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ABSTRACT  Ca2+ signaling is a key regulator of B lymphocyte cell fate and defects in this signaling 
pathway have been reported in numerous diseases such as Chronic lymphocytic leukemia (CLL). 
CLL is a B cell clonal disorder characterized by the accumulation of mature monoclonal CD5+ B 
cells. Although CLL could be considered to be a proliferative disease, most circulating CLL B cells 
are arrested in the G0 phase of the cell cycle and present both defects in calcium (Ca2+) homeo-
stasis and signaling. The Ca2+ response to antigen ligation is heterogeneous and related, in part, 
to defects arising from the incapacity to respond to B cell receptor (BCR) engagement (anergy), to 
the expression of T cell kinases (e.g. Zap70), and to the presence of negative feedback regulation 
by phosphatases (e.g. SHP-1).  Anergic CD5+ CLL B cells are characterized by an elevated basal Ca2+ 
level, IgM/CD79 downregulation, a constitutive activation of BCR pathway kinases, and an acti-
vation of the nuclear factor of activated T cells (NF-AT). Based on the Ca2+ response, patients are 
classified into three groups: unresponders, responders with apoptosis, and responders with entry 
in the cell cycle. Moreover, internal and direct interaction between leukemic BCR-HCDR3 epitopes 
at the plasma membrane and interaction between Bcl-2 and the IP3-receptor at the endoplasmic 
reticulum are also suspected to interfere with the intracellular Ca2+ homeostasis in CLL-B cells.  
As a whole, the Ca2+ pathway is emerging to play a key role in malignant CLL-B survival, disease 
progression, and last but not least, in the therapeutic response.
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Introduction

In all cell types including immune cells, calcium (Ca2+), is an 
essential and universal second messenger controlling a wide and 
diverse range of cellular functions such as migration, cell adhesion, 
apoptosis, proliferation, cell cycle, protein kinase signaling, mito-
chondrial and endoplasmic reticulum physiology, protein nucleo-
cytoplasmic trafficking of transcription factors, and many others 
(Berridge et al., 2003, Feske 2007, Berridge 2012). Deregulation 
of this processes associated with defects in calcium signaling have 
been involved in many cancers (Bergmeier et al., 2013, Stewart et 
al., 2014) and in particular in Chronic Lymphocytic Leukemia (CLL) 
(Stevenson et al., 2011, Burger et al., 2013, Chiorazzi et al., 2013). 

CLL is the most common adult B cell malignancy in the Western 
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world and is characterized by the accumulation of mature monoclo-
nal CD5+ B cells characterized by defective apoptosis (Burger et al., 
2013, Chiorazzi et al., 2013, Zhang et al., 2014). CLL B cells are 
flowed into peripheral blood where they accumulate, and for some 
of them migrate to the lymphoid tissues and bone marrow (BM) 
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to proliferate and survive. Although CLL could be considered as a 
proliferative disease, most of circulating CLL B cells are arrested 
in G0 phase the cell cycle. CLL clinical course is heterogeneous 
from indolent to aggressive forms with a poor prognostic outcome 
for some patients. In order to characterize this heterogeneity, many 
attempts have been made to propose biological prognostic markers 
such as immunoglobulin (Ig) heavy chain variable region (IgVH) 
mutation status, cytogenetic abnormalities, cell membrane expres-
sion of CD38 or intracellular expression of the ζ -chain-associated 
protein kinase 70 kDa (ZAP-70).

Transient variations in the cytosolic concentration of calcium ions 
([Ca2+]i) occurring after cell stimulation directly through the B cell 
receptor, chemokine receptors, or indirectly through co-stimulatory 
molecules, transmit information that is crucial to multiple cell-fate 
decisions arising during B-cell ontogeny, including B cell matura-
tion in the bone marrow, activation of mature B cells in response 
to antigen presentation or selection into germinal centers (Niiro 
et al., 2002, Hoek et al., 2006, Feske 2007, Kurosaki et al., 2010, 
Baba et al., 2011, Seda et al., 2014). In some cases, the B cell 
receptor (BCR) signal could be activated independently of antigen 
(Ag) ligation, a process termed tonic signaling that occurs during B 
cell development and selection (Duhren-von Minden et al., 2012). 
In normal B cells, BCR responses and Ca2+ signals vary with signal 
strength and are modulated by co-receptors, with outcome rang-
ing from a low level, Ag independent ‘tonic’ signal essential for 
survival, to strong Ag-mediated signals which drive the cell toward 
activation, differentiation or apoptosis (Fig. 1).

