, the hemogenic endothelium loses its endothelial 
potential and undergoes a commitment to the hematopoietic lineage 
(Swiers et al., 2013). Following specification from the hemogenic 
endothelium, HSCs migrate out of the dorsal aorta and eventually 
colonise the bone marrow. Hox co-factor Meis1 and mixed-lineage 
leukaemia (Mll, also known as KMT2A), a histone methyltransfer-
ase that regulates HOX genes expression through methylation of 
histone 3 lysine 4 residues on HOX promoters, are both expressed 
in the AGM and are essential for definitive hematopoiesis (Ernst 
et al., 2004; Azcoitia et al., 2005).

Hematopoietic differentiation of pluripotent stem cells

Most in vitro hematopoietic differentiation protocols are based 
on mimicking the distinct signalling cascades which occur during 
hematopoiesis in vivo. BMP4, FGF2 and Wnt are known to be 
crucial factors in the generation of early hematopoietic progenitors 
during embryonic development and are also essential in initiating 
in vitro differentiation to hematopoietic lineage (Chadwick et al., 
2003; Wang and Nakayama, 2009). As definitive hematopoietic cells 
arise from the hemogenic endothelium, the hemogenic endothelium 
has also been used as a source of definitive hematopoietic cells. 
Choi et al., (2012) identified hemogenic endothelium progenitors 
(HEPs) capable of forming definitive hematopoietic cells could be 
characterised by expression of VE-cadherin and lack of CD73, 
CD43 and CD235a. RUNX1 isoform c (RUNX1c) was similarly 
identified as necessary in specification of human pluripotent stem 
cell (hPSC)-derived HEPs. Deletion of RUNX1c did not impact the 
generation of HEPs from hPSCs but greatly impaired the generation 
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of CD45+ blood cells from HEPS (Navarro-Montero et al., 2017). 
This is in accordance with embryonic development where Runx1 
marks HSC emergence (North et al., 2002).

PSC-derived hematopoietic differentiation
While, these initial PSC-derived differentiation systems showed 

success in generating definitive hematopoietic cells, they are still 
incapable of generating multi-lineage cells with long-term en-
graftment potential, which are core features of bona fide HSCs. 
Contrary to embryonic development where primitive and definitive 
hematopoiesis occur in three distinct waves, in PSC-derived differ-
entiation systems these phases occur simultaneously (Ackermann 
et al., 2015). As both primitive and definitive systems result in the 
generation of CD34+ hematopoietic cells, differentiated cells cannot 
be distinguished based solely on CD34 positivity. However, the 
two programs can be distinguished based on functional end-point 
analyses, such as T lymphocyte formation ability, and based on 
responses during the differentiation process. Activin/Nodal signal-
ling stimulates primitive hematopoiesis, therefore inhibitors of this 
pathway are used to initiate definitive hematopoiesis (Kennedy 
et al., 2012). CD235a is a marker of primitive hematopoiesis that 
appears to provide a means of identifying and thus discriminating 
the two stages. Selecting for KDR+CD235a- hemogenic endothelial 
precursors along with Wnt signalling activation led to generation 
of CD45+ hematopoietic cells capable of producing primitive T 
lymphocytes and erythroid and myeloid cells in colony-forming 
unit (CFU) assays (Sturgeon et al., 2014).

