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ABSTRACT  The mammalian central nervous system is not able to regenerate neurons lost upon 
injury. In contrast, anamniote vertebrates show a remarkable regenerative capacity and are able to 
replace damaged cells and restore function. Recent studies have shown that in naturally regener-
ating vertebrates, such as zebrafish, inflammation is a key processes required for the initiation of 
regeneration. These findings are in contrast to many studies in mammals, where the central nervous 
system has long been viewed as an immune-privileged organ with inflammation considered one 
of the key negative factors causing lack of neuronal regeneration. In this review, we discuss simi-
larities and differences between naturally regenerating vertebrates, and those with very limited to 
non-existing regenerative capacity. We will introduce neural stem and progenitor cells in different 
species and explain how they differ in their reaction to acute injury of the central nervous system. 
Next, we illustrate how different organisms respond to injuries by activation of their immune sys-
tem. Important immune cell types will be discussed in relation to their effects on neural stem cell 
behavior. Finally, we will give an overview on key inflammatory mediators secreted upon injury 
that have been linked to activation of neural stem cells and regeneration. Overall, understanding 
how species with regenerative potential couple inflammation and successful regeneration will 
help to identify potential targets to stimulate proliferation of neural stem cells and subsequent 
neurogenesis in mammals and may provide targets for therapeutic intervention strategies for 
neurodegenerative diseases. 
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Introduction

Although continuous generation of new neurons occurs in 
the central nervous system during adulthood, mammals are not 
able to regenerate neurons lost upon traumatic injury, stroke or 
neurodegenerative diseases. In spite of extensive research, it 
is still not fully understood, why teleosts and amphibia such as 
axolotl and zebrafish, are capable of regenerating extensive parts 
of their body, while mammals such as human or mouse, can not 
(reviewed by (Kaslin et al., 2008; Tanaka & Ferretti, 2009; Grandel 
& Brand, 2013; Alunni & Bally-Cuif, 2016; Fig. 1).

 Some studies indicate that extensive neuronal regeneration 
has been lost in certain vertebrate species selectively and propose 
that this loss correlates with the development of a more complex 
immune system (reviewed by (Aurora and Olson, 2014). Whether 
or not this hypothesis holds true, remains to be experimentally 
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addressed. Of note, zebrafish, which exhibit extensive neuronal 
regeneration, also possess a complex immune system (Renshaw 
and Trede, 2012). Until recently, inflammation following trau-
matic injury was considered to be mainly detrimental, especially 
through secondary damage to the wounded tissue mediated by 
a variety of inflammatory signaling molecules (recently reviewed 
by (Gadani et al., 2015; McKee and Lukens, 2016). However, 
increasing evidence indicates that inflammation also has a strong 
pro-regenerative role in the nervous system. In this review, we 
discuss the emerging role of the immune system in initiating re-
generation of the central nervous system, and highlight differences 
between non-regenerating and naturally regenerating organisms 
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in the context of their immune response to injury.

Constitutive and regenerative neurogenesis potentials 
differ between mammals and teleosts

The vertebrate central nervous system, consisting of the brain, 
the spinal cord and the retina, has long being considered a static 
organ system, with only limited generation of new neurons during 
adulthood (Rakic, 1985). This view has been extensively challenged 
and today it is well accepted that adult neurogenesis takes place 
in many different species, including mammals, where it is mainly 
found within two specific regions in the brain: the subventricular 
zone (SVZ) of the telencephalic lateral ventricle and the subgranular 
zone (SGZ) of the dentate gyrus in the hippocampus ((Altman and 
Das, 1965; Doetsch and Alvarez-Buylla, 1996); recently reviewed 
by ((Kempermann, 2015; Gage et al., 2016)). Many factors capable 
of actively modulating adult neurogenesis are already known. For 
instance, stress and aging are stimuli that negatively affect neuro-
genesis (Cameron et al., 1993; Kuhn and Gage, 1996; Garthe et al., 
2016), whereas environmental enrichment and physical exercise 
can increase formation of new neurons in the adult dentate gyrus 
of the hippocampus (Kempermann et al., 1997; van Praag et al., 
1999). Adult neurogenesis was also confirmed in humans (Eriks-
son, 1998; Spalding et al., 2013), creating some hope that upon 
better knowledge of the required signals to activate neural stem 
cells, neurodegenerative diseases and tissue loss due to injury 
could be overcome in the future. Until today, the phenomenon of 
adult neurogenesis has been extensively studied in many different 
species and is considered to be an evolutionarily conserved trait 
(Lindsey and Tropepe, 2006; Kaslin et al., 2008; Kempermann, 
2012; Kempermann, 2015). In contrast to mammals, teleost fish such 
as three-spined stickleback, gymnotiform and zebrafish possess 
abundant sources of neurogenesis (Zupanc et al., 1996; Ekström 
et al., 2001; Grandel et al., 2006). In these species, numerous 
neurogenic niches are distributed along the entire rostro-caudal 
brain axis, where continuous turnover of neurons is found until 

adulthood (Zupanc et al., 2005; Grandel et al., 2006; Ganz and 
Brand, 2016). Remarkably, besides life-long constitutive neurogen-
esis, teleosts are also potent regenerators following a traumatic 
injury (Kroehne et al., 2011; Baumgart et al., 2012; Than-Trong 
and Bally-Cuif, 2015; Kaslin et al., 2017).

Stem and progenitor cells contribute to tissue 
regeneration after traumatic injury in the 
anamniote vertebrate central nervous system

The regenerative potential of animals varies greatly between 
different species. In general, anamniote vertebrates have greater 
regenerative capacity compared to amniotes (reviewed by (Kaslin 
et al., 2008; Grandel & Brand, 2013; Tanaka & Ferretti, 2009; Fig. 
1). Despite the fact that adult neurogenesis occurs in mammalian 
species, regenerative capacity is very limited. Although constitutive 
neurogenesis can be significantly increased by physical exercise or 
environmental stimuli, the number of neurons generated is usually 
not sufficient to replace cells lost due to injury or neurodegenera-
tive disease (Jessberger and Kempermann, 2003; Kronenberg et 
al., 2003; Fabel et al., 2009). 

In areas where neurogenesis is normally absent, such as the 
cerebral cortex and the striatum, recent studies have indicated a 
certain degree of reactive neurogenesis following ischemic stroke 
(recently reviewed by (Lindvall and Kokaia, 2015)). To address the 
problem of insufficient regenerative neurogenesis, astrocytes and 
NG2 glia reacting to injury, have become an interesting target for 
neuronal reprogramming strategies (for recent reviews see (Péron 
and Berninger, 2015; Berninger and Jessberger, 2016; Gascón 
et al., 2017)).

