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ABSTRACT  The mammalian skull vault is a highly regulated structure that evolutionally protects 
brain growth during vertebrate development. It consists of several membrane bones with different 
tissue origins (e.g. neural crest-derived frontal bone and mesoderm-derived parietal bone). Although 
membrane bones are formed through intramembranous ossification, the neural crest-derived 
frontal bone has superior capabilities for osteoblast activities and bone regeneration via TGF, BMP, 
Wnt, and FGF signaling pathways. Neural crest (NC) cells are multipotent, and once induced, will 
follow specific paths to migrate to different locations of the body where they give rise to a diverse 
array of cell types and tissues. Recent studies using genetic mouse models have greatly advanced 
our knowledge of NC cell induction, proliferation, migration and differentiation. Perturbations or 
disruptions of neural crest patterning lead to severe developmental defects or diseases. This review 
summarizes recent discoveries including novel functions of genes or signaling molecules that are 
capable of governing developmental processes of neural crest patterning, which may function as 
a gene regulatory network in controlling skull development. The proposed regulatory network 
will be important to understand how the signaling pathways and genes converge to regulate os-
teoblast activities and bone formation, which will be beneficial for the potential identification of 
molecular targets to prevent or alleviate human diseases or disorders involving defective neural 
crest development.
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Introduction

The mammalian skull vault is a highly regulated structure and 
exquisitely patterned during development. Several membrane 
bones occupy the skull vault, namely a pair of frontal and pa-
rietal bones and an unpaired inter-parietal bone. These bone 
elements have different tissue origins. Frontal bones derive from 
the cranial neural crest (CNC), and parietal bones stem from 
paraxial mesoderm-derived tissue (Jiang et al., 2002) (Fig 1). 
The inter-parietal bone itself is of dual tissue origins, which is the 
evolutionary consequence of the fusion between the crest-derived 
“postparietals” and the mesoderm-derived “tabulars” (Koyabu et 
al., 2012). The skull vault protects the brain and accommodates 
its growth. Although the tissue origins of the skull vault in mouse 
were identified late compared to that in birds through chick-quail 
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chimaeras, this valuable model has brought up enough attentions 
to understand the genetic and molecular mechanism determining 
the regional differences within the mouse skull vault. 

Osteogenic potential of neural crest-derived osteoblast 
vs. mesoderm-derived osteoblasts 

The frontal bone exhibits distinct differences in osteogenic 
potential and regenerative capability depending on their origin 
(neural-crest vs. mesoderm-derived): 1) Osteoblasts from the 
neural crest-derived frontal bone are less differentiated, grow 
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faster, and have a more rapid bone nodules formation compared 
to parietal bone-derived osteoblasts (Xu et al., 2007). 2) A higher 
level of activation of the FGF signaling pathway is found in the 
frontal bone (Li et al., 2010, Quarto et al., 2009), which profoundly 
impacts calvarial regeneration (Behr et al., 2010). 3) Active canoni-
cal Wnt signaling also contributes to intrinsic osteogenic potential 
and tissue regeneration in the neural crest-derived frontal bone 
(Quarto et al., 2010). Enhanced activation of Wnt signaling in the 
parietial bone can mimic a neural crest origin bone, like the frontal 
bone (Li et al., 2015). 4) Neural crest-derived osteoblasts have low 
apoptosis when stimulated by TGF-beta signaling (Senarath-Yapa 
et al., 2013). 5) In humans, gene expression profiling within these 
two bone elements (Homayounfar et al., 2015) indicates a broad 
spectrum of differentially expressed genes, but how and when they 
will initiate to orchestrate the features of skull vault with different 
origins remains elusive (Fig. 1). 

Origin of neural crest cells and a genetic mouse model 
to label neural crest cells

Neural crest cells specify at the border of the neural plate and 
non-neural ectoderm after gastrulation. During neurulation, the 
borders of the neural plate begin to converge at the dorsal midline 
to form the neural tube. Subsequently, neural crest cells from the 

roof plate of the neural tube delaminate from the neuroepithelium 
and migrate into different locations of the body through a definable 
pathway towards their destinations (Chen et al., 2017, Huang and 
Saint-Jeannet, 2004).