In CLL B cells, antigen stimulation seems to be able also to 
deliver both pro-survival and pro-apoptotic signals (Efremov et al., 

2007, Stevenson et al., 2011, Chiorazzi et al., 2013).
The balance between BCR induced ‘positive’ signals leading 

to proliferation/survival, ‘negative’ signaling in favor of cell death 
and BCR unresponsiveness such as in anergy will determine the 
B cell fate. 

Changes in cytosolic Ca2+ concentration are driven by a balance 
of active and passive Ca2+ fluxes driving Ca2+ respectively against 
or in the sense of its electrochemical gradient, both of which are 
subject to the influence of multiple receptors and environmental 
sensing pathways (Engelke et al., 2007). 

As in many other cases, it is quite difficult to distinguish between 
causes and consequences for disturbances of Ca2+ signaling in B 
cell fate decision and CLL. However we will try to decipher in this 
review the nature of Ca2+ signaling deregulation and their conse-
quences on B cell fate in CLL.

Antigen dependent BCR signaling in normal mature 
B-cells

The physiology and cell fate of B cells is intimately connected 
with the function of their BCR. In normal B cells, binding of external 
Ags to the variable (V) region of the Ig present at the cell surface 
mediates the formation a BCR complex with the two co-activators 
CD79a/Iga and CD79/Ig. Next, the BCR complex translocates to the 
lipid raft in order to initiate the signaling cascade from the BCR to the 
nucleus leading to proliferation, survival, differentiation, anergy or 
apoptosis (Fig. 2). Within the lipid rafts, the protein tyrosine kinase 
(PTK) Syk and the SRC-family PTK Lyn allow the phosphorylation 
of tyrosines present in the immunoreceptor tyrosine-based activa-
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Fig. 1. Calcium intracellular concentration rules B Cell fate. Shape and intensity 
of calcium transients are decisive for B-cell fate decision: Ca2+ signal ranges from a 
low amplitude-, oscillating pattern to a high amplitude-,sustained profile of transients 
leading to either survival, anergy, migration, differentiation, proliferation or apoptosis.

tion motifs (ITAMs) of the CD79 chains (pathway 1) and 
of the CD19 molecules (pathway 2).

In the first pathway, CD79 activation by Syk and Lyn 
leads to the rapid recruitment of the adaptor molecule B 
cell linker (BLNK). Phosphorylated BLNK binds then to 
the Bruton’s tyrosine kinase (Btk) and the phospholipase 
Cg2 (PLCg2) kinase through SRC homology 2 (SH2) 
domains. Activated PLCg2 hydrolyzes phosphatidylino-
sitol-4,5-bisphosphate (PIP2) leading to inositol-1,4,5,-
triphosphate (InsP3) and diacylglycerol (DAG) production 
(Niiro et al., 2002, Engelke et al., 2007, Kurosaki et al., 
2010, Baba et al., 2011, Baba et al., 2014). 

In the second pathway and downstream BCR en-
gagement is the phosphorylation of CD19 by Lyn and 
its association with the Syk-activated adaptator BCAP 
(B cell adaptor molecule for PI3 K) allowing the activa-
tion of the p110 isoform of PI3K. Next, P13K induces 
the local phosphorylation of phosphatidylinositol-4,5-
bisphosphate (PtdIns(3,4,5)P2; PIP2) to produce and 
accumulate phosphatidylinositol-3,4,5-trisphosphate 
(PtdIns(3,4,5)P3; PIP3) (Baba et al., 2014). PIP3 transmits 
signals downstream the BCR and in parallel the PI3K 
pathway positively regulates BCR-elicited Ca2+ flux 
(Okada et al., 2000, Okkenhaug et al., 2003). Pathways 
1 and 2 are interconnected: through its interaction with 
Btk, promoting membrane targeting of the kinase, PIP3 
positively regulates PLCg2 activation and BCR-mediated 
Ca2+ mobilization (Scharenberg et al., 1998). 