In contrast to mammals, the zebrafish has remarkable regen-
erative capacity and is therefore an extremely valuable model for 
regeneration research (see review by (Kizil et al., 2011; Gember-
ling et al., 2013)). To study traumatic brain injuries various lesion 
paradigms have been established in rodents such as weight-drop 
models, fluid percussion or cortical stab wound injuries (reviewed 

Fig. 1 Regenerative potential of the central ner-
vous system differs across vertebrate classes. 
The ability to regenerate the central nervous system 
(CNS) varies between different vertebrate species 
and relates to their phylogenetic distance from each 
other. Regenerative potential has declined through-
out evolution; Teleosts, such as the zebrafish, show 
extensive regeneration of the brain, retina and spinal 
cord. Amphibians and reptiles possess the ability to 
regenerate certain areas of their CNS. In reptiles, 
spinal cord regeneration is limited to axonal regrowth, 
but no longer neurogenesis (+a). In birds, retinae can 
regenerate during embryonic stages but no longer in 
the adult organism. Although some degree of reactive 
neurogenesis has been observed in the mammalian 
CNS, it is typically insufficient for regeneration of 
neurons lost to injury or disease. After Grandel and 
Brand, 2013, modified. ++ high regenerative potential, 
+ regeneration, +a axonal regrowth, +e regeneration 
at embryonic stages, +/- neurogenesis insufficient for 
regeneration. Note that this denotes qualitative levels 
of CNS regeneration at the tissue level; regeneration 
competence may well differ for different cell lineages 
(e.g., Kaslin et al., 2017).
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by (Xiong et al., 2013); (Buffo et al., 2005)). To create a stab 
wound injury in the adult zebrafish telencephalon, a small can-
nula is introduced through the nostril into the brain parenchyma 
without directly targeting the ventricular zone, where the neural 
stem cells (radial glial cells) reside (Kroehne et al., 2011). Upon 
injury a quick cellular response of increased apoptosis and edema 
formation is observed. Radial glial cells react to injury and increase 
proliferation at the ventricular zone of the lesioned hemisphere, and 
genetic lineage tracing experiments confirmed that the daughters 
of radial glia differentiate into neurons that repopulate the lesion 
site. In addition, an increase of glial fibrillary acidic protein as well 
as hypertrophy of glial processes indicates reactive gliosis, how-
ever neither chronic inflammation nor scarring occurs in the adult 
zebrafish brain after injury (Kroehne et al., 2011). Other studies 
have similarly shown that the zebrafish successfully regenerates 
after stab wound injuries to the telencephalon via increased pro-
liferation of radial glial cells (Ayari et al., 2010; März et al., 2011; 
Baumgart et al., 2012; Kishimoto et al., 2012). More recently, it 
has been suggested, that the stem cell pool of the adult zebrafish 
telencephalon may be depleted during regeneration, as some of the 
stem cells may directly convert to neurons, rather than undergoing 
symmetric and asymmetric divisions (Barbosa et al., 2015).  

Similar regenerative events are reported to occur in the verte-
brate retina (reviewed by (Lenkowski and Raymond, 2014; Wan 
and Goldman, 2016)). Mammals exhibit the lowest regenerative 
capacity, while non-mammalian vertebrates such as chick, amphib-
ians and fish show higher potential. Similar to sites of continuous 
proliferation in the adult brain, the ciliary marginal zone (CMZ) of 
birds, amphibians and fish functions as stem cell niche, contribut-
ing both to adult growth of the retina and regeneration (reviewed 
by (Hamon et al., 2016). In amphibian retinae neuronal progenitor 
cells are generated by transdifferentiation of pigmented epithelial 
cells. During homeostasis, zebrafish Müller glia give rise to rod 
photoreceptors only (Raymond et al., 2006). This changes upon 
retinal damage: Müller glia partially de-differentiate, undergo 
interkinetic nuclear migration, re-enter the cell cycle and gener-
ate a single neuronal progenitor cell by asymmetric cell division. 
This progenitor undergoes subsequent cell divisions and forms 
a neurogenic cluster migrating towards the lesion site where the 
cells differentiate into the lost types of neurons (Nagashima et 
al., 2013). During regeneration, various signals involved in stress 
response, inflammation, gliosis and cell adhesion are required 
and sufficient to stimulate Müller glia proliferation (see section 6. 
below for more details). 

Reactive proliferation has also been observed following spinal 
cord injury in the zebrafish, where (ependymal-) radial glial cells 
start to proliferate and generate new motor neurons. Newly gen-
erated neurons mature and show signs of terminal differentiation 
and integration into the circuitry (Reimer et al., 2008). Radial glia 
migrate to the transected area of the spinal cord, where they form a 
“glial bridge” which supports axonal regeneration across the lesion 
site (Goldshmit et al., 2012). In addition, also large numbers of dif-
ferent types of interneurons are found after lesion. However, they 
are not generated from Olig2+ precursor cells but a different Pax6+ 
Nkx6.1+ progenitor domain. Interestingly, new V2 interneurons are 
generated in a domain of the ependymal layer, which are normally 
not present in the unlesioned spinal cord (Kuscha, Frazer, et al., 
2012). Despite the fact that zebrafish show altered serotonergic 
and dopaminergic innervation, locomotor function is restored after 

6 weeks, indicating a high plasticity of the adult spinal network 
(Kuscha, Barreiro-Iglesias, et al., 2012). 

Immune response following central nervous system 
injury in mammals and non-mammalian vertebrates

Inflammation is a rapid process following injury and involves 
activation of different types of immune cells. Responsive immune 
cells can be local, tissue-resident, self-renewing cells -such as 
microglia in the central nervous system- as well as peripheral 
monocyte-derived macrophages, neutrophils and cells of the adap-
tive immune system such as B cells and T cells. Circulating immune 
cells such as monocyte-derived macrophages, granulocytes and 
T cells can recruit additional immune cells to the site of injury via 
secretion of inflammatory mediators. 

Several mouse studies imply that inflammation is largely unfavor-
able for proliferation of neural precursor cells, a process indispens-
able for successful regeneration. Microglial activation in the brain 
reduced hippocampal neurogenesis and consistently, treatment with 
anti-inflammatory drugs was able to restore neurogenesis (Ekdahl 
et al., 2003; Monje et al., 2003). Similarly, immunosuppressive 
treatment was able to promote endogenous neural stem cell migra-
tion and subsequent tissue regeneration following ischemic injury. 
Mice recovered from cortical injury showed increased functional 
behavioral recovery (Erlandsson et al., 2011). Particularly in mam-
mals, secondary damage, such as edema, impaired metabolism, 
reactive oxygen species as well as excitotoxicity occurring after 
traumatic central nervous system injury are thought to be impor-
tant factors causing poor recovery (Prins et al., 2013; Corps et al., 
2015). Recently, however, a novel type of dormant neural stem cell, 
which becomes primed but still retains its quiescent state after TBI, 
has been proposed. These cells can be specifically activated via 
IFNg-signaling following ischemic injury (Llorens-Bobadilla et al., 
2015). Interestingly, also in non-mammalian vertebrates, where 
regeneration occurs efficiently, a rapid inflammatory response is 
observed. This regenerative potential despite a strong inflammatory 
response appeared to be in contrast to mammals where strong, 
often persistent inflammation as well as formation of scar tissue 
from reactive astrocytes is considered one of the main obstacles 
for successful regeneration (Fitch and Silver, 2008; Buffo et al., 
2008; Sofroniew, 2009).