Cell fate mapping using a NC-specific promoter has facilitated 
genetic labeling of NC cells and their derivatives. Multiple Cre 
transgenic mouse lines have been generated using a NC marker 
gene promoter, e.g., Wnt1-Cre, P0-Cre, Dhh-Cre, Pax3-Cre, 
HtPA-Cre, Sox10-Cre, Sox10ER(T2) CreER(T2), Mef2c-F10N-
Cre. Among them, Wnt1-Cre and P0-Cre lines have been widely 
used. The Wnt1-Cre model is currently the gold standard for NC 
lineage. However, Wnt1-Cre-labeled cells in the neural tube, which 
are not neural crest-derived, and Wnt1-Cre transgene causes ec-
topic activation of Wnt signaling, which induces defective midbrain 
development (Lewis et al., 2013). For P0-Cre line, it has been chal-
lenging to specifically label early neural crest cells (Yamauchi et 
al., 1999). Our recent evidence shows that the P0-Cre transgenic 
model specifically labels neural crest cells at an early stage. We 
also found a profound and unrecognized difference in the Cre 
distribution within the midbrain labeled by Wnt1-Cre compared to 
an extensive labeling within the hindbrain by P0-Cre (Chen et al., 
2017) (Fig. 2). This may be the reason why different conclusions 
have been made using P0-Cre and Wnt1-Cre in labeling CNC 
(Barriga et al., 2015). 

Neural crest patterning during skull development

A gene regulatory network has been potentially revealed in NC 
patterning, and a diverse set of interacting signals, transcription 
factors, and downstream effector genes are involved in the differ-
ent stages of NC development (Meulemans and Bronner-Fraser, 
2004). Genetic approaches in human, fish, chicken, and mice have 
shown that some genes that specify the complex morphology of 
the vertebrate skull are similar and therefore a precise shape and 
position of every skull vault has developed in the vertebrate. Trans-
genic mouse models provide a useful tool for genetic manipulation 
of neural-crest-derived components during embryogenesis. We 
here try to summarize recent findings that associated with skull 
development and then propose a model for how potential gene 
regulatory network may function in mouse skull vault (Fig. 3). 

Neural fold specification and neural crest induction
Neural tube closure and neural crest delamination are transient 

and dynamic. How these critical steps orchestrate timely and 
spatially are very intriguing. Although the detailed mechanism is 
not clear, recent findings provide valuable information to better 
understand their regulations and functions. Wnt signaling, BMP 
signaling, and SHH signaling pathways are induced early in neu-
ral fold specification. Sensing the gradients of Shh signaling is 
important for neural tube closure (Balaskas et al., 2012), and Shh 
acts as a survival factor to mediate CDO (cell-adhesion molecule-
related/downregulated by oncogenes) which is a pro-apoptotic 
in the developing neural tube (Delloye-Bourgeois et al., 2014). 
FGF3 regulates BMP signaling in the neuroepithelium, which in 
turn regulates neural tube closure (Anderson et al., 2016). In ad-
dition, Geminin is required for neural tube patterning (Patterson 
et al., 2014), and Lbx1 promotes neural tube closure (Kruger et 
al., 2002), while Pax-3 and Pax-7 genes specify dorsal fate in the 
vertebrate neural tube (Wada et al., 1997). 

