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ABSTRACT  The development of the eye has been a topic of extensive investigation, from the early 
studies on tissue induction to more recent breakthroughs in resolving the mechanism regulating 
progenitor patterning and their gradual and coordinated differentiation into diverse tissue types that 
function together throughout life. Among the ocular tissue types, the retinal pigmented epithelium 
(RPE) is at the forefront of developmental biology and stem cell research. The growing interest in 
this lineage stems from its importance for photoreceptor function as well as from its requirement 
during embryogenesis for the development of the photoreceptors and the choroid. Indeed muta-
tions in RPE genes and epigenetic changes that occur during aging are the cause of monogenic as 
well as multifactorial retinal diseases. Importantly, the RPE is readily generated from stem cells, 
and these stem cell-derived RPE cells are currently being tested in clinical trials for transplantation 
in cases of retinal dystrophies; they also constitute an important model to study developmental 
processes in vitro. This review summarizes recent advances in our understanding of RPE develop-
ment and its requirement for the development of photoreceptors and choroidal vasculature. We 
discuss the contribution of basic findings to therapeutic applications and the future challenges in 
uncovering developmental processes and mimicking them ex vivo to further advance research and 
therapy of retinal disorders. 
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Introduction

Photoreceptors (PRs) and pigment cells form a functional unit 
which is found in various types of eyes in the different animal phyla 
(Arendt, 2003, Charlton-Perkins and Cook, 2010, Gehring, 2014). 
In vertebrates, the ocular pigmented cells form a single layer of 
polarized epithelium termed retinal pigmented epithelium (RPE), 
which is located between the PRs and choroidal vasculature. The 
RPE has multiple and complex functions required for PR develop-
ment, homeostasis and physiology (Strauss, 2005). 

RPE functions are executed by distinct cellular compartments. 
The apical side of the RPE extends microvilli, which are long and 
thin actin processes that engulf the outer segments of the PRs 
and are required for their daily renewal by phagocytosis (Bonilha, 
2014; reviewed in Kevany and Palczewski, 2010). The basal side 
the RPE is attached to the anterior layer of Bruch’s membrane, a 
connective tissue that separates the RPE from the choriocapilaris 
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and is an important component of the blood–retina barrier (BRB; 
Bhutto and Lutty, 2012, Rahner et al., 2004). The interaction of 
the RPE with Bruch’s membrane consists of basal infoldings, short 
invaginations which increase the surface area of the RPE (Bonilha, 
2014). The polarized distribution of ion channels and transport-
ers in the RPE further enable it to control the composition of the 
subretinal space and to support survival and function of the PRs 
and other retinal cell types (Lehmann et al., 2014). 

Considering the importance of the RPE to PR survival and activ-
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ity, it is not surprising that RPE dysfunctions are associated with 
various retinal dystrophies, including the common cause of aging-
related blindness in humans—age-related macular degeneration 
(AMD, Jackson et al., 2002; Wright et al., 2010). Stem-cell-based 
therapies for RPE dysfunctions are currently being evaluated in 
clinical trials (Carr et al., 2013, Song and Bharti, 2015). Thus, 
resolving the gene regulatory networks functioning in the course 
of RPE development and regulating its multiple activities is of 
interest for the field of regenerative medicine. In this review, we 
summarize the findings on RPE differentiation and maintenance, 
and the progress—as well as the challenges—in stem cell tech-
nologies aimed at replacing damaged RPE with healthy tissue 
for the purpose of preserving and regenerating retinal function.

Gene regulatory networks involved in establishing the 
progenitor domains of the optic cup

In humans and other vertebrates, the sensory neural retina 
and pigmented lineages of the eye originate during embryonic 
development from an outgrowth of the ventral forebrain termed 
optic vesicle (OV). The oval OV rapidly undergoes morphogenesis 
to become the hemispheric optic cup (OC, Kwan et al., 2012; 
Picker et al., 2009). The dorsal outer layer of each OC will form 
the RPE, the ventral outer layer will give rise to the optic stalk, 
and the inner layer of the OC contains the pseudostratified retinal 
progenitor cells that proliferate and gradually differentiate into 
retinal lineages (Shaham et al., 2012). The borders between in-
ner and outer layers of the OC will give rise to the non-neuronal, 
pigmented epithelia of the ciliary body and iris (Davis-Silberman 
and Ashery-Padan, 2008). 