BMP/Wnt-Cdx-Hox axis 
Generation of long-term repopulating HSCs remains a major 

challenge for hPSC-based hematopoietic differentiation systems. 
Hox genes are key regulators of embryonic hematopoiesis and are 
implicated in HSC self-renewal. As such, induction of Hox signalling 
in differentiating cultures may activate key pathways responsible 
for development of HSCs. The caudal-type homeobox (Cdx) gene 
family, consisting of Cdx1-4, are upstream regulators of HOX which 
regulate hematopoiesis in zebrafish, mice and humans (Rawat 
et al., 2012). Deletion of Cdx2 in mouse ESCs compromised the 
formation of embryonic hematopoietic progenitors and resulted 
in aberrant expression of posterior or 5’ Hoxa genes. Hox gene 
expression levels were restored by ectopic expression of Cdx4, 
demonstrating Hox expression is initiated and closely regulated 
by Cdx genes (Wang et al., 2008). Moreover, in a follow up to 
Sturgeon’s study, upregulation of CDX1, CDX2 and CDX4 was 
observed exclusively in Wnt-dependent KDR+CD235a- definitive 
hematopoietic mesoderm populations. Temporal analysis revealed 
increased CDX4 expression coincided with addition of Wnt agonist 
CHIR99021 to the cultures. Overexpression of CDX4 in differentiat-
ing cultures yielded the same CD34+CD43-CD73-CD184- hemogenic 
endothelium population as Wnt activation, suggesting Wnt mediates 
definitive hematopoietic specification through activation of CDX4 
(Creamer et al., 2017). This approach may have recapitulated a 
conserved BMP/Wnt-Cdx-Hox axis first identified in parallel studies 
performed in zebrafish embryos and murine ESCs (reviewed by 
Lengerke and Daley, 2012).

Acquisition of a HOXA signature
Recently, Ng et al., (2016) reported that acquisition of a HOXA 

signature during lineage specification of hPSCs may underlie the 

potential of subsequent hematopoietic stem and progenitor cells 
(HSPCs) to engraft and repopulate recipients long-term. The 
transcriptional profiles of hESC-derived CD34+ cells incapable of 
long-term engraftment were compared with long-term repopulating 
cord blood-derived CD34+ cells. HOXA cluster genes were identi-
fied among the genes significantly downregulated in hESC-derived 
CD34+ cells. In order to induce HOXA expression, hESC-derived 
CD34+ cells were treated with Activin inhibitor SB431542 and Wnt 
agonist CHIR99021, resulting in upregulation of HOXA5, HOXA9 
and HOXA10 expression. Aorta-like SOX17+ cells resembling de-
finitive hematopoietic cells of the AGM with myeloid and erythroid 
differentiation potential were also generated by the SB431542/
CHIR99021 treated cultures. While these SOX17+ cells did not show 
repopulating activity, this study demonstrated that HOXA genes 
not only play a role in regulating definitive hematopoiesis but that 
acquisition of a HOXA signature signifies specification of the AGM.

Stimulating HOXA gene expression during AGM development 
may therefore provide a means of generating self-renewing HSCs 
from PSCs. HOXA genes, in particular HOXA5 and HOXA7, were 
found to be highly expressed in fetal liver-derived HSPCs while 
suppressed in hESC-derived HSPCs which lacked repopulation 
activity. Overexpression of HOXA5 and HOXA7 in hESC-derived 
CD34+ cells did not enhance HSPC expansion in vitro, however, 
activation of retinoic acid (RA) signalling during EHT generated 
HSPCs with enhanced proliferation and also induced expression 
of HOXA genes. Thus, acquisition of a HOXA signature is develop-
mental stage specific, depends on the presence of HOXA regulatory 
factors and acts in parallel with other pathways (Dou et al., 2016). 

Wnt and RA signalling
RA has previously been demonstrated to promote HSC develop-

ment and is essential for development of hemogenic endothelium 
in mouse embryos (Goldie et al., 2008). In AGM-derived hemogenic 
endothelium cultures activation of RA signalling promoted HSC 
development through downregulation of the Wnt/b-catenin pathway 
(Chanda et al., 2013). However, Ng et al., (2016) and Sturgeon et 
al., (2014) both utilised Wnt signalling activation to govern specifi-
cation of the hemogenic endothelium in PSC-based studies. Thus 
the requirement for Wnt signalling is evidently stage-dependent. 