In contrast to the general understanding of inflammation, it was 
initially surprising that in zebrafish the immune response observed 
after traumatic brain injury is actually required for initiating the 
regenerative response (Kyritsis et al., 2012). Upon drug-mediated 
immunosuppression, radial glial cell proliferation and subsequent 
regenerative neurogenesis is significantly reduced. Conversely, 
sterile inflammation via injection of Zymosan yeast particles into 
the ventricular zone of the telencephalon stimulates proliferation 
of radial glia and downstream generation of new neurons in the 
absence of injury (Kyritsis et al., 2012). Interestingly, in a differ-
ent study similar results were obtained using a mouse model of 
optic nerve injury. Stimulation of the immune system in addition to 
injury led to enhanced axonal regeneration. By using intraocular 
Zymosan injections, monocyte-derived macrophages, neutrophils 
and retina-resident microglia were stimulated and consequently 
increased axonal regeneration in a Dectin-1 receptor-dependent 
manner. The authors speculate that this specific additional acti-
vation of immune cells leads to the secretion of pro-regenerative 
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inflammatory mediators, which then stimulate axonal regeneration 
(Baldwin et al., 2015). Furthermore, immunosuppression also 
impaired motor neuron regeneration following spinal cord injury 
in the larval zebrafish (Ohnmacht et al., 2016). In the adult red 
spotted newt Notophthalmus viridescens, a model of neurotoxin-
mediated injury selectively ablates dopaminergic neurons, trigger-
ing a strong inflammatory response with recruitment and activation 
of microglia. The salamander fully regenerates these lesions via 
activation of radial-glia like ependymoglial cells, which proliferate 
and regenerate lost dopaminergic neurons (Parish et al., 2007; 
Berg et al., 2010). Interestingly, upon immunosuppression using 
dexamethasone, more newly generated tyrosine hydroxylase 
neurons are found in response to injury (Kirkham et al., 2011). It 
will be important to carefully dissect the immune response also 
in a temporal manner, since correct timing is likely one of the key 
factors influencing regenerative outcome. In addition, it will be 
crucial to further investigate underlying cellular and molecular 
inflammatory cues that act on neural stem cells. 

Immune cell types and their function during regeneration 

Microglia
Microglia, the central nervous system-resident macrophages, 

descend from the myeloid lineage of the hematopoietic system 
and colonize the brain already at early stages of development (for 
recent reviews, please refer to (Ginhoux and Jung, 2014; Dey et al., 
2015). Despite the common progenitor origin, their developmental 
source seems to differ among vertebrates. In mice microglia were 
suggested to derive solely from the yolk sac, whereas two distinct 
zones of origin have been identified in the zebrafish: the rostral 
blood island at embryonic stages, and the ventral wall of the 
dorsal aorta in adulthood (Ginhoux et al., 2010; Xu et al., 2015). 

Similar to other mononuclear phagocytes, such as peripheral 
macrophages, microglia contribute to homeostasis of the resident 
tissue by clearance of dying/dead cells and phagocytosis of debris 
and infectious agents. Under physiological conditions, although 
not activated, they constantly survey their microenvironment by 
dynamically extending processes from their cell body and show a 
characteristic ramified morphology. Upon detection of infection or 
injury, microglia undergo functional activation with morphological 
transformation towards an amoeboid shape. They migrate towards 
the infection/injury center, phagocytose infectious agents and 
dying cells and secrete various inflammatory mediators (for an 
extensive review, see (Kettenmann et al., 2011). 

In a recent zebrafish study, slc7a7, a Leu/Arg transporter, has 
been identified to mark a specific subset of primitive macrophages, 
which colonize the brain and give rise to microglia during devel-
opment (Rossi et al., 2015). In addition, the phosphate exporter 
xpr1b is required to generate microglia, also shown through a 
zebrafish knock-out model (Meireles et al., 2014). Mechanisti-
cally, microglial cells within the site of injury act through a variety 
of signals, including a wave of Ca2+ (Sieger et al., 2012). Using 
live-imaging, two phosphatidylserine receptors, BAI1 and TIM-4, 
were identified as crucial participants in the engulfment and clear-
ing of dying neurons. BAI1 controls the formation of phagosomes 
around dying neurons, whereas TIM-4 is required for phagosome 
stabilization (Mazaheri et al., 2014). More recently, an important role 
of the sigma-1 receptor was suggested in microglia de-activation. 
The authors could show that the sigma-1 receptor is crucial to 

allow microglia to leave the site of injury and become inactivated 
(Moritz et al., 2015). 

Monocyte-derived macrophages
Monocytes derive from hematopoietic stem cells, which are 

located in the bone marrow in mammals and in the kidney marrow 
of zebrafish. For detailed reviews on their developmental origin 
in mouse and zebrafish please refer to recent reviews by (Chen 
and Zon, 2009; Paik and Zon, 2010; Perdiguero and Geissmann, 
2015). Monocytes from the blood stream can differentiate into mac-
rophages and hence are termed monocyte-derived macrophages. 
Under central nervous system inflammatory conditions they can 
cross the blood brain barrier and invade the tissue. It has been 
shown that in mice activated macrophages can promote central 
nervous system repair following drug-induced demyelination by 
providing neurotrophic and growth factors (Miron et al., 2014). 
Furthermore, a population of macrophages was identified to pro-
mote regenerative axonal growth in the injured mouse spinal cord 
(Kigerl et al., 2009). These different phenotypes could potentially 
be explained by different macrophage polarization, often also 
referred to as activation states. Different polarization states of 
macrophages can be discriminated by presence of certain marker 
proteins. Historically, two major classes of macrophages have 
been proposed: “classically-activated M1” macrophages, which 
show increased antigen presentation capacities and expression 
of tumor necrosis factor-a (TNF-a), reactive oxygen species and 
interleukin-1b (IL-1b) (Block et al., 2007) and “alternatively activated 
M2 macrophages”, which show increased phagocytic activity and 
secrete neurotrophic, growth and neuroprotective factors such as 
IL-4 and IL-13 (Ponomarev et al., 2007; Colton, 2009). Therefore, 
M1 and M2 macrophages could be regarded as anti- (neurotoxic) 
and pro-regenerative (neurotrophic) states, respectively (Tang and 
Le, 2016). Polarization is reversible and polarized macrophages 
can shift dynamically between different states. Indeed, increasing 
evidence suggests that there are various macrophage subsets 
rather than just two exclusive polarization states (reviewed by (Hu 
et al., 2014; Murray et al., 2014; Prinz and Priller, 2014)). With the 
zebrafish becoming a more widely used model system to study 
inflammation and immune processes, two different subtypes of 
macrophages have been reported in zebrafish as well (Nguyen-
Chi et al., 2015). Furthermore, additional markers to better clas-
sify murine macrophage subtypes have been suggested recently 
(Jablonski et al., 2015). However, as already mentioned, this strict 
binary classification might be overly simplistic and not account for 
the true spectrum of macrophage subtypes in vivo. A recent single-
cell gene expression profiling study in mice subjected to traumatic 
brain injury provides evidence that monocyte-derived macrophages 
can not be strictly categorized into either of these classes, but 
rather adopt diverse polarization states simultaneously (Kim et al., 
2016). In addition, great phenotypical differences in macrophage 
behavior have been observed between in vitro systems and in vivo 
studies. Hence, better nomenclature and experimental guidelines 
for studying macrophage activation and polarization states may 
help to generate comparable results (Murray et al., 2014).