The OV originates from a group of cells at the anterior neural 
plate that express a combination of transcription factors (TFs) im-
portant for forebrain and eye development (reviewed in Fuhrmann 
et al., 2014; Sinn and Wittbrodt, 2013). These TFs include the 
homeodomain (HD) proteins Six3, Otx2 and Rx, the paired and 
HD protein Pax6, and the LIM-HD domain protein Lhx2. In the 
OV, these TFs play multiple roles. Rx and Lhx2 are required for 
OV morphogenesis and later, together with Pax6, Otx2 and Six3, 
function to maintain ocular fates and proliferation of the early 
neuroepithelial progenitors (Bovolenta et al., 1997; Farhy et al., 
2013; Oron-Karni et al., 2008; Philips et al., 2005; Porter et al., 
1997; Roy et al., 2013; Gueta et al., 2016). At later stages, these 
factors are further involved in the differentiation of specific reti-
nal cell types (Beby and Lamonerie, 2013, de Melo et al., 2016, 
Emerson et al., 2013, Gordon et al., 2013, Koike et al., 2007, 
Muranishi et al., 2011, Samuel et al., 2016). 

In the RPE, Mitf is considered to be the earliest indication of a 
pigmented epithelium fate. Mitf is a basic helix-loop-helix leucine 
zipper protein and a key regulator of pigment cell development 
from both the neural crest and neural epithelium as it transactivates 
crucial genes for pigment biogenesis (e.g. Dct, Tyrp1 and Tyr) 
(Tachibana, 2000, Tachibana et al., 1994). Mutations in Mitf result 
in the generation of neuroretina (NR) instead of RPE, whereas 
ectopic expression of Mitf in the NR prevents neurogenesis and 
triggers expression of genes involved in pigment biogenesis (Hors-
ford et al., 2005, Nguyen and Arnheiter, 2000). Mitf is detected 
in the OV of mouse embryos prior to division of the pigmented 
and neural progenitor domains and by the OC stage, its expres-
sion is restricted to the pigmented lineages (Baumer et al., 2003, 

Nguyen and Arnheiter, 2000). Mitf regulation has therefore been 
extensively investigated to resolve the mechanisms involved in 
early patterning of the OC. Mitf  contains multiple promoters (Bharti 
et al., 2008). The variants expressed in the RPE are Mitf A, J, H 
and D, in contrast to Mitf M, which is predominant in melanocytes 
(Bharti et al., 2008). Studies of mutants in specific Mitf variants 
have revealed a compensatory mechanism among these variants, 
as downregulation of one leads to upregulation of others, as well 
as of another Mitf family member, TFEC (Bharti et al., 2012). 
These intricate regulatory feedback loops among the Mitf vari-
ants probably evolved to ensure robust expression of Mitf, which 
is required for normal differentiation of an essential tissue for PR 
development and function (Bharti et al., 2012, Raviv et al., 2014). 

Based on analyses of mouse mutants, the onset of Mitf ex-
pression is regulated by TFs expressed in the OV. Six3 seems to 
inhibit Mitf, possibly indirectly, through inhibition of Wnt8b (Liu et 
al., 2010), whereas Otx2 was found to directly regulate Mitf as well 
as to transactivate the expression of pigment genes in coopera-
tion with Mitf (Martinez-Morales et al., 2003, Martinez-Morales et 
al., 2004). Similarly, Pax6 together with Pax2 are required for the 
onset of Mitf expression (Baumer et al., 2003). Pax6 also seems 
to regulate TFEC, which is upregulated upon Mitf loss in embryos 
with an intact Pax6 gene but not in double mutants of both Mitf 
and Pax6 (Bharti et al., 2012). Lhx2 is required for the expression 
of both Mitf and Chx10/Vsx2, the initiating factors for RPE and 
retina specification, respectively (Gordon et al., 2013, Yun et al., 
2009). It is not clear whether Lhx2 directly regulates Mitf expres-
sion, as the consequences of Lhx2 loss include upregulation of 
hypothalamic and thalamic eminence genes, which may interfere 
with the acquisition of eye fates (Roy et al., 2013). 