Fig. 1. Diagram of tissue origins in the skull vault and distinct features 
of tissue-derived osteoblasts activities. Frontal bone-derived osteoblasts 
showed higher activities of several signaling pathway including BMP, FGF 
and Wnt, but lower activities of TGF signaling and apoptosis compared to 
parietal bone-derived osteoblasts. Fb, frontal bone; Pb, parietal bone; OB, 
osteoblast; IPb, interparietal bone; PF, parietofrontal.
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Specification of the neural tube is essential for the induction of 
the neural crest. Several neural crest specifiers have been identified 
to be critical in neural crest cell induction, such as the ZIC family, 
TFAP2, Msx1/2, SOX9/10, Snail1/2, Pax3/7, and Myc (Rogers et 
al., 2012, Stuhlmiller and Garcia-Castro, 2012). In a recent pub-
lication visualizing the gene expression pattern in the frontal and 
parietal compartment in humans showed that only TFAP2 is highly 
expressed in the neural crest-derived frontal bone (Homayounfar 
et al., 2015). Our recent data shows that both TFAP2 and SOX10 
are highly expressed in the neural crest-derived frontal bone tissue 
in mouse. This suggests a distinct regulation of different specifiers 
in neural crest-derived tissues in a species-dependent manner, 
such as in chicken, SOX10 and SOX9 are regarded as the earliest 

neural crest-specifying gene (Betancur et al., 2010). However, how 
these neural crest specifier genes control or guide the cell behavior 
towards skull development are not clear. One possible explanation 
is that they co-occupy the promoters of critical regulatory genes 
related with craniofacial development (Miranda et al., 2017). 

Epithelial-mesenchyme transition (EMT) for neural crests
When the identities of neural crest cells are established, neural 

crest cells will undergo dynamic transformation from epithelium to 
mesenchyme. Cell-cell junctions and potential space for cell-cell 
contacts are required for the transition. Some genes are crucially 
involved in the regulations of junctions: FoxD3 and Snail downregu-
late expressions of the molecules associated with epithelial cells 

Fig. 2. Differences in neural crest cell labeling using P0-Cre and Wnt1-Cre at E8.5 (modified from our publication, Chen et al., 2017). (A) P0-Cre/RFP 
labels the hindbrain region (arrow) but not midbrain region (arrowhead) at 11 somite at E8.5, while Wnt1-Cre/RFP labels midbrain region (arrowhead) 
but spares the hindbrain region (arrow). (B) P0-Cre embryos showed abundant Cre immunostaining signals in hindbrain (hb) and forebrain region (fb) 
at 14 somite (B1), post-migratory NC cells in trigeminal neural crest (tn, B2) at posterior hindbrain level, and in the optic eminence (oe, B3), in anterior 
hindbrain (hb, B3). Wnt1-Cre activities were extensive at 7-somite stage (B1’-2’), in the pre- and post-migratory neural crest cells in midbrain (mb, B1’) 
and forebrain (fb, B2’-3’) regions, optic eminence (oe, B2’) but sparse in hindbrain (hb, B2’). Scale bars: 250 mm in (A) and 50 mm in (B).

B

A
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such as N-cad and E-cad or Cad6B, while upregulate mesenchymal 
migratory proteins such as Cad7. Cad6B inhibits beta-catenin sig-
naling and affects NC delamination (Rabadan et al., 2016). Snail 
downregulates tight junctions to allow for the upregulation of gap 
junctions (Taneyhill et al., 2007). p53 is reported to regulate EMT, 
and p53 mutants display broad craniofacial defects in skeletal bone 
(Rinon et al., 2011). GTPases (Faure and Fort, 2015) and Sox2 
(Mandalos et al., 2014) function during epithelial to mesenchymal 
transitions. Besides, ERK-dependent epigenetic signaling results 
in a gene expression program which is essential for driving EMT 
(Navandar et al., 2017). Interestedly, some miRNAs are also func-
tional to the developmental EMT (Banerjee et al., 2016). However, 
how the direction of delaminating neural crest is determined and 
then follows a certain pathway into different locations of the body 
remains to be understood. 

