facilitated advancements in animal breeding and assisted reproduction. His other notable achievements include: generation of the first chimaeric mice produced experimentally by aggregation of two genetically distinct cleaving embryos (Tarkowski, 1961; Tarkowski, 1998); the first proof that artificially activated mouse oocytes can develop until mid-gestation (Tarkowski et al., 1970), and establishment of the blastomere electrofusion technique that allows for production of tetraploid embryos (Kubiak and Tarkowski, 1985). These, and many more of his findings, have become indispensable tools for immunological, genetic, and oncological studies, as well as for generating transgenic animals which are instrumental for studying gene function in living animals. His work and discoveries provided a tremendous input to the contemporary developmental biology of mammals.

Importantly, Tarkowski himself used the above-mentioned methods to study the potential and fate of early blastomeres (Tarkowski et al., 2001; Tarkowski et al., 2005; Suwinska et al., 2008; Tarkowski et al., 2010) and the developmental effects of induced chromosome aberrations in chimaeric animals (Tarkowski et al., 1977; Suwinska et al., 2005). He was also vividly involved in the studies on oocyte maturation, fertilisation, remodelling of somatic nuclei (Czolowska et al., 1984), and finally, in generating mouse-rat chimaeras – this latter project is now being completed by his research group. During his scientific career, Tarkowski collaborated with many research centres around the world. He was a Fellow of the Rockefeller Foundation in the Department of Zoology, University College of North Wales (UK), and worked as a visiting professor at the University of Oxford (UK), Rockefeller University of New York (USA), University of Adelaide (Australia), and Institute Jacques Monod CNRS - Université Paris 6 (France).

Tarkowski’s career started and ended at the University of Warsaw: he graduated from the Faculty of Biology and Earth Sciences and finally became a Professor while working here. Until 2003, when he officially retired (although he has never retired from bench-work!), he was also intensely involved in being “The Boss”, as we all used to call him, i.e. Head of the Department of Embryology and, for many years, Director of the Institute of Zoology. Moreover, he was deeply engaged in the organization of science and science financing in post-communist Poland; as an expert in the Ministry of Science and Education, a member of the Advisory Board of the Foundation for Polish Science, a member of the Polish Academy of Sciences and the Polish Academy of Arts and Sciences. He was also elected to the French Academy of Sciences, the National Academy of Sciences of the USA and...
Academia Europaea. Throughout his life, he was eager to explain and advise, and to react if he felt that his science-fellows needed support. He was a great teacher, who uncovered the beauty of developmental biology and the challenges of experimental mammalian embryology to many generations of students.

Tarkowski's scientific achievements were recognised worldwide and he was awarded the Albert Brachet Prize of the Royal Academy of Belgium (1980), the Polish National Award (1980), the Alfred Jurgzykowski Foundation Award (1984), the Embryo Transfer Pioneer Award, the International Embryo Transfer Society Award (1991) and the Commander's Cross with Star of the Order of Polonia Restituta (2012). In 2002 he received the Japan Prize awarded by the Japan Prize Foundation, which he shared with his long time friend and the great developmental biologist - the late Anne McLaren (R.I.P.). In 2013, he was honoured with being awarded the Prize of the Foundation for Polish Science in the life and earth sciences. We at the Int. J. Dev. Biol. were most privileged to have had Prof. Tarkowski as Scientific Advisor on our Editorial Board for many years.

However, for us, and for his other collaborators, students, and friends spread all over the world, he was special not only because of his achievements and the positions he held, but also because of his personality and the way he formed us as scientists and impacted our lives. For him nothing was impossible. He was always focused on his scientific questions and on the pursuit for excellence in everything he did. In his opinion, the effects were rarely perfect. And this referred not only to experimental work, but also to the bread he baked or the liqueur he prepared for our Departmental Christmas or Easter parties. With the exception of his rye bread and really fantastic tinctures, he was also known for his spectacular photographic work. His photographic exhibitions – “Botanical Impressions”, “Tree and Wood”, “The Earth We Walk On” and “On the Border of Nature and Abstraction” – have been presented over the years in many Polish cities. As in science, also in nature he was noticing things invisible to others, and perpetuated his own interpretation of nature’s phenomena in his photographs.

