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 EGF, epithelium and 

Preface 

Ionic messengers in development and cancer

Why development and cancer? 
It is now well recognized that early development possesses several similarities with cancer evolution, at least on a molecular basis. 

It was two French biologists, Jean Frédéric Lobstein (1777-1835)  and Joseph Récamier (1774-1852), who simultaneously proposed in 
1829 the concept of  the embryonic origin of  tumours. Developmental biology studies the processes that give rise to the formation of  
tissues and organs, involving cell growth, differentiation and morphogenesis. One can consider that tumour initiation and progression 
is the result of  the disruption of  normal cell differentiation due to mutations in gene regulatory networks. Accumulating evidence has 
confirmed the relationship existing between the mechanisms of  development of  the early embryo and tumourigenesis. The similarity 
of  conserved pathways in development and in tumourigenesis such as those involving Wnt, FGF, Notch, BMP, Hedgehog, etc, also 
corroborates the idea that developmental signalling pathways are recapitulated in tumourigenesis. 

What is the role of  ionic messengers in development and cancer? 
The idea that electrical fields can influence the development of  an organism is not new. Electrical fields in cells are mainly due 

to the presence of  channels which are permeable and selective for different ions and transporters. Modulation of  their activities can 
affect cell cycle properties, proliferation and differentiation. The first experiment in this regard was carried out in 1892 by Wilhem 
Roux who subjected animal eggs to electrical fields. However, with the exception of  modifications to the structure of  the cytoplasm, 
he observed no effects on development. Since the beginning of  the 20th Century it has been proposed that electrical fields may influ-
ence the development of  regenerating hydroids. However, the most convincing experiments were performed by Lund (Lund 1921). 
Subsequently, a large body of  investigators focused their work on the study of  the endogenous electrical fields in relation to growth 
and development and to the regeneration of  cells and organs in plants and animals (Burr and Northrop 1935). 

This global approach continued until around 1950 (For more details see Jaffe and Nuccitelli, 1977). However by then, it still remained 
unclear if  electrical fields where a cause or consequence of  differentiation and proliferation. The role of  membrane potential during 
fertilization was first suggested by Cole in 1938 (Cole and Spencer 1938). He observed a correlation between an increase in membrane 
impedance and the fast block to polyspermy. This idea was updated in the 1970’s with more accurate electrophysiological techniques 
(for a review see Jaffe et al., 1977), although recently some authors contest this theory (Dale 2014). 

The first causal role of  membrane potential in development overcoming correlations was observed by Cone in the cell cycle (Cone 
and Tongier 1971). He showed a succession of  depolarisation and hyperpolarisation events during the different phases of  the cell 
cycle. By modification of  the internal ionic concentration, he was able to obtain a reversible block of  mitosis. From this period on, 
an extensive amount of  work demonstrating depolarization in malignant cells was done (for a review, see Yang and Brackenbury 
2013). During the 1970’s, this work continued and was focused on the nature of  ion channels and pumps responsible for membrane 
potential modifications, either in developmental biology, such as meiosis (Moreau et al., 1978) or fertilization (Miyazaki et al., 1972) or 
in tumourigenesis (Cone 1971). 

Electrical fields are important for embryonic patterning, regeneration and tumour development. Membrane potential is a perma-
nent signal which allows communication between cells, tissues and organs and has to be considered to have the same importance as 
biochemical signals. The activity of  ion channels and pumps which maintain the electrical fields can now be dissected and visualized 
with new tools involving fluorescent reporters. For more details on this exciting aspect, see the reviews by M. Levin (Levin 2012; Tseng 
and Levin 2013). 

Over the last few decades, abundant literature concerning the dissection of  the role of  ionic messengers in developmental biology and 
cell proliferation has become available. Although the roles of  K+, Cl-, Na+ and H+ channels or exchangers have been demonstrated 
(for a review see Kunzelmann 2005), a large amount of  research has particularly  focused on the role of  calcium and its causal role 
in development (Moreau and Leclerc 2004; Moreau et al., 1978) and in tumour progression (Stewart et al., 2014; Prevarskaya et al., 
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2014). The divalent cation Ca2+ acts as a second messenger in processes such as fertilization, proliferation, differentiation, contrac-
tion, secretion, exocytosis, gene transcription and long term memory (Berridge et al., 2000). Its specificity is mainly conferred by the 
spatiotemporal control of  its concentration in cells, in order to elicit highly specific and regulated responses. The role of  Ca2+ in de-
velopment goes back to as early as 1937 with Mazia who was interested in cellular activation (Mazia, 1937). Mazia demonstrated that 
calcium is released upon insemination of  sea urchin eggs. He proposed very accurate measurements of  Ca2+ concentrations in this 
process. Barth and Barth in the 1960’s (Barth and Barth, 1959, 1974) demonstrated the action of  ions as inductors of  various types 
of  nerve, pigment cells and neuroglia. 

Several types of  Ca2+ channels have been shown to be involved in cell cycle progression. This is the case of  voltage-gated calcium 
channels, transient receptor potential (TRP) channels, components of  the store-operated calcium entry (SOCE), such as ORAI1 and 
STIM1. Among these channels, the expression of  different members of  the TRP family has been shown to be altered in cancer cells. 
Despite this, we do not yet have a full understanding of  how calcium signaling is perturbed in cancer (Stewart et al., 2014). 

Despite the fact that our understanding, at the molecular level, of  the role of  bioelectric signaling pathways, ion currents, voltage and 
pH gradients in developmental biology and tumor progression is increasing, therapeutic applications of  this knowledge still appears 
to be far away. For the moment, research priorities seem to be on establishing the links between biochemical events, genetic regula-
tion, and network interactions. 

This Special Issue of  The International Journal of  Developmental Biology focuses on the role of  ionic messengers and electric fields in devel-
opmental biology, bringing together reviews and original research articles dealing with gametes, early embryogenesis and patterning. 
The role of  ionic messengers in cancer is presented through a series of  papers which cover effectors controlling calcium homeostasis 
and a new approach to the transcriptomic analysis of  the calcium toolbox. We are grateful to Juan Aréchaga who offered us the op-
portunity to assemble this Special Issue and would like to express our thanks to all the authors who contributed to this Issue. Although 
the articles cover only a part of  the topics concerning the role of  ionic messengers in development and cancer, they do give us an idea 
of  future trends in this exciting field. Finally, we would like to thank all the reviewers for their pertinent evaluation of  the manuscripts.

Marc Moreau and Catherine Leclerc
Toulouse, France, June 2015
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