InsP3 binds therefore to its specific InsP3 receptor 
(InsP3R) located on the endoplasmic reticulum (ER) 
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membrane. Opening of this InsP3-gated Ca2+ channel leads to 
the release of ER Ca2+ stores supporting a transient increase 
in cytosolic Ca2+. Sufficient decrease in ER Ca2+ concentration 
triggers the activation of an influx of Ca2+ from the extracellular 

space. As this calcium entry is subsequent to the release of Ca2+ 
from ER stores, this influx was named Store Operated Calcium 
Entry (SOCE) (Putney 2005, Putney 2009). In lymphocytes as in 
other cell types, once InsP3R opening induces sufficient ER Ca2+ 
pool depletion, the reduced ER Ca2+ concentration is sensed by 
the pool of stromal interaction molecule (STIM1) located in the ER 
membrane via their EF-Hand domains (Putney 2009, Soboloff et al., 
2012, Prakriya 2013). STIM1 molecules undergo Ca2+-dependent 
conformational changes and oligomerization to form punctae close 
to the plasma membrane. This allows direct interaction of STIM1 
with plasma membrane Ca2+-release activated Ca2+ (CRAC) chan-
nels, encoded by multimers of ORAI1 (Engelke et al., 2007, Feske 
2007, Feske 2010, Feske 2011). Genetic deletion of the Orai1 or 
Stim1 genes results in almost completely abolished SOCE signal, 

defective, proliferative response and reduced IL-10 production in B 
cells (Baba et al., 2008, Oh-Hora et al., 2008, Picard et al., 2009, 
Matsumoto et al., 2011, Fuchs et al., 2012, Shaw et al., 2012, Baba 
et al., 2014) (Baba et al., 2009, Matsumoto et al., 2011, Feske et 
al., 2012, Baba et al., 2014). However, given the great importance 
of Ca2+ dependent signaling cascades and transcription factors ac-
tivation in B cells, it is quite surprising that no significant defects in 
B cell development are observed in SOCE deficient B cells in mice 
and human patients lacking ORAI1 or STIM1 (Feske 2007, Feske 
2011, Shaw et al., 2012, Baba et al., 2014). We can hypothesize 
that only small increases in [Ca2+]i are sufficient for efficiency of 
signal transduction or that other Ca2+ influx pathways mediate Ca2+ 
signals of first importance for B cells cell fate and development.

Finally, increase in intracellular Ca2+ and DAG accumulation 
lead to the activation of protein kinase C (PKC) that are involved 
in the activation of mitogen-activated protein kinases (MAPKs), 
such as the extracellular signal-regulated kinase (ERK), c-JUN 
NH2-terminal kinase (JNK) and p38 MAPK. Elevation of [Ca2+]i 
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Fig. 2. The B-cell receptor (BCR) signaling pathway in normal B-cells induces apotosis, proliferation, migration or survival. Antigen (Ag) binding 
to surface immunoglobulins (sIg) triggers BCR (B-Cell Receptor) activation by inducing its translocation to lipid rafts, where the co-stimulating immu-
noglobulins heterodimere (CD79a/b) is phosphorylated by Syk and Lyn kinases. Next, the recruitment of the B-Cell Linker (BLNK) with Phospholipase 
Cg2 (PLC g2) and its co-activator Bruton’s tyrosin kinase (Btk) induces Phosphatidylinositol-4,5-diphosphate (PIP2) cleavage into diacyglycerol (DAG) and 
inositol-1,4,5,-triphosphate (InsP3). In parallele, phosphorylation of CD19 by Lyn and B Cell Adaptator molecule for phosphoinositide 3-Kinase (PI3K)
(BCAP) by Syk allows the activation of PI3K that positively regulates PIP2. InsP3-induced activation of InsP3 Receptors (Insp3R) allows the release of 
calcium (Ca2+) from the endoplasmic reticulum (ER) and triggers Stromal Interaction Molecule 1 (STIM1) oligomerization. This leads to the activation 
of Ca2+ Release-activated channels (CRAC) encoded by ORAI1 multimers, responsible for Store Operated Ca2+ Entry (SOCE). The increase in the cyto-
plasmic Ca2+ concentration activates Calmoduline (CaM) and Calcineurine, which triggers the nuclear translocation of Nuclear Factor of Activated T-cells 
(NFAT). Ca2+ along with DAG production activates Protein Kinase C (PKC). Downstream signaling of PKC initiates Extracellular Signal-Regulated Kinase 
(ERK), c-Jun N-terminal Kinase (JNK) and p38 activation, and the nuclear translocation of the transcription factor Nuclear Factor-kB (NF-kB) by inhibiting 
its inhibitor, IKK. CD5, CD22, CD32 or CD45 coreceptors participate to a negative control of BCR signaling by inducing SHP-1 and SHIP phosphatases. 
SERCA: Sarco/endoplasmic reticulum Ca2+ ATPase.
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also promotes nuclear translocation of two important transcription 
factors for B cell fate decisions and development: NF-AT (nuclear 
factor of activated T cells) and NF-KB (nuclear factor κB) (Healy 
et al., 1997, Gallo et al., 2006). 