Working with him, we all became infected with his energy and ideas. Many times he managed to convince us that even the most complicated experiment was possible to perform and worth a try, as it would give us the answers we looked for. And so we woke up at 2 am in the morning to take care of our mice or travelled across Europe with preimplantation mouse embryos in tiny medium-filled tubes attached to our bodies as natural incubators. We agreed, although not always happily, to repeat the experiments over and over again, and were truly surprised when they worked as he had predicted, or were gravely troubled to disappoint him when they failed. We felt that we should do our best and even more, to match his high expectations, but we also felt that we could always count on him, and on his advice and expertise. In some way, we were his second family and he treated us like a good father: rigorous and demanding, but always just. We knew he cared about us and protected us. His unique ability to fulfill scientific dreams in the harsh Polish reality of 1950-80s was perfectly described in the personal view on Tarkowski written by his friend and collaborator Chris Graham from Oxford University (UK) and published in the Int. J. Dev. Biol. (Graham, 2008). In addition to describing Tarkowski’s struggle to acquire reagents for his experiments, Graham also pictured him as a person with a very special sense of humour and full of joy. Indeed, for Tarkowski and, thanks to him, also for us, science was above all, a joy.

Today, science still greatly benefits from the research initiated decades ago by Tarkowski. It is very difficult, if not even impossible, to imagine the recent advances in mammalian developmental biology, and biomedical sciences in general, without his pioneering work in mammalian embryology. For us, his ex-students and collaborators, it is difficult to see the door to his office closed, the door that was open until September 2016. We will miss him and his intellect tremendously.

Ewa Borsuk, Małgorzata Waksmundzka, Katarzyna Szczepańska, Anna Ajduk, Marek Małeśzewski, Aneta Suwińska, Monika Hümęcka, Katarzyna Bożyk, Marcin Szpila, Renata Czołowska, Teresa Rogulska, Wacław Ożdżeński, Jacek A. Modliński, Jacek Z. Kubiak and Maria A. Ciemerych

Warsaw, Poland, November, 2016

References and Selected Key Publications


IN MEMORIAM

*Address correspondence to the authors: c/o Marek Maleszewski, Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland. email: ciemerych@biol.uw.edu.pl

Submitted and accepted: 16 November 2016.
Further Related Reading, published previously in the Int. J. Dev. Biol.

Mammalian Embryology Conference: celebrating the pioneering work of Andrzej K. Tarkowski (Warsaw, Poland, 25-26 October, 2013)
Magdalena Krupa, Aneta Suwimska and Marek Maleszewski

Pluripotency of bank vole embryonic cells depends on FGF2 and activin A signaling pathways
Aneta Suwimska, Andrzej K. Tarkowski and Maria A. Ciemerych

Andrzej Krzysztof Tarkowski abroad, in photos and correspondence
Chris F. Graham

Early mammalian embryo: my love. An interview with Andrzej K. Tarkowski
Marek Maleszewski and Andrzej K. Tarkowski

Mammalian and avian embryology at Warsaw University (Poland) from XIX century to the present
Andrzej K. Tarkowski, Marek Maleszewski, Teresa Rogulska, Maria A. Ciemerych and Ewa Borsuk

Where do we stand now? - mouse early embryo patterning meeting in Freiburg, Germany (2005)
Takashi Hiiragi, Vernadeth B. Alarcon, Toshihiko Fujimori, Sophie Louvet-Vallée, Marek Maleszewski, Yusuke Marikawa, Bernard Maro and Davor Solter

Mouse chimaeras developed from electrofused blastocysts: new evidence for developmental plasticity of the inner cell mass
Andrzej K. Tarkowski, Kamila Jagiello, Renata Czolowska and Waclaw Ozdzenski

Identical triplets and twins developed from isolated blastomeres of 8- and 16-cell mouse embryos supported with tetraploid blastomeres
Andrzej K. Tarkowski, Waclaw Ozdzenski and Renata Czolowska

How many blastomeres of the 4-cell embryo contribute cells to the mouse body?
A K Tarkowski, W Ozdzenski and R Czolowska

Mouse singletons and twins developed from isolated diploid blastomeres supported with tetraploid blastomeres.
A K Tarkowski, W Ozdzenski and R Czolowska

A history of mammalian embryological research.
H Alexandre

Mouse chimaeras revisited: recollections and reflections.
A K Tarkowski