Restriction of Mitf expression to the prospective pigmented 
progenitors occurs in mice during the transition from OV to OC 
and is dependent on exogenous cues emanating from the surface 
ectoderm (SE) and the ocular mesenchyme (reviewed in Fuhrmann, 
2010). Early studies using explants in chick embryos suggested 
that fibroblast growth factors (FGFs) emanating from the SE inhibit 
Mitf expression in the distal OC and thus enable upregulation of 
the NR TF, Vsx2 (Nguyen and Arnheiter, 2000). Vsx2 is important 
for NR progenitor proliferation and for inhibition of Mitf. In fish, 
Vsx2 also regulates the expression of proteins involved in OC 
morphogenesis (Gago-Rodrigues et al., 2015, Green et al., 2003, 
Nguyen and Arnheiter, 2000). As FGF-induced reprogramming of 
the RPE lineage does not occur in Vsx2-null mutant mice, it has 
been suggested that Vsx2 is an essential downstream node in 
the MAPK–FGF pathway responsible for NR fate determination 
(Horsford et al., 2005, Nguyen and Arnheiter, 2000). 

Explant studies in chick embryos expose complex roles for 
TGFb/BMP proteins in patterning and morphogenesis of neural 
plate and the OC. During early neurolation BMP activity in the 
anterior neural plate prevents the acquisition of eye-field identify 
from the prospective telencephalic cells, whereas, at the early 
neural tube stage BMP from the SE promote neural retina identity 
in adjacent OV (Pandit et al., 2015; Huang et al., 2015). Finally, 
TGFb/BMP proteins, together with Wnt ligands emanating from 
the extraocular mesenchyme and SE around the lens are impli-
cated in triggering RPE fate (Carpenter et al., 2015; Fuhrmann, 
2010; Fuhrmann et al., 2000; Muller et al., 2007; Steinfeld et al., 
2013; see below). A recent study using live imaging in zebrafish 
embryos indicated roles for BMPs in regulating the cellular move-
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ments required for OC morphogenesis, in addition to triggering 
RPE-differentiation genes. In this model, BMP controls the flow 
of cells from outside toward the inside of the developing OC, and 
BMP-mediated inhibition of the flow results in ectopic NR in the 
RPE domain (Heermann et al., 2015). Whether cell migration 
contributes to OC morphogenesis and patterning in mammals, 
where proliferation plays a major role in expansion of the retinal 
progenitors, has yet to be determined. 

Wnt signaling is another important pathway for RPE differen-
tiation. Conditional inactivation of b-catenin, the mediator of the 
canonical Wnt pathway in the OV, using Lhx2-Cre (Hagglund et 
al., 2013), or in the presumptive RPE using Tryp1-Cre (Westen-
skow et al., 2009), prevents RPE differentiation and results in the 
formation of NR instead. Using chromatin immunoprecipitation 
and reporter assays, this phenotype is suspected to be a result 
of b-catenin’s direct regulation of both Otx2 and Mitf (Fujimura et 
al., 2009, Westenskow et al., 2009). The regulation of Mitf by b-
catenin has also been reported in melanocytes, where b-catenin 
functionally interacts with Mitf and is redirected by Mitf to activation 
of Mitf-specific target promoters (Lang et al., 2005, Schepsky et 
al., 2006); as such, this may represent a conserved pathway in 
pigmented cell differentiation. 

In a recent study that explored the role of secreted Wnt ligands 
during mouse eye development, it was established that the auto-
crine secretion of Wnts by RPE cells is not sufficient for normal 
RPE differentiation. In contrast, Wnt ligands originating from the 
SE elicited specification of RPE progenitors near the OC rim. This 
suggestion was based on the observation that inhibition of Wnt 
ligands secretion from the SE reduces RPE cell number and results 
in a saucer-shaped OC (Carpenter et al., 2015). This abnormal OC 
morphology is consistent with the suggestion that RPE stiffness is 
an important driver for cup morphogenesis (Eiraku et al., 2011).