Transcription factors
In an alternative transcription factor-driven approach to he-

matopoietic differentiation, Doulatov et al., (2013) demonstrated 
transfection of hPSC-derived CD34+CD45+ hematopoietic progeni-
tors with five transcription factors (HOXA9, ERG, RORA, SOX4 
and MYB) produced hematopoietic cells capable of short-term 
myeloid and erythroid engraftment in vivo. Following on from 
this study, Sugimura et al., (2017) achieved long-term myeloid, 
B and T cell engraftment of HSPCs generated from hemogenic 
endothelium transfected with seven transcription factors (ERG, 
HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1). Both of these 
papers demonstrate the importance of HOXA genes, in particular 
that of HOXA9, in generating HSPCs with long-term multi-lineage 
repopulating abilities. Furthermore, HOXA9 occupies the promoters 
of ERG, MYB, SOX4 and SPI1 (Huang et al., 2012), suggesting it 
is a crucial factor in obtaining repopulating activity.

As models have become more defined our understanding of 
the molecular basis for HSPC production has improved (Fig. 1.) 
Although further follow-up analyses are required, recent approaches 



850    E. M. Collins and A. Thompson

by the Daley (Sugimura et al., 2017) and Elefanty (Ng et al., 2016) 
laboratories along with studies on Cdx-Hox expression (Rawat 
et al., 2012) provide strong support that acquirement of a HOXA 
signature is a key process in definitive hematopoiesis. Interestingly, 
acquisition and retention of a HOXA signature also appears to be 
key in malignant hematopoiesis.

HOX genes in acute myeloid leukemia

HOX genes are frequently dysregulated in leukemias. In acute 
myeloid leukemia (AML), HOX genes have been shown to induce 
or promote AML by forming oncogenic fusion proteins or collabo-
rating with other AML-inducing mutations (Alharbi et al., 2013). 
Upregulation of HOX genes and their co-factors, such as MEIS1, 
is associated with an unfavourable outcome in AML (Andreeff et al., 
2008). In particular, expression of HOXA9 was found to be the main 
determinant of poor prognosis in a cohort of AML patients (Golub et 
al., 1999). HOXA9 is overexpressed by 2 – 8 fold in approximately 
50% of all AML cases (Li et al., 2013; Collins et al., 2014). As HOXA9 
has many downstream targets, which also confer poor prognosis in 
AML, it is unclear how central a role HOXA9 plays in the outcome 
of the disease phenotype (Collins and Hess, 2016). In terms of a 
direct role of HOXA9 in leukemogenesis, HOXA9 expression alone 
does not appear to be sufficient. Hoxa9 overexpression failed to 

transform mouse bone marrow cells, however, co-overexpression 
with three-amino-acid-looped-extension (TALE) co-factor genes 
MEIS1 or PBX3 produced rapid leukemic transformation (Li et al., 
2016). In fact, HOXA9 and MEIS1 are frequently co-expressed in 
myeloid leukemias (Lawrence et al., 1999). Therefore, it appears 
Hoxa9 does not solely induce leukemogenesis but requires other 
collaborating factors, such as Meis1 or fusion to nucleoporin 98 
(NUP98).

NUP98-fusion proteins
HOX fusions with NUP98 were first reported to be involved in 

leukemia with the identification of NUP98-HOXA9 fusion gene 
in AML patients. Subsequently, 28 other distinct fusion partner 
genes were identified in patients with leukemia, including six from 
the HOX family, demonstrating a direct link between HOX genes 
and leukemia (Gough et al., 2011). The most commonly occurring 
NUP98 fusion, NUP98-HOXA9, was shown to be directly involved 
in the pathogenesis of leukemia, producing a myeloid-proliferative 
disease, which progressed into AML in mice transplanted with 
NUP98-HOXA9-transduced bone marrow cells (Kroon, 2001). 5’ 
HOX genes, including HOXA11, HOXA13, HOXC13 and HOXD13, 
have all been identified as fusion partners with NUP98 (Gough et 
al., 2011), suggesting the ability of NUP98-HOX fusions to form 
leukemia is restricted to posterior HOX genes. Using novel NUP98-

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Method Cell line Differentiation protocol Hematopoietic potential Self-renewal capacity 