A further technical limitation in studies of macrophage/microg-
lia responses within the nervous system -both in mammals and 
zebrafish- has been the lack of exclusive markers to distinctly dif-
ferentiate between tissue-resident microglia and monocyte-derived 
macrophages recruited from the blood stream. As a consequence, 
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these cell types have been considered to be functionally homog-
enous in nervous system repair (London et al., 2013; Raposo and 
Schwartz, 2014). Interestingly, recent mouse transcriptome studies 
uncovered distinct profiles of gene expression between microglia 
and monocyte-derived macrophages (Gautier et al., 2012; Hick-
man et al., 2013; Butovsky et al., 2014; Grabert et al., 2016). In 
terms of the ability to experimentally differentiate between microglia 
and monocyte-derived macrophages, transmembrane protein 119 
(tmem119) was identified as unique marker for microglia during 
homeostasis and injury-induced inflammation (Bennetta et al., 
2016; Satoh et al., 2016). 

A novel anti-inflammatory role has been attributed to a unique 
subset of infiltrating monocyte-derived macrophages in mouse 
spinal cord injury, which cannot be provided by activated resident 
microglia (Shechter et al., 2009; London et al., 2013; Shechter et 
al., 2013). A different study reported that M1 macrophages pre-
dominantly reside at the inflammatory site at early stages following 
central nervous system trauma and only later shift towards the M2 
state (Miron et al., 2013). In a murine experimental autoimmune 
encephalitis model, a commonly used model for multiple sclerosis, 
disease progression was triggered by infiltration of monocytes. 
Interestingly, inhibition of monocyte recruitment blocked further 
progression (Ajami et al., 2011). These findings harbor a clinical 
implication as modulation of M1:M2 ratios could potentially improve 
regenerative capacity of the human nervous system. 

In the zebrafish less is known about the importance of mi-
croglia and macrophage subtypes during regeneration of the 
central nervous system. However, a contribution of macrophages 
to regeneration has also been reported for other organs. In the 
zebrafish fin macrophages are required during regeneration as 
depletion of macrophages greatly impairs regenerative growth. 
Macrophages accumulate at the transected area at around 4 days 
post amputation (dpa). In addition, the study provides evidence 
that macrophages are crucial early mediators of blastema forma-
tion (Petrie et al., 2014). Furthermore, a recent zebrafish study 
showed, that immune-suppressive treatment using prednisolone 
leads to decreased bone growth as well as impaired regeneration 
(Geurtzen et al., 2017). In a zebrafish model of peripheral axonal 
nerve injury, macrophages rapidly arrive at the lesion site where 
they engulf axonal debris and invade into the nerve following axon 
fragmentation (Rosenberg et al., 2012). Interestingly, macrophages 
are also important for mediation of heart regeneration in neonatal 
mice, which implies their functional relevance for regenerative 
processes also in mammalian systems (Aurora et al., 2014).

Additional research is needed to further characterize functional 
differences between resident microglia and blood-derived macro-
phages during health and disease. Zebrafish will serve as a valuable 
model with great intrinsic regenerative capacity and an immune 
system that appears to be very similar to the mammalian one. 

Neutrophils
Similarly to monocyte-derived macrophages, neutrophils origi-

nate from the myeloid lineage in the bone marrow in mammals 
and the kidney marrow in zebrafish. Neutrophils in zebrafish also 
express myeloperoxidase and quickly respond to injuries such as 
tail transection (Lieschke et al., 2001).

Neutrophils are circulating in the blood stream under physiological 
conditions, but are recruited to sites of inflammation by crossing 
the endothelial barrier. They are amongst the earliest circulating 

immune cells to arrive at the injury site. Generally, they phagocytose 
infectious agents and lethally damaged cells as well as secrete 
inflammatory molecules (for a recent review see (de Oliveira et 
al., 2016). Compared to monocyte-derived macrophages and 
microglia, less is known about the functions of neutrophils during 
central nervous system inflammation and regeneration.

Due to their immune cell attracting properties, neutrophils are 
largely considered pro-inflammatory. Deleterious effects in cen-
tral nervous system regeneration, damage of inflamed tissue by 
reactive oxygen species, disruption of extracellular environment 
by release of proteases and physical blocking at the epicenter 
of lost tissue have been attributed to neutrophils (reviewed by 
(Neirinckx et al., 2014)). Indeed, several studies have highlighted 
evidence for their detrimental effects. Co-culture experiments 
suggested neurotoxicity induced by cell-cell interactions between 
neutrophils and neurons (Dinkel et al., 2004). An antibody-based 
neutrophil depletion experiment in mice led to reduced edema 
formation and tissue loss after traumatic brain injury (Kenne et 
al., 2012). These studies indicate that neutrophils are negative 
effectors during regeneration. However, increasing evidence also 
suggests their -at least indirect- beneficial roles. In a different study, 
antibody-mediated neutrophil-depletion caused elevated levels 
of macrophage inflammatory protein 1-g and worsened behavior 
outcome after spinal cord injury in mice, potentially by interfering 
with infiltration of other immune cells (Stirling et al., 2009). Another 
study found the importance of secreted leukocyte protease inhibitor 
for recovery of spinal cord injury (Ghasemlou et al., 2010). The 
many different roles for neutrophils during zebrafish regeneration 
as well as available tools to study their function have been thor-
oughly reviewed elsewhere (Keightley et al., 2014). Zebrafish in 
vivo studies have not only shown that neutrophils migrate to the 
site of injury or inflammation in a directed manner but also undergo 
reverse migration to find their way back to the vasculature in order 
to resolve acute inflammation (Mathias et al., 2006; Starnes and 
Huttenlocher, 2012). Interestingly, macrophages interact with 
neutrophils at the wound site. Redox-regulated Src family kinase 
signaling leads to macrophage attraction and triggers subsequent 
reverse migration of neutrophils through direct interaction with each 
other, indicating their role in regulating resolution of inflammation 
(Tauzin et al., 2014). Experiments using intravital imaging and 
electron microscopy showed that neutrophils were absent in the 
brain under physiological conditions as well as after neuron-specific 
cell ablation, leading to the conclusion that neutrophils do not con-
tribute to brain inflammation in the larval zebrafish (van Ham et al., 
2014). Their contribution to adult zebrafish brain regeneration has 
not been investigated so far. During optic nerve regeneration in 
zebrafish, neutrophils were identified as a source of oncomodulin, 
a mediator actively promoting regeneration. Interestingly, although 
macrophages are also recruited to the injury site at later stages, in 
absence of neutrophils they remained insufficient for regeneration 
(Kurimoto et al., 2013).

In light of these findings, the context-dependent role for neu-
trophils in regeneration of nervous system injuries remains to be 
further studied to better understand their potential contribution to 
tissue regeneration.