Neural crest proliferation and apoptosis
Neural crest specifiers are important in cell proliferation. Proto-

oncogene c-myc deficiency driven by Wnt1-Cre in the neural crest 
results in viable adult mice with defective frontal bone (Wei et al., 
2007). Low expression of TFAP2 leads to reduced cell proliferation 
(Pfisterer et al., 2002). In SOX10 mutant mice, apoptosis increased 
in the sites of early neural crest cell development (Kapur, 1999). 
This well explains that higher expression levels of TFAP2 and 
SOX10 within frontal bone in mouse may contribute to a high 
potential for proliferation of neural crest-derived frontal bone. In 
addition, mouse Foxd3 is essential in maintaining the proliferating 
and self-renewing population of progenitor cells for neural crest 
(Hanna et al., 2002). Proliferation and apoptosis is evolutionarily 
balanced during neural crest development, such as apoptosis in 
the odd-numbered rhombomeres is needed to eliminate the mi-
gration of r3 and r5 crest into first and third arches and therefore 
avoid extra neural crest-derived muscle attachment at these sites 
(Ellies et al., 2002). 

TGF and WNT signaling pathways are also involved in neural 

crest proliferation and apoptosis. Deletion of adenomatous pol-
yposis coli (APC), which downregulates Wnt signaling, leads to 
massive apoptosis of cranial neural crest cells which further results 
in craniofacial defects (Hasegawa et al., 2002). TGF-beta-activated 
kinase 1 (Tak1)-deficient mutants display a round skull, hypoplastic 
maxilla and mandible (Yumoto et al., 2013). Moreover, the Hippo 
signaling pathway is well known for its role in cell proliferation 
and growth. Conditional deletion of Yap and Taz in the CNC, two 
components for Hippo signaling pathway, using Wnt1-Cre and 
Wnt1-(Cre2SOR) result in enlarged CNC and reduced prolifera-
tion in the branchial arch mesenchyme (Wang et al., 2016). Rho 
kinase (Rock) in mouse is crucial for the survival of NCC to form 
the craniofacial region (Phillips et al., 2012).

Some genes and transcriptional factors specifically regulate 
neural crest proliferation and apoptosis: Prtg-deficient (proto-
genin protein) mice show malformation of bones due to increased 
apoptosis of rostral CNC (Wang et al., 2013). Polycystin-1 (Pkd1) 
is required for the proliferation of subpopulations of cranial os-
teochondroprogenitor cells of both mesodermal and neural crest 
origin during the growth of the skull (Kolpakova-Hart et al., 2008). 
Deficiencies of Msx1 and Msx2, homeodomain transcription fac-
tor, result in defective patterning and survival of the cranial neural 
crest (Ishii et al., 2005). TALE-class homeodomain transcription 
factors Meis and Pbx have specific functions in embryogenesis. 
Conditional inactivation of Meis2 using crest-specific AP2alpha-
IRES-Cre mouse displays perturbed development of the cranio-
facial skeleton with severe anomalies in cranial bones (Machon 
et al., 2015). Furthermore, gap junctions are also necessary for 
the survival of neural crest cells. 

Neural crest migration 
Upon the emigration of neural crest cells from the neural tube, 

Noggin and Chordin are involved in this process (Anderson et al., 
2006). During closure of the neural tube, transcription factor AP2 
is prominently expressed in migrating NC from the neural folds, 

Fig. 3. The proposed gene regulatory network that may be involved in the regulation from neural crest patterning to skull development. Neural 
crests form at the dorsal part during the closure of the neural tube. Specified neural crest cells delaminate, proliferate, migrate and differentiate into 
mesenchyme where they give rise to osteoblasts during skull formation. Identified signaling pathways and genes that function throughout the neural 
crest patterning are marked. 
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and later expressed in the regulatory regions (Enkhmandakh and 
Bayarsaihan, 2015), where it acts as a non-autonomous factor to 
induce skeletogenesis. AP2 mutant mice are severely defective 
in face and skull bone.

Following migration, SOX10 and SOX9 are immediately ex-
pressed in migrating neural crest cells in mouse, which is different 
from that in chicken where ETS1 and SOX9 are pan-neural crest 
regulators of the migratory CNC (Simoes-Costa et al., 2014). Flrt2 
and Flrt3, members of the Fibronectin Leucine-Rich Transmem-
brane (Flrt) gene family, mediate CNC migration during craniofacial 
development (Gong et al., 2009). Upon the production of migratory 
cranial neural crest cells, CYP26A1 and CYP26C1 (Uehara et al., 
2007) and transmembrane metalloproteases (ADAMs) (Cousin et 
al., 2011) act as positive regulators, for example, preventing the 
shuttle of the cleaved cytoplasmic domain of ADAM13 into the 
nucleus inhibits CNC cell migration in vivo (Cousin et al., 2011). 
ADAM13 functions in an autonomous manner to trigger CNC mi-
gration during skull development (Cousin et al., 2012).