CLL B cells defects in Ca2+ signalling (activated by 
anti-IgM)

Since the years 90, it is clearly established that a prominent 
feature of CLL B cells is the heterogeneity of proximal BCR signals 
induced by surface IgM crosslinking such as phosphorylation of Syk, 
PLCg2 activation and Ca2+ response (Hivroz et al., 1988, Hivroz 
et al., 1990, Michel et al., 1993, Lankester et al., 1995, Semichon 
et al., 1997, Potter et al., 2006, Song et al., 2010, Le Roy et al., 
2012). As a consequence of this heterogeneity, BCR engagement 
has been reported to induce prolonged survival (Hivroz et al., 1988, 
Bernal et al., 2001) proliferation or either accelerated apoptosis 
of CLL B cells (Zupo et al., 1996, Zupo et al., 2000). Since these 
mechanisms are clearly linked to Ca2+ signaling, variability in Ca2+ 
responses may conduct to heterogeneity in B cell fate and subse-
quently to diversity in CLL ontogenesis and progression.

Numerous people working on CLL put tremendous efforts to 
decipher this heterogeneity and to link the different observed pat-
terns in BCR induced Ca2+ signals with B CLL cell fate. In a study 
from Hivroz et al., three patterns of response to BCR crosslinking 
are distinguished: One third of the CLL cells proliferate and mo-
bilize Ca2+ upon BCR activation behaving like resting B cells; in 
another one third of the cases, antigen stimulation leads to Ca2+ 
mobilization without cell proliferation and in the last third neither 
Ca2+ mobilization and Insp3 production, nor cell proliferation were 
observed (Hivroz et al., 1988, Hivroz et al., 1990).

Non responding (anergy) versus responding CLL B cells

Even if CLL B cells are characterized by a low level of surface 
immunoglobulin (sIg) expression, B cells from at least 70 % of 
CLL patients respond to in- vitro cross-linking of sIg with effective 
activation of signaling pathways. In these cells, BCR stimulation 
leads to a robust [Ca2+]i increase, whereas B cells are unresponsive 
to such BCR cross-linking stimulation in the remaining cases. B 
cells from BCR non-responding CLL patients display constitutively 
phosphorylated extracellular signal-regulated kinase (ERK)1/2, 
constitutive phosphorylation of MEK1/2 (Mitogen activated Kinase 
Kinase 1/2) and an increase in nuclear factor of activated T cells 
(NF-AT) NF-AT2/NF-ATc1 translocation to the nucleus associated 
to a greater resistance to spontaneous apoptosis similar to anergic 
B cells (Petlickovski et al., 2005, Kurosaki et al., 2010, Packham 
et al., 2014). 