T lymphocytes
T lymphocytes or T cells are part of the adaptive immune system 

and participate in central nervous system inflammation after trauma. 
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In contrast to their presence in peripheral inflammatory tissues, pres-
ence in the central nervous system is considerably lower (Moalem 
et al., 1999; Stirling and Yong, 2008; Beck et al., 2010). Increasing 
evidence suggests a functional correlation between T lymphocytes 
and the nervous system, both during homeostasis and pathology 
(Ellwardt et al., 2016). T cells are important for adult neurogenesis 
and learning in rodents. Severe combined immune deficient mice 
(SCID mice) show poor hippocampal neurogenesis, a deficit that 
is restored following CD4+ T lymphocyte transplantation (Ziv et al., 
2006; Wolf et al., 2009). 

Similar to other immune cells, effects of T cells on neural repair 
seem to be contradictory: both deleterious and beneficial roles 
have been reported. T cells isolated from spinal cord-injured rats 
induced neurological deficits and histopathologic alterations in re-
cipient animals (Popovich et al., 1997). Transgenic mice immunized 
against a central nervous system-derived antigen show increased 
neurogenesis in the hippocampus and improved learning (Ziv et 
al., 2006). Targeted depletion of CD8+ T cells in mice caused el-
evated recovery of motor function in a neurodegenerative multiple 
sclerosis model (Howe et al., 2007). In contrast to these studies, 
pro-regenerative/neuroprotective roles for T cells have been reported 
both in vitro and in vivo. Organotypic murine hippocampal slice 
cultures showed that CD4+ and CD8+ T lymphocytes isolated from 
peripheral lymph nodes protect neurons from excitotoxic damage 
and after glucose/oxygen depletion (Shrestha et al., 2014). T cells 
have been reported to produce neuroprotective molecules such as 
brain derived neurotrophic factor (Kerschensteiner et al., 1999). 
There is also an indirect effect of T cells likely to be mediated via 
interaction with monocyte-derived macrophages or astrocytes (Garg 
et al., 2009; Walsh et al., 2014). Increasing evidence suggests that 
peripheral immune cells coming to the brain via the blood stream 
positively influence adult neurogenesis in the rodent hippocampus 
(recently reviewed by (Leiter et al., 2016)). As discussed above, 
monocyte-derived macrophages and microglia have functionally 
different subtypes. The peak of alternatively activated macrophages 
coincides with that of T cell infiltration into the murine nervous system 
(Popovich et al., 1996; Miron et al., 2013). In addition, one of the 
key factors triggering the alternative activation of monocyte-derived 
macrophages is IL-4, a prototypical T cell-derived cytokine. It has 
been reported that IL-4 helps to improve survival of primary murine 

cortical neurons under oxidative stress. IFN-g secreted by T cells 
also plays a neuroprotective role through stimulating astrocytes 
to clear neurotoxic glutamate under oxidative stress. Therefore, 
these findings suggest that T cells activate and lead macrophages 
towards an anti-inflammatory phenotype, thus promoting nervous 
system recovery (Garg et al., 2009). Along these lines, ‘protec-
tive autoimmunity’ has been proposed as a central physiological 
mechanism for protection, repair and maintenance. The choroid 
plexus has been described as unique neuro-immunological gate 
allowing controlled entry of immune cells into the brain parenchyma 
(Schwartz and Baruch, 2014). As discussed above, central nervous 
system-specific T cells also show the ability to recruit monocyte-
derived macrophages to the injured murine spinal cord where they 
secrete anti-inflammatory mediators to limit spread of tissue damage 
(Shechter et al., 2009). Although T cells have been identified in the 
zebrafish, their functional role in mediating regenerative processes 
remains unclear and warrants future research (Langenau et al., 2004; 
Langenau and Zon, 2005). The recent development of an immune-
deficient zebrafish line similar to existing immune-compromised 
models in mice will be of major help in delineating the role of T cells 
during regenerative processes (Moore et al., 2016). Taken together, 
T cells have a multi-faceted role in nervous system injury and they 
remain an interesting target for future scientific investigations to 
enhance tissue regeneration.

Molecular cues and inflammatory mediators after injury 
and during regeneration

In order to understand regeneration, not only cellular responses, 
but also underlying molecular mechanisms and signals triggering 
inflammation have to be investigated. Upon injury of the central 
nervous system, the immune system quickly responds, leading to 
activation and proliferation of microglia and attraction of additional 
immune cells from the blood stream. Recruitment of different in-
flammatory cell types as well as stimulation of cell proliferation is 
mediated via a variety of different secreted mediators, such as 
cytokines and chemokines as well as lipid mediators, which will 
be discussed in the following sections. Important immune-derived 
factors already known to stimulate neural stem cell proliferation and 
neuronal differentiation have been summarized in Table 1. 

Mediator Cell type / tissue Organism Effect Reference 

IL-1β astrocytes mouse increased proliferation (Liberto et al., 2004) 

TNF-α neural precursor cells, hippocampus 
Müller glia, retina 

mouse 
zebrafish 

deletion of TNF-receptor 1 increases neural precursor cell proliferation 
induces proliferation 

(Iosif et al., 2006) 
(Nelson et al., 2013) 

IFN-γ neural precursor cells mouse activation of dormant quiescent cells in response to injury (Llorens-Bobadilla et al., 2015) 

IL-6 
 

Müller glia, retina 
retinal  ganglion cells 
spinal cord 

zebrafish 
mouse 
mouse 

increased proliferation 
axon regeneration optic nerve 
improved functional recovery 

(Zhao et al., 2014; Elsaeidi et al., 2014) 
(Leibinger et al., 2013) 
(Yang et al., 2012) 

CNTF Müller glia, retina zebrafish induces proliferation (Elsaeidi et al., 2014; Zhao et al., 2014) 

SDF-1 spinal cord rat decreased apoptosis, increased proliferation, increased functional recovery (Zendedel et al., 2012) 

IL-4 radial glial cells,  telencephalon 
subventricular zone, brain 

zebrafish 
mouse 

increased proliferation 
keeps neural precursor cells in undifferentiated state 

(Bhattarai et al., 2016) 
(Perez-Asensio et al., 2013) 

CCL11 hippocampus mouse decrease of neural precursor cells proliferation, impaired learning/memory (Villeda et al., 2011) 

LTC4 telencephalon zebrafish increased radial glial cell proliferation (Kyritsis et al., 2012) 

CysLT neural precursor cells, hippocampus mouse inhibiting proliferation, improved learning and memory upon inhibition (Marschallinger et al., 2015) 

TABLE 1

INFLAMMATORY MEDIATORS AFFECTING CENTRAL NERVOUS SYSTEM PROLIFERATION

The table summarizes important inflammatory mediators that have been shown to affect proliferation within the central nervous system. Abbreviations: IL – interleukin; TNF – tumor necrosis factor; IFN – 
interferon; CNTF – ciliary neurotrophic factor; SDF – stromal cell-derived factor (also known as CXC motif chemokine 12); CCL – CC motif chemokine; LTC4 – leukotriene C4; CysLT – cysteinyl leukotrienes. 
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Cytokines, chemokines and their receptors
One important property of cells in general, but immune cells in 

particular, is their ability to secrete small molecules such as growth 
factors, chemokines and cytokines. Cytokine signaling appears to 
be evolutionary conserved, with high degrees of homology between 
different mammalian species, but a relatively low sequence-based 
homology between fish and mammals. Still, most factors do have 
functionally equivalent orthologs in fish (reviewed by (Savan and 
Sakai, 2005)). Cytokines can have a variety of functions, depending 
on amount, but also location and timing of production. Upon any 
inflammatory response several key cytokines are rapidly secreted, 
such as Interleukin-1b (IL-1b), tumor necrosis factor alpha (TNF-a), 
CXCL8/interleukin-8 (IL-8). Il-1b reduces murine neural stem cell 
proliferation both in vitro and in vivo (Wang et al., 2007; Mathieu 
et al., 2010). Upon injury of the brain, IL-1b is quickly produced by 
activated microglia. Subsequently, mammalian astrocytes become 
reactive and increase their proliferation (Liberto et al., 2004). In 
zebrafish, where inflammation is required for initiating the regen-
erative response, up-regulation of IL-1b is observed very early 
following a traumatic brain injury (Kyritsis et al., 2012). 