The Wnt ligands seem to affect both BMP and retinoic acid 
(RA) signaling pathways. Tissue ablation and transplantations 
in chick embryos suggest that Wnt ligands emanating from the 
dorsal SE direct dorsal OV cells to develop into RPE through a 
stabilizing effect of BMP signaling. BMPs and Wnts cooperate 
via a GSK3b-dependent pathway at the level of pSmad to ensure 
RPE specification in dorsal OV cells (Steinfeld et al., 2013). Ac-
cordingly, upon loss of Lrp6, a Wnt receptor mediating canonical 
Wnt signaling, expression of both BMP and RA is reduced in the 
dorsal OC of mice (Zhou et al., 2008). Interestingly, RA seems to 
contribute to proliferation of the RPE as well as to affect the mor-
phogenetic movements of the mesenchyme that surrounds the OC 
(Carpenter et al., 2015, Molotkov et al., 2006). Thus, it seems that 
Wnt is required for the generation of sufficient quantities of RPE 
cells through b-catenin and by regulating BMP, as well as for the 
RA-mediated morphogenetic movements of ocular mesenchyme.

Autonomous formation of OV and OC structures can be achieved 
from a 3D culture of mouse and human embryonic stem cells and 
induced pluripotent stem cell (iPSC) aggregates (Eiraku et al., 2011, 
Kuwahara et al., 2015, Meyer et al., 2011, Nakano et al., 2012). 
The isolated OC structures suggest an autonomous program for 
OC morphogenesis in the neural progenitors. Nevertheless, as 
these OC cultures are supplemented with Wnt ligands and RA 
ligands (Eiraku et al., 2011, Kuwahara et al., 2015, Nakano et al., 
2012), it remains likely that in vivo, the SE is an important source 
of ligands which are required for RPE differentiation and normal 
OC morphogenesis. 

Sonic hedgehog (SHH) molecules play critical roles in establish-
ing the bilateral eye fields and in determining the proximal–distal 
axis of the eye primordium (Chiang et al., 1996, Li et al., 1997, 
Macdonald et al., 1995). SHH also influences the expression 
patterns of BMP4 and Otx2 and thus may play a role in RPE 
development (Zhang and Yang, 2001). Recently, two antagonists 
of HH signaling in the OC were identified: Lrp2, a cell-surface 
receptor, mediates endocytic clearance of SHH and antagonizes 
its morphogenetic action (Christ et al., 2015) and Cdon, a cell-
adhesion molecule that interacts with the SHH receptor Patched 
1 (Ptc1) (Cardozo et al., 2014) and seems to antagonize HH by 
trapping the HH protein in the neuroepithelial basal end-foot. Cdon 
and LRP2 play a role in generation of the retina and adjacent 
ciliary body and iris, although their roles in RPE differentiation 
are unknown. Indian hedgehog (IHH), secreted from endothelial 
cells adjacent to the RPE, is required for RPE differentiation. In 
mice mutated in IHH, RPE differentiation is abnormal; the nuclei 
are elongated and deformed, the basal and apical microvilli are 
abrogated and pigmentation is reduced (Dakubo et al., 2008). Also 
the sclera and the retina are  affected in the IHH mutant eyes and 
therefore the specific roles of IHH on RPE differentiation remain 
to be determined.

The Hippo signaling pathway was recently recognized to mediate 
the initial specification of RPE cells in fish embryos (Miesfeld et 
al., 2015). The Hippo kinase signaling cascade regulates cell-fate 
decisions during development by controlling the localization and 
stability of the transcriptional coactivators Yes-associated protein 
1 (Yap) and WW domain containing transcription regulator 1 (Taz) 
(Varelas, 2014). The main nuclear binding partners for Yap and Taz 
are the Tea domain (Tead) TFs. Yap/Taz–Tead activity is necessary 
and sufficient for OV progenitors to adopt RPE identity in zebrafish. 
Yap mutants lack a subset of RPE cells and exhibit coloboma; the 
phenotype is exacerbated when combined with Taz mutant alleles, 
such that when Yap and Taz are both absent, OV progenitor cells 
completely lose their ability to form RPE. Consistent with the fact 
that mutation within the Yap-binding domain of Tead1 causes 
Sveinsson chorioretinal atrophy (SCRA), autosomal dominant loss 
of RPE and choroid, and altered choroid fissure closure (Fossdal 
et al., 2004, Jonasson et al., 2007), loss of function of Yap and 
Taz affects choroid fissure closure as well (Miesfeld et al., 2015). 
Current efforts are being aimed at determining the role of this 
pathway in mammalian RPE and deciphering the mechanisms 
upstream and downstream of the Yap/Taz–Tead activity in RPE 
specification and differentiation.