Anergy is one of the mechanisms adopted by the immune sys-
tem to silence auto-reactive B cells upon low-affinity recognition 
of self Ag subsequent to BCR desensitization induced by chronic 
Ag binding (Gauld et al., 2006, Cambier et al., 2007, Muzio et al., 
2008, Kurosaki et al., 2010, Packham et al., 2014). BCR-mediated 
signaling is deregulated in anergic B cells and these cells also 
exhibit an elevated basal [Ca2+]I, by approximately 50-120 nM, 
but no further increase in [Ca2+]i upon BCR stimulation (Cooke et 
al., 1994, Healy et al., 1997, Benschop et al., 2001, Merrell et al., 
2006, Yarkoni et al., 2010, Packham et al., 2014). As an example, 
BCR aggregation failed to evoke a large [Ca2+]i transient in HEL 

(Hen Egg Lysozyme)-specific B cells from MD4 ML5 mice, although 
these cells display a constitutive increase in basal intracellular Ca2+ 

(Healy et al., 1997). In these HEL-anergic B-cells, BCR engagement 
induces low Ca2+ oscillations and activates NF-AT and ERK, but 
does not activate NF-KB or JNK. Chronic signaling by occupied 
BCR receptors may explain the fact that anergic B cells exhibit 
elevated intracellular free Ca2+ and constitutive activation of the Erk 
kinase pathway. Return to normal basal Ca2+ concentration, reduc-
tion of Erk phosphorylation, extension of lifespan, and restoration 
of the ability of BCR cross-linking to induce Ca2+ mobilization can 
be obtained indeed by disengagement of the anergic BCR (Gauld 
et al., 2005, Gauld et al., 2006).

Comparing human CLL unresponsive B cells’ phenotypes 
with anergic B cells (blunted BCR-mediated protein-tyrosine-
phosphorylation, basal phosphorylation of Erk, basal NFAT nuclear 
translocation), human CLL unresponsive B cells may be considered 
as anergic B cells aberrantly expanded and protected from death. 
Their phenotype recapitulates the signaling pattern of anergised 
murine B cells after chronic stimulation by exposure to mono- or 
oligovalent soluble antigens and of naturally occurring anergic B 
cells (Healy et al., 1997, Macian et al., 2002, Niiro et al., 2002, Jun 
et al., 2003, Merrell et al., 2006, Quach et al., 2011). 

Mechanisms involved in the basal increase in Ca2+ concentra-
tion have still to be clarified and deciphering the links between 
constitutive activation of some signaling pathways such as ERK 
and NFAT and the defects in Ca2+ signals may conduct to a better 
understanding of the defects in B CLL cell fate. 

CD5 and SHP-1 as a link between anergy and CLL?

Part of the anergic effect is related to the expression of the cell 
surface molecule CD5 that defines the B1 cell phenotype (Hippen 
et al., 2000). It has been demonstrated that CD5 antagonizes early 
signaling events mediated by the BCR both in murine and human 
B cells (Bikah et al., 1996, Gary-Gouy et al., 2000, Gary-Gouy et 
al., 2002). Ca2+ signals activated by IgM cross-linking are signifi-
cantly decreased in CD5+ B cells along with an inhibition of ERK 
phosphorylation. Upon IgM stimulation, splenic B2 lymphocytes 
proliferate and display normal Ca2+ responses, whereas peritoneal 
B1 cells undergo apoptosis and do not develop Ca2+ transients 
following BCR engagement (Bikah et al., 1996). Moreover, aner-
gic B1 cells from transgenic HEL mice lacking CD5 also display 
enhanced proliferative responses in vitro and elevated intracellular 
Ca2+ levels at rest and after IgM cross-linking (Hippen et al., 2000). 
CD5 expression seems to result from chronic BCR stimulation 
of normal B2 cells and accumulation of CD5+ B cells is the main 
CLL characteristic (Berland et al., 2002). Moreover, it is suggested 
that constitutive activation of NF-AT could be responsible for the 
high expression of CD5 in human CD5+ B-CLL cells and that Ca2+ 
signaling deregulation may be responsible for this. However, even 
if NFAT nuclear translocation is clearly Ca2+ dependent, any data 
have been provided yet to clearly link the constitutive activation of 
this transcription factor, CD5 expression and expansion of CD5+ 
cells with Ca2+ deregulations. Altogether and along with the unre-
sponsiveness of a portion of CLL B cells displaying an anergy-like 
phenotype, these observations lead people to spend attention 
on the role of CD5 in resting and BCR stimulated anergic B cells 
(Hippen et al., 2000, Gary-Gouy et al., 2007).