 Traditionally, cytokines have been grouped into being pro- or 
anti-inflammatory correlating with different states of macrophage 
activation. However, recent studies indicate that depending on 
the specific context this categorization might be overly simplistic. 
IL-6, initially classified as pro-inflammatory cytokine, also has anti-
inflammatory properties depending on the type of receptor being 
expressed either in a membrane-bound or soluble form (Scheller 
et al., 2011). IL-6 is a pleiotropic cytokine, with multiple inflamma-
tory effects. In the mammalian central nervous system, IL-6 as 
well as its receptors are found expressed by both neuronal and 
glial cell populations (Erta et al., 2012; Gruol, 2015). IL-6 is part of 
the neuropoietic family of cytokines, including other factors such 
as ciliary neurotrophic factor (CNTF), leukemia inhibitory factor, 
oncostatin M, cardiotrophin-1 and IL-11 (Taga and Kishimoto, 
1997). Importantly, members of this family are involved in different 
biological processes and responses elicited by different members 
can be very similar. This is possible due to a very high similarity in 
their three-dimensional conformation, rather than primary structural 
similarity, which is as low as 30% (Gadient and Otten, 1997). In vitro 
experiments showed that IL-6 greatly reduces murine neurogenesis 
and that blocking IL-6 can fully restore hippocampal neurogenesis 
(Monje et al., 2003). Despite the fact that zebrafish IL-6 shows a 
low sequence homology with other species, it has a high structural 
similarity to human IL-6. IL-6 family cytokines together with leptin 
are potent stimulators of Müller glia cell reprogramming and retina 
regeneration in zebrafish. It was shown that leptin, in conjunction 
with the gp130-coupled cytokine receptor, activate JAK/STAT 
signaling, which triggers Müller glia cell proliferation in the retina. 
Importantly, IL-6 as well as IL-11 and CNTF synergize to induce 
Müller glia cell proliferation also in the uninjured retina (Zhao et al., 
2014). Furthermore, the same family of cytokines also stimulates 
activation of JAK/STAT signaling in retinal ganglion cells to facilitate 
optic nerve regeneration (Elsaeidi et al., 2014).

TNF-a is rapidly produced following traumatic injury. TNF-a 
exists in two different isoforms in the nervous system: a soluble 
and a transmembrane form (McCoy and Tansey, 2008; Probert, 
2015). It signals via the TNF receptors 1 and 2 (TNFR-1, TNFR-2) 
and can activate multiple downstream signaling pathways such as 
NFκB, JNK, MAPK or caspase-mediated death signaling (reviewed 

by (Wajant et al., 2003)). A recent study found that induced inflam-
mation via exogenous supply of TNF-a to mammalian astrocytes 
promotes their conversion to neural precursor cells via activation 
of NFκB signaling in vitro (Gabel et al., 2015). In a zebrafish model 
of retinal injury, TNF-a signaling is an important mediator. Dying 
cells secrete TNF- a, which stimulates Müller glia to proliferate 
and regenerate the injured tissue (Nelson et al., 2013). In addition, 
factors such as TGF-b also trigger Müller glia cell proliferation (Len-
kowski et al., 2013). Based on RNA sequencing analysis of lesion 
stimulated Müller glia, NFκB signaling shows a high activity during 
zebrafish retina regeneration (Sifuentes et al., 2016). In chicken, the 
activation of glucocorticoid receptors using Dexamethasone was 
also shown to reduce the number of Müller glia derived progenitor 
cells after neurotoxic ablation of neurons, further demonstrating an 
involvement of inflammation in regeneration (Gallina et al., 2014). 

IL-10 is well known for its anti-inflammatory actions, which are 
mediated via STAT3 activation (Murray, 2005; Bazzoni et al., 2010). 
IL-10 is a potent inhibitor of IL-1, IL-6, IL-10 itself, IL-12, IL-18 
and TNF-a. It not only inhibits the production of pro-inflammatory, 
but also augments the production of anti-inflammatory mediators 
including soluble TNF-a receptors and IL-1 receptor antagonist. 
Using a rat model of traumatic brain injury, exogenously adminis-
tered IL-10 improved neurological outcome and reduced TNF-a 
expression. It was suggested that IL-10 is anti-inflammatory due 
to its regulatory effect on pro-inflammatory cytokine expression 
(Knoblach and Faden, 1998). IL-10 reduces neuronal differentiation 
and keeps precursors in an immature state. Consistently, blockage 
of IL-10 in vivo results in increased incorporation of newly formed 
neurons in the olfactory bulb of mice (Perez-Asensio et al., 2013). 
This indicates again that precise timing of cytokine secretion during 
regeneration is very important as IL-10 is required during the phase 
of stem cell proliferation but needs to be down-regulated to allow 
newly generated cells to differentiate into neurons. 

The cytokine IL-4 is involved in wound healing and induction of 
alternatively activated macrophages (M2), which promote tissue 
remodeling and healing (reviewed by (Mosser & Edwards, 2008)). 
IL-4 signals through its cognate receptor propagating the signal 
through a series of phosphorylation steps via receptor-associated 
kinases. The IL-4Ra chain can also function in complex with the 
IL-13Ra (Nelms et al., 1999). IL-4, which can be secreted by 
meningeal T cells, has been positively correlated with cognitive 
performance. IL-4 deficient mice show cognitive deficits and im-
paired learning (Derecki et al., 2010). Furthermore, genetic knock-
out of IL-4 leads to worse outcome after stroke accompanied by 
larger lesion volumes. Administration of exogenous IL-4 reverses 
this effect (Xiong et al., 2011). Recently, using a zebrafish model 
of amyloid deposition in the brain, IL-4 was identified to stimulate 
radial glial cell proliferation and subsequent neurogenesis (Bhat-
tarai et al., 2016). These studies indicate a beneficial role for IL-4 
signaling in the context of traumatic brain injury, neural precursor 
cell proliferation and neurogenesis.