Growth and differentiation of the retinal pigmented 
epithelium 

Growth and differentiation of the specified RPE occurs gradu-
ally, similar to the pattern of proliferation and differentiation in the 
adjacent NR (Defoe and Levine, 2003). In mice, on embryonic day 
15, there are approximately 14,000 RPE cells and by postnatal 
day 15, the total number of RPE cells reaches 54,000, a fourfold 
increase (Bodenstein and Sidman, 1987). At the molecular level, 
it was shown in rats that the cyclin-dependent kinase inhibitor p27 
(Kip1) is gradually upregulated, starting from the central OC and 
progressing toward the peripheral OC, similar to the differentiation 
wave observed in the adjacent retina (Defoe and Levine, 2003). 
Expression of Kip1 decreases gradually during postnatal stages 
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(Defoe and Levine, 2003). In addition to the increase in cell number 
due to proliferation, the RPE cells grow in size, so that the total 
area of the RPE increases 10-fold (Bodenstein and Sidman, 1987). 

In contrast to the tight coupling of differentiation and cell-cycle 
exit observed in neural differentiation, differentiation is evident 
early on in RPE progenitors, with the accumulation of pigment 
granules (melanosomes). During embryogenesis as well, features 
of apical–basal polarity are evident with the apical localization in 
the developing microvilli of the scaffold protein phospho-ezrin, the 
basolateral distribution of beta-catenin and the basal deposition of 
components of Bruch’s membrane, the basement membrane for 
both RPE and choriocapillary endothelium and an important com-
ponent of the BRB (Bonilha et al., 2006; Hirabayashi et al., 2003; 
Fig. 1). RPE completes its differentiation during postnatal stages, in 
conjunction with choroid maturation and PR outer segment forma-
tion. These late events include the onset of expression of proteins 
involved in recycling and the continuous supply of 11-cis-retinal to 
PRs, growth of the apical microvilli, and establishment of the BRB, 
which is dependent on the formation of adherent tight junctions 
between the cells and on the polar distribution of ion channels 
and transporters that are required for selective transport across 
the barrier (reviewed in Rahner et al., 2004; Rizzolo et al., 2011; 
Lehmann et al., 2014).

Gene regulatory networks in the late stages of retinal 
pigmented epithelium differentiation

The gradual differentiation of RPE cells is mediated by the hier-
archical expression of key TFs (Fig. 2). Pax6, which is important at 
early stages of RPE specification, is also required later on for the 
pigmentation of RPE cells. During this process, Pax6 regulates the 
RPE-specific D-isoform of Mitf (Bharti et al., 2008) and interacts 
in a feed-forward regulatory loop with Mitf proteins to activate the 
pigment-biogenesis genes (Cavodeassi and Bovolenta, 2014, Raviv 
et al., 2014). Around midgestation (Fig. 2B), expression of the TF 
Sox9 is upregulated and probably promotes, based on bovine cell-
based assays, the expression of genes related to the visual cycle 
through a synergistic cooperation with Lhx2 and Otx2 (Masuda et 
al., 2014). Sox9 has been further shown to regulate the expres-
sion of Best1, a Ca-dependent Cl channel, through interaction with 
Mitf and Otx2 (Esumi et al., 2007, Esumi et al., 2009, Masuda and 
Esumi, 2010). Moreover, conditional mutation of Otx2 in the adult 
mouse RPE provided further support for its requirement for RPE 
physiology (Housset et al., 2013). Together, these findings support 

key roles for Sox9 and Otx2 in regulating genes that are important 
for the diversity of RPE functions in adults.