Ablation of PTPN11 in premigratory neural crest cells, which 
encodes the protein tyrosine phosphatase (SHP2), contributes to 
profound skull deficits (Nakamura et al., 2009). A subpopulations 
of postmigratory CNC have roles in patterning distinct derivatives, 
such as Hoxa2 (Tavella and Bobola, 2010) acts as a selector gene 
for patterning of branchial arch structures, and cAMP-dependent 
protein kinase (protein kinase A (PKA)) has strict regulation on the 
derivative patterning (Jones et al., 2010). How these genes and 
signaling pathways work dynamically and directionally in neural 
crest migration are intriguing.

Osteogenesis in neural crest
Some key transcriptional factors play essential roles during 

osteogenesis in the neural crest: Firstly, Msx2 drives CNC differ-
entiation into the skeletal system. Msx2 mutants are defective in 
skeletogenic mesenchyme cells. Overexpression of Msx2 in mice 
leads to the growth of parietal bone into the sagittal suture. Neural 
crest-specific removal of Msx2 results in a larger defect in the frontal 
bone (Roybal et al., 2010). An interaction between Msx2 and Twist 
is needed during the differentiation and proliferation of skeletogenic 
mesenchyme and formation of skull vault (Bildsoe et al., 2009). 

Furthermore, the homeodomain family of transcription factors 
regulate the development of CNC-derived craniofacial skeleton. 
Dlx2 is expressed in the epithelium and mesenchyme cells within 
branchial arches. Deletion of Dlx2 leads to skeletal anomalies 
(McKeown et al., 2005). Mice lacking Dlx3 exhibit alteration of 
calvaria (Duverger et al., 2013). Dlx5 and Dlx6 function during cra-
niofacial development, and MEF2C is required for the expressions 
of Dlx5 and Dlx6. Transcription factor gene Hand2 is expressed in 
neural crest-derived mesenchyme cells during the branchial arches 
(Ruest et al., 2003), suggesting its role in craniofacial development. 

Moreover, Connexin43 (Cx43) is required for neural crest cell 
patterning and ossification. Cx43 mutants show delayed ossifica-
tion of the cranial vault (Lecanda et al., 2000). Loss of Gsalpha, 
G-protein alpha-subunit, in neural crest cells does not affect CNC 
migration or cell proliferation, but significantly accelerates osteo-
chondrogenic differentiation (Lei et al., 2016). Conditionally over-
expression of autoactivated platelet-derived growth factor receptor 
alpha (PDGFRalpha) in neural crest cells enhanced proliferation 
of osteoprogenitors and accelerated ossification of osteoblasts 
(Moenning et al., 2009).

Signaling pathways have been extensively studied during the 
osteogenesis in the neural crest. FGF signaling plays an essen-
tial role in the skeletogenic differentiation from the cranial neural 
crest. Conditional overexpression of the FGFR2 S252W mutation 
in neural crest-derived tissues causes a more severe craniofacial 
phenotype (Heuze et al., 2014). Simultaneously, activation of 
FGFR2 (S252W) is sufficient to cause craniosynostosis (Holmes 
and Basilico, 2012). Interestingly, a novel skull defect with only a 
single bone pair is found in Fuz mutant mice and this phenotype 
can be rescued by loss of one allele of Fgf8 (Tabler et al., 2016). 
The receptor of FGF signaling regulates homeoprotein engrailed 1 
(EN1) during osteogenic differentiation (Deckelbaum et al., 2012). 
Moreover, Hedgehog signaling (Hh) is also critical for neural crest 
patterning: Shh promotes survival of neural crest cells to colonize 
in the first branchial arch (Delloye-Bourgeois et al., 2014). Disrup-
tion of Hh signaling leads to abnormal neural crest development, 
resulting in malformed skull base. Removing Hh-responsiveness 
specifically in neural crest cells leads to the absence of many 
CNC-derived skeletal components (Jeong et al., 2004). 