Chadwick 
et al (2003) 

hESCs 

 

Form CFU-GM and BFU-E 
colonies in CFU assay 

Form CFU-GM and 
BFU-E colonies in 

secondary CFU assay; 
not tested in vivo 

Kennedy 
et al (2012) 

hESCs 
& 

iPSCs 

 

CD34+ CD43- cells (day 6 – 9) 
form erythroid, myeloid and 

mixed colonies and T cell 
progenitors  in co-culture 

with OP9-DL4 stroma 

Not tested 

Sturgeon 
et al (2014) 

hESCs 
& 

iPSCs 
 

 

Form erythroid and myeloid 
colonies in CFU assay; 

express embryonic globin 
(HBE); possess T-lymphoid 

and NK cell potential in OP9-
DL4 co-culture assay 

Not tested 

Ng et al 
(2016) 

hESCs 

 

Form erythroid, myeloid and 
erythroid/myeloid mixed 

colonies in CFU assay; 
possess ability to generate T 
cells; express adult β-globin 

Did not engraft when 
transplanted to NSG 

mice 

Sugimura 
et al (2017) 

hESCs 
& 

iPSCs 
 

 

Erythroid, myeloid, B and T 
cells engraft in recipients at 
12 weeks; mice express fetal 

(HBG) and adult (HBB) 
globin; possess mostly 

immature human CD4+ CD8+ 

T cells 

Bone marrow 
transplanted from 
primary mice show 

multi-lineage 
engraftment up to 16 

weeks 

Fig. 1. Methods of pluripotent stem cell differentiation to hematopoietic stem and progenitor cells (HSPCs). Summary of key differentiation 
methods from the literature are outlined, with illustrations focusing on the most important features of each differentiation method. The hematopoietic 
potential and self-renewal capacity of the resulting HSPCs from each method is also highlighted. Abbreviations: CFU, colony-forming unit; EB, embryoid 
body; EHT, endothelial-to-hematopoietic transition; hESC, human embryonic stem cell; HSPC, hematopoietic stem and progenitor cell; iPSC, induced 
pluripotent stem cell; NSG, NOD/LtSz-scidIL2Rgnull; PSC, pluripotent stem cell.
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HOX fusions not detected in humans, leukemia was induced in 
murine transplant models with HOXA10 and HOXB3 as fusion 
partners, but not HOXB4 (Pineault et al., 2004). Interestingly, co-
expression of the Hox co-factor Meis1 with all NUP98-HOX fusions 
tested accelerated the development of AML. This indicates all HOX 
genes, not just 5’ HOX genes, possess an intrinsic ability to become 
leukemogenic (Kroon, 2001; Pineault et al., 2004). 

MLL-fusion proteins
MLL rearrangements are found in over 70% of infant leukemias 

and approximately 10% of adult and therapy-related AMLs. They 
are formed by gross chromosomal translocations at the 11q23 
locus, producing fusion genes which comprise of the N-terminus 
of MLL fused to the C-terminal of its fusion partner gene (Krivtsov 
and Armstrong, 2007). MLL has over 88 different fusion partners, 
however, over 80% of MLL fusion genes result from translocation 
with AF4, AF9, ENL, AF10, ELL or AF6 (Meyer et al., 2017). A partial 
tandem duplication (PTD) in the N-terminus of MLL can also take 
place, occurring in approximately 12% of AML cases (Basecke 
et al., 2006; Meyer et al., 2017). Aberrant HOX gene expression 
is implicated in all MLL-rearranged myeloid and lymphoblastic 
leukemias (Armstrong et al., 2002). In particular, upregulation of 
HOXA9 and MEIS1 solely in MLL-rearranged subtype of leukemias 
suggests they are directly involved in MLL-induced leukemogenesis 
(Yeoh et al., 2002).