In addition to TFs, microRNAs (miRNAs) have been shown to 
have an important role in RPE maturation and function (Sunder-
meier and Palczewski, 2016). Ohana et al., (2015) reported that 
RPE cells, in which miRNAs were diminished due to conditional 
mutation in Dicer1 or DgcR8, preserve the expression of RPE TFs 
Sox9 and Otx2, but the cells are smaller than normal, show reduced 
pigmentation and fail to express enzymes required for the recycling 
of retinal (Ohana et al., 2015). miR204 which is essential for normal 
lens and retinal development in fish is highly enriched, together with 
miR211, its closely related paralog in mammals, in the developing 
and differentiated RPE (Conte et al., 2010, Ohana et al., 2015). A 
dominant gain-of-function mutation in miR204 resulted in a severe 
ocular phenotype, supporting an important role for this miRNA 
in multiple eye lineages in humans (Conte et al., 2015). Further 
support for miR204’s role in the RPE was obtained through func-
tional studies in primary human fetal RPE cultures, which revealed 
TGFBR2 and Snail2 to be direct targets of miR204/211, indicating 
the importance of this miRNA family in maintaining cell-adhesion 
properties and in RPE physiology (Wang et al., 2010). Interestingly, 
in the mammalian genome, miR211 and miR204 are encoded by 
two genes which are located within introns of the transient recep-
tor potential genes Trpm1 and Trpm3, and these miRNAs seem to 
be co-regulated with their host genes. Trpm1/miR211 were found 
to be direct transcriptional targets of Mitf in primary cultures of hu-
man fetal RPE and melanocytes (Adijanto et al., 2012, Levy et al., 
2010), while Pax6 was found to regulate Trpm3/miR204 in the lens, 
retina, ciliary body progenitors and iris (Shaham et al., 2013). Thus 
miR211 and miR204 are important mediators of key TFs required 
for differentiation of diverse eye lineages. 

The levels of additional miRNAs are elevated during differentia-
tion of RPE from pluripotent stem cells (Greene et al., 2014, Hu 
et al., 2012, Wang et al., 2014, Yuan et al., 2015), but very little is 
known about their expression profiles or functions in vivo at early 
developmental stages. Recent in-vitro functional studies using 
RPE generated from iPSCs have implicated roles for miR184 in 
promoting RPE differentiation by inhibiting the AKT2/mTOR signaling 
pathway (Jiang et al., 2016). Additional in-vitro studies on miRNAs 
in mature RPE have suggested that the visual cycle genes may 
be regulated by miR137 (Masuda et al., 2014), while catalase, an 
important component of the cell’s antioxidant defense mechanism, 
seems to be regulated by miR30b (Haque et al., 2012). These 
studies support important roles for miRNAs in the RPE. However, 

Fig. 1. Retinal pigmented epithelium (RPE) polarity at postnatal day 5 (P5) is evident with the accumulation of beta-catenin (red) in the baso-
lateral membrane and phosphor-Ezrin (green) in the developing apical microvilli of the RPE. Nuclei are labeled with DAPI (blue). Scale bar, 10 mm.
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considering possible redundancy between miRNAs and other 
compensatory mechanisms, further in-vivo functional studies are 
critical to substantiate the miRNAs’ contributions to RPE develop-
ment and function. 

RPE functions in the development of photoreceptors 
and choroidal vasculature 

The importance of the RPE for retinal development was docu-
mented early on by ablation of the embryonic RPE using targeted 
expression of toxins or misexpression of Fgf9, which resulted in the 
development of NR instead of RPE (Raymond and Jackson, 1995, 
Zhao and Overbeek, 2001). More recently, conditional mutations 
of Dicer1, DGCR8 or DNMT1 in the RPE were shown to result in 
failure to differentiate the PR outer segment (Nasonkin et al., 2013, 
Ohana et al., 2015). These findings demonstrate the importance of 
a functional RPE for PR outer segment formation and implicate the 
requirement of factors from the RPE for PR maturation. 

Further support for the importance of RPE-secreted factors for 
PR differentiation comes from the observation that PRs grown in 
culture require supplementation of conditioned medium from RPE 

culture (Sheedlo et al., 2007). Moreover, it has been shown that 
different concentrations of RPE-conditioned medium drive retinal 
stem cells to different cell fates (Dutt et al., 2010). One candidate 
molecule for the mediation of RPE–PR communication is pig-
mented epithelium-derived factor (PEDF). In vitro, PEDF was able 
to rescue PR development (Jablonski et al., 2000). Nevertheless, 
a determination of the role of PEDF in PR differentiation awaits 
analysis of the retinal phenotype of PEDF mutant mice (Doll et al., 
2003). Another suggested candidate is SHH, as it is able to support 
PR development in vitro (Levine et al., 1997). However, while HH 
signalling is required for normal differentiation of the RPE (Dakubo 
et al., 2008), the HH ligand expressed in this tissue is not known. 
Thus, although there is ample evidence for the importance of RPE-
secreted factors in PR differentiation, identification of these factors 
constitutes an important challenge for future studies. Understanding 
the interaction between the RPE and PRs is critical for the use of 
RPE-based therapies for retinal degenerative pathologies, as it 
can lead to better-directed therapies. In addition, it may provide a 
more indicative tool for the evaluation of RPE function and maturity. 