B-1 cells express a high level of the membrane glycoprotein CD5 
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that is only expressed in a subset of B cells and in T cells. These 
CD5+ B cells (or B1) are a unique subset of B cells that are distin-
guishable from the conventional B or B2 cells in terms of functional 
responses to external stimuli, their phenotype and self-renewal 
properties (Hayakawa et al., 2000, Su et al., 2000). In B1 cells, the 
CD5 molecule is constitutively phosphorylated on its tyrosine (Y) 
429 enhancing the interaction with the phosphatase SHP-1 which 
is responsible of the inhibitory effect on BCR signaling (Sindhava 
et al., 2012). Cytosolic tyrosine phosphatase SHP1 acts a negative 
regulator of BCR signaling through its inactivation of Syk and BLNK 
by dephosphorylation (Yarkoni et al., 2010, Packham et al., 2014). 
In SHP1 knockout mice an elevated number of B1 cell displaying 
impaired BCR-induced Ca2+ mobilization was observed (Pao et al., 
2007). BCR stimulation of B2 cells (CD5- B cells) induces normal 
Ca2+ signaling and the activation of the different kinases pathways 
(MAPKs, JNK, and p38, MAPK) and transcription factors (NF-AT, 
NF-kappa B) (Berland et al., 2002). In contrast, B1 cells display 
constitutive activation of ERK and NF-AT and BCR cross-linking 
fails to activate p38 MAPK and NF-kB. PLCg2 activation is also 
significantly reduced in B1 cells resulting in a decreased of Ca2+ 
signaling (Wong et al., 2002). Moreover, BCR engagement leads 
to proliferation of B2 cells, whereas B-1 cells are blocked in The 
G0 phase of the cell cycle. Considering B1 cells phenotype and 
their functional characteristics, it is largely proposed that B1 cells 
may be a special class of anergic or tolerant B cells and CD5+ B (or 
B1) cells may be considered as the normal precursors of B CLL.

In a portion of CLL B cells, CD5 crosslinking result in apoptosis 
of a portion of B CLL cells and as for other markers, patients can be 
classified in two groups based on their sensitivy to CD5-triggered 
apoptosis (Pers et al., 1998, Pers et al., 2002, Renaudineau et 
al., 2005). A higher expression level of CD38 is observed in CD5 
crosslinking responsive cells associated also with elevated Zap70 
expression. Resistant B cells to CD5 induced apoptosis are also 
unable to modulate spontaneous in vitro apoptosis induced by IgM 
stimulation (Nedellec et al., 2005). In CLL B cells sensitive to CD5 
(and IgM) induced apoptosis, CD5 loss its association with SHP-
1 and is recruited in lipids rafts, along with CD79, sIgM and Syk. 
CD5 and the BCR colocalization in lipid rafts may be necessary 
for the early signaling events leading to apoptosis (Renaudineau 
et al., 2005). Similar pattern of survival and apoptosis responses 
following anti-CD5 stimulation were obtained in the study of Perez-
Chacon and collaborators (Perez-Chacon et al., 2007). Moreover, 
authors showed that in unstimulated and resting CD5 transfected 
B cells, it was observed that CD5+ B cells produce more IL-10 
than CD5- B cells enhancing survival of B cells (Gary-Gouy et al., 
2002, Garaud et al., 2011). 

CD5 may also protect CLL and anergic B cells from apoptosis 
after BCR stimulation by concurrently exerting negative feedback on 
cell death promoting signals such as BCR-induced Ca2+ transients. 
CD5 expression level may set the threshold level for activation of 
survival or pro-apoptotic signals through its action on BCR induced 
signals such as intracellular Ca2+ transient increases. 

Non responding (anergic) versus responding CLL B cells

In responding CLL B cells, BCR stimulation leads to the entry 
into the cell cycle (Lankester et al., 1994, Lankester et al., 1995, 
Lankester et al., 1996). Recently, Le Roy et al., confirmed the ex-
istence of BCR responding and unresponsive CCL-B cells. As for 

previous reports, a higher rate of phospho-Syk and PLCg2 activation 
is observed in responding cells associated with Ca2+ release from 
the ER compared with non-responding cells (Le Roy et al., 2012). 
IgM stimulation systematically increases phospho-Syk in respond-
ing cells. Authors pointed out that NF-AT2 is over-expressed and 
constitutively activated in both responsive and unresponsive CLL 
B cells. Constitutive activation of NF-AT2 seem to be a hallmark of 
unstimulated CLL B cells and may contribute to B CLL cell survival 
(Schuh et al., 1996). However, NFAT2 is preferentially activated 
after BCR stimulation in responsive cells favoring cell survival after 
BCR crosslinking. 