As MLL regulates HOX genes expression, dysregulated HOX 
expression in response to MLL fusion genes is expected. Interest-
ingly, the SET domain responsible for MLL methylation activity is 
lost during translocation. However, fusion partners AF4, AF9, AF10 
and ENL all coordinate with histone methyltransferase DOT1L, an 
activity which is maintained following translocation. Therefore, as 
some MLL fusion proteins are chromatin modifiers themselves, it 
is proposed that MLL fusion proteins mediate their effects on HOX 
expression via DOT1L (Krivtsov and Armstrong, 2007; Slany, 2009). 

Several studies in mice and immortalised leukemic cell lines 
have indicated the acquisition and retention of a 5’ Hoxa signature 
may be a requirement in MLL-mediated leukemogenesis (Horton 
et al., 2005). Mouse primary myeloid progenitor lines immortalized 
with MLL oncogenes (MLL-ENL, MLL-AF6, MLL-CBP, MLL-ELL 
and MLL-AF10) displayed a 5’ Hoxa profile, whereby 5’ Hoxa 
genes, including Hoxa7 and Hoxa9, were expressed in all lines 
while 3’ Hoxa genes were expressed less regularly. Moreover, in 
contrast to wild-type cells, Hoxa9-/- bone marrow cells transduced 
with MLL-ENL displayed severely impaired replating ability and 
failed to generate leukemia following transplantation into mice. 
This indicates a crucial role for Hoxa9 both in maintenance and 
initiation of MLL-ENL-mediated leukemogenesis (Ayton and Cleary, 
2003). Contrary to this finding, Kumar et al., (2004) observed no 
deficiency in leukemia initiation or latency in Hoxa9-/- mice following 
knock-in of oncogene MLL-AF9. The leukemogenic potential of 
Hoxa9-/- mice was equivalent to wild-type, although mice deficient 
in Hoxa9 showed a more immature myeloid phenotype. However, 
elevated 5’ Hoxa levels was observed in all mice, consistent with 
a role of Hox genes in MLL-mediated leukemia. Mice transplanted 
with HOXA9-deficient human MLL-rearranged SEMK2 cells also 
exhibit reduced leukemia burden, implicating HOXA9 in leukemia 
survival in vivo (Faber et al., 2009). The differences in outcomes 
from these experimental models may reflect a combination of 
the complexity in HOX regulation with cell-of-origin and cellular 

context. Whether HOXA9 or other 5’ HOXA genes are essential 
for all MLL-rearranged leukemogenesis or not, they do appear to 
play a significant role in initiation and maintenance of the disease 
phenotype.

NPM1 
Nucleophosmin-1 (NPM1) is a ubiquitous nuclear chaperone 

protein that shuttles between the cytoplasm, nucleoplasm and 
nucleolus. Translocations within the reading frame at the C-terminus 
of NPM1 impair the NPM1 protein’s nuclear shuttling abilities and 
result in accumulation of NPM1 in the cytoplasm. Mutations in 
NPM1 occur in approximately 35% of adult AML cases (Falini et 
al., 2009). NPM1-mediated AML also exhibits a HOX signature, 
though distinct from that of MLL-mediated AML. Gene expression 
analysis revealed elevated HOXA9, HOXA10, HOXB2, HOXB6 and 
MEIS1 levels in pediatric AML patients. However, a comparison of 
pediatric NPM1-mediated and MLL-rearranged leukemias showed 
an upregulation of HOXB genes, in particular HOXB2 and HOXB6, 
exclusively in NPM1-mutated AML (Mullighan et al., 2007). In a 
different study, a similar signature was observed in adult AML 
patients, with elevated levels of HOXA and HOXB genes, as well 
as co-factors MEIS1 and PBX3 (Verhaak et al., 2005).