Chemokines are small cytokines usually involved in the induc-
tion of chemotaxis of cells. The chemokine network is very well 
conserved in evolution. A large comparative study investigated the 
evolution and development of the chemokine system in important 
model organisms including the zebrafish. In comparison to other 
species, zebrafish have a high number of chemokines and recep-
tors, 63 and 24 respectively, probably as a result of ancient genome 
duplication (DeVries et al., 2006).
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The chemokine CXCL8, also known as IL-8, is one of the 
cardinal pro-inflammatory cytokines up-regulated during inflam-
mation and after injury. It is secreted by glial cells, macrophages 
and endothelial cells and mediates activation and chemotaxis of 
neutrophils (Hammond et al., 1995). It is also rapidly detected in 
cerebrospinal fluid of TBI patients together with elevated levels 
of IL-6, IL-10 and TGF- b (Kossmann et al., 1997; Mussack et 
al., 2002). In zebrafish, two homologs for IL-8 exist, CXCL8a and 
CXCL8b. Using an in vivo imaging approach, it was shown that in 
the absence of CXCL8, neutrophil migratory speed towards a pe-
ripheral wound was increased, directionality of movement however 
was not affected (Oehlers et al., 2010; de Oliveira et al., 2013). 

The chemokine C-C motif ligand 2 (CCL2), also referred to 
as monocyte chemoattractant protein 1, has been identified as 
a neuron-derived pro-regenerative chemokine in the dorsal root 
ganglion in rodents (Kwon et al., 2015). CCL2 can activate mac-
rophages through interaction with its primary receptor CCR2 to 
produce pro-regenerative factors that can promote neurite outgrowth 
of cultured dorsal root ganglion neurons (Kwon et al., 2013; Kwon 
et al., 2016). Overexpression of the chemokine in uninjured murine 
dorsal root ganglion leads to accumulation of macrophages and 
promotes neurite outgrowth in dorsal root ganglion explants. The 
observed regenerative response is regulated in a STAT3-dependent 
manner (Niemi et al., 2016).

Both the chemokine receptor CXCR4 and its ligand CXCL12, 
also known as stromal cell-derived factor 1 (SDF-1), are expressed 
in the ventricular zone of the adult zebrafish brain and have been 
suggested to play a role during homeostatic neuronal migration 
(Diotel et al., 2010). SDF-1 can be induced by a variety of pro-
inflammatory stimuli, such as bacterial toxins, TNF or IL-1. Also, 
the SDF-1/CXCR4 receptor pathway is important for homing of 
neural stem cells towards an injury site within the mammalian 
brain (Imitola et al., 2004). Our own previous research identified 
cxcr5 as important chemokine receptor involved during zebrafish 
telencephalon regeneration. In the adult zebrafish telencephalon 
cxcr5 is expressed by proliferating and non-proliferating radial glial 
cells, as well as by neurons in the periventricular region. Cxcr5 
mediates neuronal differentiation of newly generated precursor 
cells following a stab lesion (Kizil et al., 2012). Regulation of TGF-
b has recently been demonstrated as an important aspect during 
zebrafish retinal regeneration. TGF- b is rapidly induced after acute 
light lesion, but also very quickly down-regulated. From 8-36 hours 
post lesion the suppressor transforming growth-interacting factor 
is up-regulated. Conversely, disruption of TGF-b co-repressors 
leads to reduced proliferation and decreased cone photoreceptor 
regeneration (Lenkowski et al., 2013). Similarly, a recent study also 
showed that pharmacological suppression of the TGF- b pathway 
could accelerate zebrafish retinal regeneration (Tappeiner et al., 
2016). Both studies indicate that temporally and spatially controlled 
expression of mediators is crucial for proper regeneration.

Non-protein and lipid-derived inflammatory mediators
In addition to cytokines and growth factors, lipid-derived mol-

ecules are important mediators of inflammation (reviewed by 
(Serhan et al., 2008). Lipid mediators are involved in many different 
inflammatory responses, both during infection and following injury. 
These mediators are mostly synthesized from arachidonic acid, 
which is derived from cell membranes via the action of phospho-
lipase A2 (Farooqui et al., 2000). Subsequently, arachidonic acid 

can undergo a variety of reactions yielding different classes of lipid 
mediators. Arachidonic acid can be further oxidized via different 
enzymatic routes: Cyclooxygenases-1 and -2 (COX-1, COX-2) 
form prostaglandins and thromboxanes, lipoxygenases (LOX) form 
leukotrienes and lipoxins and cytochrome P450 enzymes (CYP450) 
form eicosatrienoic acids (EETs) (reviewed by (Dennis and Norris, 
2015)). A further type of lipid mediators are protectins and resolvins, 
which exert neuroprotective effects both in the mammalian brain 
and retina (Bazan, 2005b; Bazan, 2014; Dyall, 2015). 

In general, COX-1 is required for homeostatic and housekeep-
ing functions, whereas COX-2 becomes rapidly activated upon 
inflammation and is induced by growth factors, cytokines or 
bacterial toxins. However, COX-2 is also constitutively found in 
kidney and brain (Rouzer and Marnett, 2008). COX-1 and COX-2 
share approximately 60% homology at the cDNA and amino acid 
level. They have very similar structural and kinetic properties, the 
conformation of substrate binding sites and catalytic centers are 
highly similar. Multiple putative regulatory sites have been pro-
posed for inducible COX-2, including the cyclic AMP, IL-6, NFκB, 
Sp-1, GATA-1 and glucocorticoid response elements (Phillis et 
al., 2006). Furthermore, expression can also be induced via IL-1b 
resulting in elevated levels of prostaglandin E2 (PGE2) in the central 
nervous system (Bazan, 2001). Prostaglandin-mediated signaling 
is propagated through specific receptors leading to activation of 
multiple intracellular signaling cascades (reviewed by (Ricciotti and 
Fitzgerald, 2011)). COX-2 expression in the brain has been linked 
to regulation of synaptic activity, but also the perception of pain 
(Bazan, 2005a; Phillis et al., 2006). Inhibition of COX-2 improves 
cognitive function in a rat model of diffuse traumatic brain injury 
(Cernak et al., 2002). In contrast, in a different study treatment 
with a selective COX-2 inhibitor following trauma worsened motor 
behavior (Dash et al., 2000). Using a rat model of peripheral nerve 
injury, treatment with a selective COX-2 inhibitor accelerated func-
tional recovery (Cámara-Lemarroy et al., 2008). Such seemingly 
contradicting studies show that the specific role of COX-2 in the 
context of traumatic brain injury is complex and only incompletely 
understood. Cyclooxygenases have been attractive drug targets for 
a variety of indications due to the plethora of roles they fulfill during 
physiologic as well as pathologic processes. Many different drugs 
already exist, however their potentially beneficial role in mediating 
neuro-inflammation following TBI is currently revisited in several 
pre-clinical and clinical studies (Hurley et al., 2002; Gopez et al., 
2005).  