The impact of RPE on PR differentiation can be also indirect, 
through its role in regulating development of the choroidal vascu-

Fig. 2. Gene regulatory networks in retinal pigmented epithelium (RPE) differentiation. (A) The level of expression of transcription factors and 
miR204/211 family during RPE differentiation, demonstrated by color intensity and respectively to mouse embryonic stages mentioned in B. (B) The 
early and late regulatory networks of the RPE expressed genes and the signaling pathways mediating interaction with adjacent surface ectoderm (SE), 
retina and ocular mesenchyme (OM) from which the choroid vasculature evolves. The transcription factors or miRNAs are in blue, while their targets 
are labeled according to color code mentioned at top based on the biological function. The mature RPE cells and their adjacent tissues are illustrated 
on the lower right panel.
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lature and mediating the selective transport, and thus the microen-
vironment, required for PR differentiation, survival and physiology. 
This vascular system starts to form early on during vertebrate eye 
development (Gage et al., 2005), yet the molecular mechanisms 
regulating its formation are only starting to be uncovered. The RPE 
seems to be essential for choroid blood vessels’ formation, as well 
as maintenance as the chemical destruction or transdifferentiation 
of the RPE resulted in abnormal choroid development (Korte et al., 
1984, Zhao and Overbeek, 2001). Accordingly, co-culture of RPE 
cells with bovine choroidal endothelial cells stimulated the formation 
of the typical mesh network of the choriocapillaris. Interestingly, this 
stimulatory angiogenesis was attenuated by inhibition of VEGF 
and FGF, but was not affected by TGFb neutralization (Sakamoto 
et al., 1995).

Further examination of the molecular signals from the RPE which 
may regulate choroid development and maintenance focused on 
proteins that are secreted to its basal side (Blaauwgeers et al., 1999). 
VEGF polar secretion (Blaauwgeers et al., 1999) was established to 
be essential for choroid development, since mice with conditional mu-
tagenesis of VEGF in the RPE failed to develop choriocapillaris and 
demonstrated a microphthalmic phenotype. This was not observed 
following Hif1a mutagenesis and was thus considered independent 
of the Hif1a pathway (Marneros et al., 2005). In addition to VEGF 
expression by the RPE during choroid development, its expression 
is maintained in the adult, suggesting a continuous role for VEGF 
in maintenance of the choroidal vasculature (Saint-Geniez et al., 
2006, Zhao and Overbeek, 2001). Different isoforms of VEGF are 
generated by alternative exon splicing and contain 0 to 2 heparan 
sulfate sites, which affect their solubility (Tischer et al., 1991). The 
main isoforms expressed by the adult RPE are the soluble isoforms 
VEFG164 and VEFG120 (Saint-Geniez et al., 2006). Examination 
of mice expressing only the insoluble isoform, VEFG188, empha-
sized the need for soluble isoforms since their absence resulted in 
VEGF’s inability to diffuse through Bruch’s membrane and led to 
decreased phosphorylation of the VEGF receptor VEFGR2 in the 
choroid (Saint-Geniez et al., 2009).

FGF was shown to be a more potent angiogenic factor than 
VEGF (Cao et al., 2003). Nevertheless, the role of FGF2 in choroid 
vascularization is currently under debate; FGF2 administration in-
duces choroidal angiogenesis (Soubrane et al., 1994), while Fgf2 
null mice demonstrate normal development of choroid vessels (Ozaki 
et al., 1998). This contradiction may be settled by the ability of other 
FGF proteins, such as FGF5, to compensate for the loss of FGF2. 
This hypothesis was supported when transgenic mice expressing 
a dominant negative FGFR1 demonstrated delayed and decreased 
vascularization of the choroid (Rousseau et al., 2000). However, it 
is still unclear whether FGF affects choroidal angiogenesis directly 
or via other signaling pathways of the RPE. One suggestion for 
such a pathway is the coupling of FGFR2 upon activation with Ca2+ 
L-type channels (Rosenthal et al., 2001), which have been shown 
to promote VEGF secretion from RPE cells (Strauss et al., 2003). 