FLT3 and MEIS1
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene are 

the most frequent genetic aberration seen in AML, occurring in 
approximately 25 – 45% of patients. The most common mutation, 
present in 15 -35% of AML cases, is an internal tandem duplication 
(ITD) caused by a duplication of the juxtamembrane domain, while 
the second most common mutation is a missense point mutation 
in exon 20 of the tyrosine kinase domain, which occurs in 5 – 10% 
of AML patients. FLT3 ligand is expressed by most hematopoietic 
organs, while the FLT3 receptor is predominantly expressed in 
primitive myeloid and lymphoid progenitors (Stirewalt and Radich, 
2003). FLT3 has been proposed to play a role in adult HSC self-
renewal. Expression of FLT3 on human CD34+ cord blood cells is 
necessary for in vivo myeloid and lymphoid reconstitution (Sitnicka 
et al., 2003). Interestingly, although flt3 was originally implicated in 
self-renewal of the mouse HSC pool, upregulation of flt3 in HSC-
enriched mouse bone marrow fractions was subsequently found 
to reduce HSC self-renewal capabilities (Adolfsson et al., 2001).

High HOX expression in AML patient samples is correlated with 
the presence of NPM1 mutations (Verhaak et al., 2005) and also 
with elevated levels of FLT3 (Roche et al., 2004). Additionally, 
NPM1-mutated leukemias themselves are strongly associated 
with higher frequency of FLT3 mutations (Alcalay et al., 2005). In 
mice studies, Npm1c/Flt3-ITD transgenic mice rapidly developed 
leukemia in contrast to Npm1c knock-in mice where a significantly 
longer latency was observed, signalling collaboration between mu-
tant Npm1 and Flt3-ITD proteins in leukemogenesis (Vassiliou et 
al., 2011; Mupo et al., 2013). Similarly, wild-type Flt3 co-ordinated 
with NUP98-HOX fusions in co-transduced bone marrow cells to 
initiate an aggressive AML upon transplantation to mice. In addi-
tion, retroviral transduction of pre-leukemic NUP98-HOX myeloid 
lines with Meis1 led to leukemic conversion and also a 5 – 7 fold 
increase in Flt3 protein levels (Palmqvist et al., 2012).

Meis1 is widely implicated in Hox-mediated leukemia. Meis1 itself 
has no leukemic activity, however, Meis1 expression was neces-
sary to transform bone marrow cell overexpressing Hoxa9 (Kroon 



852    E. M. Collins and A. Thompson

et al., 1998). The oncogencity conferred by Meis1 appears to be 
related to its downstream targets (Argiropoulos and Humphries, 
2007). A comparison of Hoxa9/Meis1 and Hoxa9 alone immortalised 
progenitors, demonstrated Hoxa9 and Meis1 co-operate to induce 
AML and also proliferated in response to Flt3 ligand. This response 
and Flt3 receptor expression was observed only in Hoxa9/Meis1 
transformed cells. Given the exclusivity of this expression, the 
authors hypothesised Meis1 confers an AML phenotype on non-
leukemia Hoxa9 immortalised progenitors through activation of Flt3 
(Wang et al., 2005). However, both Flt3+/+ and Flt3-/- bone marrow 
progenitors developed rapid AML following Mesi1/Hoxa9 transfor-
mation, irrespective of Flt3 genotype (Morgado and Lavau, 2007).

Regulation of hematopoietic HOX genes

As for other gene families, our understanding of the regulation 
of HOX genes has been improved recently by advanced technolo-
gies such as high throughput sequencing. Along with confirmation 
of upstream molecules including WNT, RA and CDX (above) 
cis-features, trans-factors and epigenetic modifiers have been 
identified that help untangle some of the complexity associated 
with HOX expression.

Topology
Integrative epigenomic analysis, including development of 

assays for transposase-accessible chromatin using sequencing 
(ATAC-seq, Buenrostro et al., 2013) and chromosome conforma-
tion capture-based (HiC) approaches (reviewed by Denker and De 
Laat, 2016), have been used to map gene clusters. Pioneered by 
the Dubuole laboratory, the differential topology, chromatin state 

and gene-enhancer contacts of Hox loci have been identified 
during embryonic development (between E8.5 and E12.5). As 
predicted, the chromatin structure is highly dynamic during col-
linear expression of Hox genes. Initiation of transcription resulted 
in a switch from a single to a bimodal 3D organization whereby 
newly activated Hox genes progressively clustered into a tran-
scriptionally active compartment (Noordermeer et al., 2011). This 
spatio-temporal organization coincided with active chromatin marks 
including H3K4me3 that may underpin collinear expression of Hox 
clusters. It was later discovered that HoxA and HoxD clusters lie at 
the junction of two topologically associating domains, which may 
also help explain the bimodal expression of these clusters during 
development (Dixon et al., 2012).