Importantly, COX genes were found to be evolutionarily con-
served in vertebrates. In zebrafish, COX-2 has two paralogs, COX-
2a (ptgs2a) and COX-2b (ptgs2b) (Grosser et al., 2002) and studies 
indicate that both genes generate functional and inducible enzymes 
upon inflammatory stimulation and have similar functions (Ishikawa 
et al., 2007). Prostaglandins, in particular prostaglandin E2 (PGE2), 
was investigated regarding its role in hematopoietic stem cells and 
found to be an important modulator of Wnt signaling (North et al., 
2007; Goessling et al., 2009). This interaction is also conserved in 
other species, such as mice, where PGE2 is involved in hemato-
poietic stem cell homing and bone marrow repopulation following 
irradiation. In addition, the modulatory function of prostaglandins 
is required during liver regeneration (Goessling et al., 2009). Pros-
taglandins have also been proposed to exert a regulatory effect 
on cytokine synthesis, because PGE2 and PGI2 reduced TNF-a 
and increased IL-10 levels in murine peritoneal macrophages (Shi-
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nomiya et al., 2001). A recent mouse study reported the beneficial 
effect of increased prostaglandin synthesis during regeneration by 
blocking 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a 
prostaglandin-degrading enzyme. Interestingly, several organs, 
such as bone marrow, liver and colon showed increased ability 
to sustain damage as well as enhanced regenerative responses. 
Hence, 15-PGDH negatively regulates regenerative capacity in 
multiple organs and presents an attractive drug target for future 
therapies (Zhang et al., 2015). However, its role during central 
nervous system regeneration remains to be addressed.

The other important branch of the arachidonic acid pathway re-
sults in the production of leukotrienes. Lipoxygenases can generate 
the intermediate leukotriene A4 (LTA4), which is metabolized to LTB4 
or LTC4, LTD4, LTE4, collectively known as cysteinyl leukotrienes 
(Funk, 2001). Cysteinyl leukotrienes are rapidly produced in excess 
following traumatic brain injury, mainly by neutrophils but also by 
glial and neuronal cell types (Farias et al., 2009). Pharmacological 
inhibition of cysteinyl leukotriene synthesis, leads to a reduction of 
secondary injury and cognitive impairments (Corser-Jensen et al., 
2014). Blocking cysteinyl leukotriene receptors increases neural 
precursor cell proliferation in vitro (Huber et al., 2011) and signifi-
cantly increased hippocampal neurogenesis leading to improved 
learning and memory in aged mice. Knock-down experiments 
identified the GPR17 receptor to be critical for mediating this effect 
(Marschallinger et al., 2015). 

Our own studies identified cysteinyl leukotriene receptor 1 
(CysLTR1)–LTC4 signaling as a crucial component of the neuro-
regenerative response in the zebrafish telencephalon. Using a 
selective receptor antagonist, both radial glial cell proliferation as 

well as subsequent neurogenesis in the brain parenchyma are 
diminished. Conversely, supply of exogenous LTC4 in complete 
absence of injury increases both stem cell proliferation as well as 
neurogenesis in the adult zebrafish telencephalon. Furthermore, 
LTC4 supply alone is sufficient to activate the regeneration specific 
transcription factor gata3 in radial glial cells of the ventricular zone 
(Kyritsis et al., 2012). A different study also reported that immuno-
suppressive treatment using dexamethasone significantly reduces 
cardiac repair after injury in the adult zebrafish (Huang et al., 2013). 

Many studies suggest that inflammation is beneficial for healing 
and regeneration only if the initial inflammatory response does not 
persist or becomes chronic but is rapidly resolved. Many studies 
investigate the role of pro-resolving lipid mediators such as lipoxins, 
resolvins and protectins and their role in actively terminating an 
inflammatory response (for a review see (Serhan et al., 2008)). 
It is important to emphasize that these mediators are not anti-
inflammatory or immunosuppressive but rather activate specific 
mechanisms required to regain tissue homeostasis. Pro-resolving 
mediators increase monocyte recruitment to help faster clearing 
of cell debris and dead cells by phagocytosis. In a mouse stroke 
model, neuroprotectin D1 exerts neuro-protective effects both in 
vivo and in vitro via inhibition of leukocyte infiltration, NFκB signal-
ing and COX-2 induction (Marcheselli et al., 2003). Furthermore, 
this mediator also has protective functions in a model of corneal 
injury, where it potently increased nerve regeneration (Cortina et 
al., 2013). Upon traumatic brain injury, lipoxin A4 is a potent nega-
tive regulator of pro-inflammatory cytokine secretion. In addition, 
lipoxin A4 treatment attenuates blood brain barrier breakdown, brain 
edema and lesion volume (Luo et al., 2013). 

Fig. 2. Immunity related 
signals involved in the 
regenerative response in 
zebrafish CNS. Injury of the 
zebrafish central nervous 
system (telencephalon, spinal 
cord, retina) elicits a rapid and 
strong inflammatory response 
characterized by immune cell 
activation, proliferation and 
infiltration as well as secretion 
of inflammatory mediators 
(cytokines or lipid-derived 
factors). These are potent to 
stimulate and increase stem 
cell proliferation. In the zebraf-
ish retina and telencephalon 
several inflammatory media-
tors have already been identi-
fied, whereas less is known 
about inflammatory regulators 
in the spinal cord after injury. 
Radial glial cells of the telen-
cephalon are the source of 
newly generated neurons after 
injury, whereas in the spinal 
cord ependymal-radial glia 
contribute to regeneration of 
lost motor neurons in response 

to damage. In the retina Müller glia cells are activated after lesion and proliferate to give rise to intermediate progenitors, which continue to proliferate 
and eventually differentiate to replenish lost photoreceptors. Abbreviations: IL, interleukin; TNF, tumor necrosis factor; CNTF, ciliary neurotrophic factor; 
SDF, SDF – stromal cell-derived factor (also known as CXCL12); CCL, CC motif chemokine; LTC4 , leukotriene C4; CysLT, cysteinyl leukotriene. 
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Collectively, all these studies show that in organisms with high 
intrinsic regenerative potential of the central nervous system, 
inflammation is a very important part of the response. Increasing 
evidence further suggests that also in mammals certain aspects of 
the inflammatory response within the nervous system are important 
to allow tissue healing and restoration. In a naturally regenerat-
ing organism such as the zebrafish, the inflammatory response 
is required for successful regeneration. Immune cell activation, 
infiltration and secretion of inflammatory mediators stimulates 
central nervous system stem cells to proliferate and subsequently 
differentiate into cell types lost to injury (Fig. 2). 

Despite great research efforts and increased understanding of 
regenerative mechanisms, many open questions are still remain-
ing. We know about the general requirement of an inflammatory 
response in animals with great regenerative capacity, however, 
contribution of specific inflammatory mediators is still incompletely 
understood. Furthermore, the function of specialized immune cell 
subtypes needs to be evaluated in greater detail, with special focus 
on the specific spatio-temporal regulation of the inflammatory and 
regenerative response. With rapid progress being made in single 
cell sequencing, gene editing, live imaging technologies as well 
as drug screening methods, it is now possible to gain a more 
complete and detailed understanding of complex molecular and 
cellular events during regeneration, eventually allowing to target 
these in a specific manner also therapeutically.

Taken together, as the field moves towards a more differenti-
ated view on neuro-inflammation after injury, future research 
should reveal the knowledge required for the design of novel 
immune-modulatory therapies to enhance central nervous system 
regeneration also in mammals.
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