BMP and TGF signaling pathway are also important in osteo-
blast differentiation and bone formation (Chen et al., 2012). BMPs 
ligands such as Bmp2 and Bmp7 are required in frontal bone 
primordium. Inactivation of Bmp2 and Bmp7 leads to multiple 
defective CNC-derived skeletal elements (Bonilla-Claudio et al., 
2012). Neural crest-specific deletion of Acvr1, a type I receptor for 
BMPs, induces craniofacial defects, and deletion of another type 
I receptor, Bmpr1a, causes mid-gestation lethality (Stottmann et 
al., 2004). Constitutive overexpression of Bmpr1a in neural crest 
cells leads to premature suture fusion in mice (Komatsu et al., 
2013). TGF-beta signaling regulates the fate of neural crest cells. 
Mice with neural crest-specific deletion of TGF-beta receptor 2 
(Tgfbr2) show craniofacial skeletal malformations (Ho et al., 2015). 
TGF-beta mediates Msx2 expression during skull development. 
Msx2 is regulated by BMP-Smad signaling pathway, and Twist1 is 
a downstream target of Wnt signaling. In short, these interactions 
suggest integrated functions of the different signaling pathways 
during osteogenesis in the neural crest. 

Epigenetic regulation
Histone deacetylases (Hdacs), transcriptional repressors, 

displays essential roles in neural crest cell patterning. Hdac8 
represses a subset of transcription factors in CNC, such as Otx2 
and Lhx1, and thereby specifically influences the patterning of the 
skull. Hdac8 mutant mice are perinatally lethal due to skull instability 
(Haberland et al., 2009). Hdac3 is needed for neural crest cells dur-
ing craniofacial development. Conditionally knockout Hdac3 in the 
neural crest reveals fully penetrant craniofacial abnormalities and 
upregulates Msx1, Msx2, and Bmp4 expression in the mesenchyme, 
suggesting that Hdac3 serves as a critical regulator for craniofacial 
morphogenesis (Singh et al., 2013). In addition, mutation of de 
novo DNA methyltransferase DNMT3b leads to defects in neural 
crest-derived craniofacial skeleton (Jacques-Fricke et al., 2012). 

Ubiquitination
Wwp2 E3 ubiquitin ligase works with paired-like homeobox 

transcription factor Goosecoid (Gsc) during craniofacial develop-
ment. Gsc is activated by the APC (Cdh1) E3 ubiquitin ligase. 
Conditional deletion of neural crest-specific Cdh1 gene causes 
bone malformation that is similar to Wwp2-deficient mice with a 
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domed skull displaying a short snout and a twisted nasal bone 
(Shao et al., 2016). Mice with specific ablation of another E3 
ubiquitin ligase, Nedd4, in neural crest cells or osteoblasts exhibit 
profound craniofacial defects with marked reduction of cranial 
bone (Wiszniak et al., 2016).

Primary cilium-related regulation 
The primary cilium is a cellular microtubule-based organelle 

that is important for cell proliferation, differentiation, survival, and 
homeostasis. Intraflagellar transport (IFT) functions in assembling 
primary cilia, such as IFT20 and IFT88. Deletion of IFT20 in neural 
crest cells leads to skeletal dysplasia, such as osteopenia in the 
facial region (Noda et al., 2016). Deletion of IFT88 results in a 
decrease in neural crest cell proliferation at early stages (Tian 
et al., 2017). Polycystin 2 (Pkd2) localized in primary cilia, and 
conditional deletion of Pkd2 in neural crest-derived cells causes 
malformed skull shapes (Khonsari et al., 2013). Kif3a is the mo-
tor protein within primary cilia. Conditional deletion of Kif3a in 
neural crest cells has a dramatic effect on intramembranous os-
sification, and Shh signaling is disrupted in Kif3a-deficient neural 
crest-derived mesenchymal cells (Kolpakova-Hart et al., 2007). 
However, ciliary proteins EVC and EVC2, which are regarded 
as causative genes and having an important role in transduction 
of Hedgehog signaling, do not show observed defects in skull 
development but defects in incisor growth using neural crest-
specific mouse model (Zhang et al., 2015). 