Noncoding RNAs
Long noncoding RNA transcripts (lncRNAs) affect diverse biologi-

cal processes through regulation of mRNA stability, RNA splicing, 
chromatin structure, and sequestration of regulatory molecules 
including DNA, protein and micro-RNA (miR). Mechanisms of action 
of lncRNAs which are associated with cell fate decisions in normal 
and malignant hematopoiesis may be therapeutically targetable 
(reviewed by Alvarez-Dominguez and Lodish, 2017).

Transcription of lncRNAs within Hox gene clusters (Rinn et al., 
2007), along with key non-coding miRs, is now well described with 
functional significance attributed (reviewed by Kumar and Krumlauf, 
2016). Interestingly, these lncRNAs affect gene regulation (positively 
and negatively) both in cis and in trans on a wide range of Hox 
and non-Hox genes. Alternative start sites, extensive RNA splicing 
and expression from either coding or non-coding strands results in 
multiple isoforms of these elements. Comparative analysis between 
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Fig. 2. A schematic of HOXA gene expression in normal, engineered and malignant hematopoiesis. 

mouse and human loci indicates 
more noncoding transcripts (in-
cluding miRs) within or flanking 
the HoxA cluster relative to other 
clusters (De Kumar and Krumlauf, 
2016). Of particular interest here, 
a lncRNA embedded between 
HOXA1 and HOXA2 termed 
HOTAIRM1, was initially identified 
as being myeloid-specific and 
upregulated during granulocyte 
differentiation (Zhang et al., 2009) 
when HOX genes are downregu-
lated. In mouse, Hotairm1 and 
another isoform Hotairm2 are rap-
idly upregulated in the presence 
of RA during myelopoiesis and 
ESC differentiation (De Kumar 
et al., 2015).

Additional lncRNAs embedded 
within the hematopoietically ac-
tive HOXA locus include HOTTIP 
which is located 330 bp upstream 
of HOXA13 and displays bivalent 
(H3K4me3 and H3K27me3) epi-
genetic marks (Wang et al., 2011). 
Hottip may modulate posterior 
HoxA gene expression by directly 
binding WDR5–MLL complexes, 
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providing a means for localizing histone methyl transferase activity.

Epigenetic modifiers
The balance between self-renewal and differentiation of HSCs 

is regulated by epigenetic mechanisms. HOX genes that evolved 
from the homeotic selector genes (HOM-C) classically retain a 
reliance on the balanced regulation by multi-subunit complexes 
containing MLL (trithorax ortholog) and polycomb gene (PcG) 
repressor complex (PRC) proteins such as BMI-1 (B cell-specific 
Moloney murine leukemia virus integration site 1). PcGs were first 
identified as negative regulators of HOM-C genes in Drosophila 
melanogaster whilst trithorax was identified as a positive regulator 
maintaining HOM-C expression. As previously mentioned, MLL 
plays a major role in HOX expression in normal hematopoiesis 
and dysregulated MLL is associated with aggressive leukemia. Key 
roles for PRC components in hematopoiesis are also emerging 
but similar phenotypic outcomes in both gain- and loss-of-function 
studies demonstrate a significant degree of complexity (Vidal and 
Starowicz, 2017; Sashida and Iwama, 2017). The two main com-
plexes PRC1 and PRC2 catalyze repressive histone modifications 
e.g. methylation of histone H3 at lysine-27 (H3K27me). 