Generating RPE from pluripotent stem cells for the 
modeling of RPE development and diseases, and for 
cell-based therapy for retinal degeneration 

The 3D OC presents an excellent model to study early stages of 
retina and RPE development, while late stages of retinogenesis, as 
well as complete differentiation, are limited under long-term culture 

conditions. However, there have been great advances in the genera-
tion of differentiated RPE from human pluripotent stem-cells using 
2D cultures, which are currently being tested in clinical settings as 
well as employed to model RPE diseases (extensively reviewed in 
Carr et al., 2013; Wahlin et al., 2014; Zhang et al., 2013). Initially, 
the differentiation protocols for RPE in 2D culture were generated 
by spontaneously differentiating colonies (Buchholz et al., 2009, 
Kawasaki et al., 2002, Klimanskaya et al., 2004). Later, enhanced 
differentiation efficiency was achieved by stepwise protocols that 
took into account knowledge of RPE-differentiation mechanisms 
in vivo, as well as factors that inhibit epithelial to mesenchyme 
transition (EMT) and support cell survival in culture (Buchholz et 
al., 2009; Buchholz et al., 2013; Idelson et al., 2009; Lamba et al., 
2006; Maruotti et al., 2013; Osakada et al., 2009; Zahabi et al., 
2012; Zhu et al., 2013; reviewed in Parvini et al., 2014). Important 
advances were made with the introduction of reporters for RPE 
differentiation, which are triggered by promoters of RPE genes 
such as RPE65, Mitf D, Otx2 and Bestrophin (Leach et al., 2015, 
Zhang et al., 2014). These reporters further enhanced the ability 
to monitor differentiation following manipulation of the cells with 
small molecules, ligands of signaling pathways or expression of 
TFs to enhance effective differentiation, and even direct conversion 
to RPE from fibroblasts (Maruotti et al., 2015, Zhang et al., 2014). 

The successful generation of RPE from pluripotent cells allows 
researchers to model diseases ex vivo by employing patient-derived 
iPSCs. Cellular models for RPE dystrophies have been generated 
for Best disease (Singh et al., 2013), and mutations in frizzled-
related proteins (Li et al., 2014) and Mer tyrosine kinase receptor 
(MERTK; Lukovic et al., 2015). The findings obtained from these 
cellular models have contributed to our understanding of disease 
pathologies in humans and are expected to provide useful tools to 
test therapies (Lukovic et al., 2015).

The progress in generating RPE from stem cells has led to 
recent clinical trials in which these cells are used for therapy of 
AMD (Lu et al., 2016, Song et al., 2015). However, variability in dif-
ferentiation efficiency among donors has to be considered, as well 
as the possibility that growth factors and chemicals that stimulate 
differentiation or expression of stem cell genes are not completely 
inactivated and that unexpected gene activities may appear, at least 
in some of the genetic backgrounds. These concerns have indeed 
had a major impact on the ongoing clinical trial with the detection 
of oncogene expression in RPE generated from iPSCs; a major 
challenge is to determine the level of differentiation of these cells 
in culture and following transplantation (Miyagishima et al., 2016). 
Another major challenge is to determine the capacity of the stem 
cell-derived RPE to functionally integrate the choroid and PRs for 
long-term tissue replacement. Future studies should therefore 
aim to provide a deeper understanding of the crosstalk between 
RPE and PRs and between RPE and choroid during development, 
differentiation and maintenance. Such findings will contribute to 
our understanding of the mechanism of organ formation, provide 
insights into the etiology of congenital retinal diseases and hope-
fully, lead to improved approaches for cell-replacement therapies. 

To conclude, although great advances have been made in 
developing stem cell-based therapies for RPE diseases, there 
remains a need for a more comprehensive basic science under-
standing of the intrinsic program, as well as of the signaling to and 
from the RPE during eye development. Resolving TFs, miRNAs 
and epigenetic components that regulate RPE differentiation and 
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the generation of adjacent lineages is critical for trials aimed at 
reducing heterogeneity between iPSCs, to improve differentiation 
and safety and to ensure proper integration and function within the 
host tissue to assure effective and safe cell-replacement therapies. 
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