Human diseases or disorders from defective neural 
crest patterning

Disruption or perturbation of the patterning on neural crest cells 
leads to defective organs and tissues. Some human diseases or 
disorders stem from abnormal neural crest patterning (Table 1). 
Treacher Collins syndrome is an autosomal dominant congenital 
disorder which is characterized by craniofacial deformities, such 
as facial bones. The prevalence of this disease is about 1:10,000-
50,000 individuals. Loss of TCOF1 encoding TREACLE protein 
affects the craniofacial skeleton (van Gijn et al., 2013). Premature 
fusion of the calvarial bones leads to craniosynostosis, a relatively 
common pediatric disease with occurrence in 1:2500 births. A 
variety of genetic lesions can result in craniosynostosis, such 
as gain-of-function of FGFR1-3 and loss-of-function of TWIST1 
(Holmes and Basilico, 2012). Disruption of cranial neural crest 
migration and survival can cause human disease, such as mutation 
of MID1 gene results in X-linked Opitz syndrome (XLOS) with an 
estimated prevalence of 1:50, 000-100, 000 male individuals and 
the patients exhibit midline malformation with distinct craniofacial 

abnormalities such as wide-spaced eyes (Latta and Golding, 
2012). Disrupted migration of neural crest cells with mutation 
of ephrin-B1 gene (EFNB1) lead to craniofrontonasal syndrome 
(CFNS), which is very rare inherited X-linked disorders with 
estimated birth prevalence of 1:120,000. Multiple defects were 
observed including asymmetry, midline defects, skeletal abnor-
malities, and unusual head shape (Wieacker and Wieland, 2005). 
A novel mutation in Zfhx1b gene in neural crest precursor cells in 
mouse can lead to Mowat-Wilson syndrome, a genetic disorder 
with distinct facial features and an unusual small head (Van de 
Putte et al., 2007). Abnormal development of neural crest cells 
can result in a genetic disorder called Axenfeld-Rieger syndrome 
(ARS). ARS occurrence is about 1:200,000 individuals and eye 
development exhibits major disorder. PITX2 and FOXC1 are the 
leading causes of the disease.

Magnetic resonance imaging is a valuable tool to show mul-
tiple defects including the defective skull base (Whitehead et 
al., 2013). SHP2 contributes to higher occurrence of Noonan 
syndrome disease, a genetic disorder characterizing by defective 
cardiac and craniofacial developments with estimated prevalence 
of 1:1000-1:2500 live births. SHP2 plays an essential role for 
CNC normal migration and differentiation into diverse lineages 
of the heart and skull (Nakamura et al., 2009). However, the 
symptoms improve with age and most adults suffering NS do not 
need special medical care. Mutations from several genes have 
been associated with NS disease such as in KRAS, RAF1 and 
SOS1RIT1 (van Trier et al., 2016). 

Neural crest cells and regenerative medicine 

Defective neural crest patterning results in severe birth defects, 
which may require a comprehensive surgery and rehabilitation at 
tremendous economic burden. Findings based on genetic mouse 
models are valuable to understand the regulation of genes and 
signaling pathway during skull development. This will potentially 
help to determine a target molecule that promotes the differen-
tiation of neural crest cells to osteoblasts while maintains the 
superior osteogenic potential and bone regeneration potential 
compared to mesoderm-derived bone tissues, which are important 
for regenerative medicine in clinic.