BMI-1 forms the core of the PRC1 complex and plays a signifi-
cant role in HOX gene regulation. Knockdown of BMI-1 results in 
upregulation of HOX genes (Cao et al., 2005) and synergizes with 
the lysine acetyltransferase KAT6A (MOZ) in maintaining adult HSCs 
through altered quiescence and senescence (Sheikh et al., 2017). 
At least six mammalian PRC1 sub-complexes have been identified 
that have different subunit compositions. BCOR, a component of 
PRC1.1 was recently identified as a critical regulator of hematopoi-
esis by inhibiting myeloid cell proliferation and differentiation. Loss 
of BCOR resulted in upregulation of key hematopoietic HOX genes 
including HOXA5, HOXA7 and HOXA9 possibly by loss of promoter 
recruitment or regulation of H2A ubiquitination (Cao et al., 2016).

Histone modifications are closely linked with DNA methylation 
state. While MLL is best characterised as a histone methyltransfer-
ase, it also contains a DNA methyltransferase homology domain, 
CxxC, in its N-terminus which binds to unmethylated CpG residues 
(Slany, 2009). Mll CxxC domain binds to CpG clusters in the Hoxa9 
locus, preventing DNA methylation. In the presence of MLL fu-
sion proteins, MLL-AF4 and MLL-AF9, a subset of CpG residues 
continue to be protected, while the remainder become methylated. 
Furthermore, MLL fusions increase Hoxa9 expression regardless 
of whether CpGs became methylated or not (Erfurth et al., 2008), 
demonstrating other factors besides epigenetic dysregulation are 
responsible for Hoxa9 upregulation in leukemia. MLL also possesses 
a SET domain with H3K4 methylation activity in its C terminus. 
Loss of the SET domain leads to defects in monomethylation of 
H3K4 and also in DNA methylation at the same Hox loci (Terranova 
et al., 2006). Therefore, histone modifications influence DNA ac-
cessibility and methylation resulting in regulated gene expression.

Methylation of CpG islands is linked to dysregulated gene ex-
pression in leukemia (Bullinger and Armstrong, 2010). CpG islands 
in the proximal promoters of HOX genes are frequently methylated 
in lymphoid and myeloid leukemia patients. Methylation of CpG 
islands is commonly associated with gene silencing implicating HOX 
downregulation in development of leukemia. However, HOXA9, 
HOXA10 and HOXB4 are rarely methylated in AML patients, con-
sistent with a role for overexpression of these HOX genes in AML 
pathogenesis (Saraf et al., 2006; Strathdee et al., 2007). This may 

be due to aberrant DNA methylation in HOX promoters contributing 
to different leukemia phenotypes (He et al., 2011). Alternatively, 
methylation status at CpG shores within coding regions and/or at 
remote locus control regions may have a stronger influence over 
HOX expression than at proximal promoter elements.

Summary and perspectives

The association of HOX genes with normal and malignant 
hematopoiesis is long standing and more recently the importance 
of maintaining HOX expression during the engineering of HSPCs 
from PSCs has been reported from independent groups. The role 
of morphogens including RA, WNT, CDX and epigenetic modifiers 
is well documented. Regeneration and retention of strict spatiotem-
poral HOX expression may be essential for the in vitro production 
and maintenance of bona fide HSCs. In addition, targeted repres-
sion of specific HOX genes may be critical for curative therapy in 
malignant hematopoiesis (Fig. 2). 

Advanced technologies are increasing our understanding of 
the spatiotemporal expression of HOX and potential roles of the 
developmental master regulators they encode. Recent studies using 
combined single cell tracking and molecular profiling challenges 
the traditional hierarchical model of hematopoiesis (Velten et al., 
2017; Karamitros et al., 2018). This newly proposed continuum in 
blood cell development creates the potential for further discovery 
of the criticality of hematopoietic HOX factors throughout this pro-
cess. However, lack of HOX-specific tractable models and quality 
antibodies remain to hamper functional studies. Attaining and 
retaining appropriate HOX expression in parallel with functional 
studies in clinically relevant models will underpin future research 
into normal, engineered and malignant hematopoiesis.
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