Endogenous calvarial regeneration may be a promising solu-
tion for craniofacial reconstruction (Senarath-Yapa et al., 2013), 
and a molecule or agent will be found to sufficiently drive endog-
enous bone formation. Similarly, fibronectin, which is involved 
in mediating differentiation of the skull and migration of neural 
crest cells, works as a carrier for BMPs and used as an essential 
component in stem cell technology associated with craniofacial 

Genes Disease Prevalence Some symptoms Reference 

TCOF1 Treacher Collins syndrome 1:10,000-50,000  Craniofacial skeleton (van Gijn et al., 2013) 

FGFR1-3, Twist1 craniosynostosis 1:2500  Premature fusion of skull (Holmes and Basilico, 2012) 

MID1 X-linked Opitz syndrome 1: 50,000-1:100,000  Craniofacial abnormalities (Latta and Golding, 2012) 

EFNB1 craniofrontonasal syndrome 1:120,000 Asymmetry, midline defects, skeletal abnormalities (Wieacker and Wieland, 2005) 

Zfhx1b Mowat-Wilson syndrome Not sure Facial defects, unusual small head (Van de Putte et al., 2007) 

PITX2, FOXC1 Axenfeld-Rieger syndrome 1:200,000  Defective eye, defective skull base (Whitehead et al., 2013) 

PTPN11, KRAS, RAF1 Noonan syndrome 1:1000-1:2500 live births Defective cardiac and craniofacial developments (van Trier et al., 2016) 

TABLE 1

HUMAN DISEASES OR DISORDERS FROM DEFECTIVE NEURAL CREST PATTERNING
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surgery (Al-Qattan et al., 2014, Brunskill et al., 2014). 
Engineering cranial neural crest cells is also a tool to treat dis-

eases. Patient-derived CNC cells can manipulate bone formation 
in vitro, which can be used for transplantation. CNC have been 
successfully differentiated into osteoblasts in vitro, e.g. in a 3D 
bioengineering microenvironment where neural crest cells are 
encapsulated in gelatin-based photo-cross-linkable hydrogels 
and cultured for about 3 weeks to efficiently drive differentiation 
(Namkoong et al., 2016). In addition, CNCs supplemented with 
BMP4 in the culture media are capable of differentiating into osteo-
cytes and chondrocytes (Mimura et al., 2016). Mouse embryonic 
stem cells can be selectively differentiated into cranial NC stem 
cells, which can further differentiate into other cell types including 
osteoblasts (Minamino et al., 2015). IPSCs are another useful tool 
for genetic manipulation of certain cell types in vitro. Skin-derived 
precursors can be differentiated into the neural crest lineage, 
which can be subsequently propagated and directed towards 
the mesenchymal lineages, such as osteogenic cells (Kang et 
al., 2011). Collectively, these examples demonstrate that neural 
crest cells are an accessible and potentially autologous source 
for tissue engineering and bone repair. Further researches will 
assure that the engineered neural crest cells can be delivered in 
a safe way, homed sufficiently, and functioned properly in vivo. 

Summary

Researches understanding neural crest pattering have made 
great progress in recent years, which lead to a better understand-
ing about its patterning, development, and regulation. Yet, new 
technologies are needed that can be widely used to further our 
understanding, especially under the serious reality that more than 
30% of birth defects are involved in defective a head or face, 
and the craniofacial abnormalities are a primary cause of infant 
mortality. Translating novel findings into the clinic remains to be 
shown in the future. Timely diagnosis, disease prevention and 
treatment options are unsolved issues. Major progress in culturing 
cranial neural crest cells have been made, so that differentiation 
of neural crest cells into different cell types is invaluable for cell 
therapy or tissue repair in clinic in the coming future.

We here review the most recent findings regarding neural 
crest patterning and its potential relationship to the development 
of skull. We propose that a gene regulatory network is essential 
to maintain the superior regenerative capacity in neural crest-
derived frontal bone. Visualizing the regulatory network in neural 
crest patterning during skull development will be important to 
understand how signaling pathways are coordinated to regulate 
osteoblast activities. This evolutional model of the skull vault 
involving dual tissue origins provides some cues that need to be 
dissected, which in turn will be beneficial to not only the regulation 
of bone biology but also their regenerative applications in clinic. 
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