Non-responsiveness is also linked to decreased levels of BCR-
associated PTK activity associated with a decreased expression 
of the PTK Syk. Semichon and collaborators also pointed out in 
their study this defect in SYK tyrosine phosphorylation triggered by 
BCR ligation in B-CLL cells with low Ca2+ responses induced by Ag 
stimulation (Semichon et al., 1997). However similar expression of 
the kinase was observed regardless of CLL B cell responsiveness. 
In early studies from Bismuth group, CLL B cells from patients with 
a defective Ca2+ response also present an altered pattern of protein 
tyrosine phosphorylation after Ag stimulation in comparison with 
normal human B cells and CLL responding B cells (Michel et al., 
1993, Semichon et al., 1997). The defect in PLCg2 phosphorylation 
suggests that the interruption of the phosphoinositide pathway in 
CLL nonresponsive B cells is proximal to the BCR receptor, at a 
level in the signaling cascade between activated surface Ig recep-
tors and protein tyrosine kinases activation. 

As CLL B cells from both non responsive and responsive groups 
showed similar Ca2+ influx and NF-AT2 activation in response to 
the ionophore ionomycin, Le Roy and collaborators suggest that 
Ca2+ influx pathways are not altered in non-responding CLL B cells. 
However, in Semichon’s study, some low responding patients ex-
hibit a decreased in the Ca2+ response to thapsigargin, a SERCA 
pump inhibitor known to release intracellular Ca2+ without inositol 
1,4,5-trisphosphate production and to induce SOCE activation. 
This latter result suggests the existence of a BCR independent 
alteration of SOCE activation pathway in CLL B cells that could 
also be involved in the decreased Ca2+ response observed in B-
CLL cells (Semichon et al., 1997). Unfortunately, this interesting 
hypothesis has not been explored further.

Other factors involved in Ca2+ regulation

Along the past 20 years, researchers tried to correlate this 
heterogeneity in BCR response with different prognostic indica-
tors of disease progression, including CD38, ZAP-70 and VH gene 
mutation status (Zupo et al., 1996, Chen et al., 2002, Lanham et 
al., 2003, Mockridge et al., 2007). Patients with an aggressive form 
of CLL seem to exhibit an intact sIgM transduction pathway (Zupo 
et al., 1996, Zupo et al., 2000). CLL B cell responsiveness to Ag 
stimulation by pro-survival signals is associated with a decreased 
sensitivity to apoptosis and contributes to poor prognosis whereas 
BCR unresponsiveness is clearly restricted to stable CLL cases.

The clinical course of CLL differs significantly between pa-
tients with mutated (M-CLL) and unmutated (U-CLL) Ig variable 
heavy-chain (VH) genes. Patients with unmutated genes have a 
worse prognosis and their CLL B cells show stronger activation 
of proximal BCR signaling pathways, such as Ca2+ signaling, 
whereas activation of this pathways is usually weaker or absent 
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in the mutated cases (Mockridge et al., 2007). The cell surface 
expression of CD38 is also considered to be a prognostic marker 
in CLL. A relatively high level of CD38 surface expression by CLL 
cells has been shown to be a marker of poor prognosis. CLL B 
cell sensitivity to apoptosis induction in response to surface IgM 
(sIgM) cross-linking is usually associated with the expression of 
CD38 (Zupo et al., 1996, Zupo et al., 2000, Ghia et al., 2003) and 
the lack of mutations in surface IgVH genes (Damle et al., 1999, 
Lanham et al., 2003). Cross linking of BCR in B cells from CLL 
patients with unmutated VH genes, with a high percentage of ZAP-
70-positive cells and/or a high percentage of CD38-positive cells, 
better induces intracellular Ca2+ mobilization and is able to trigger 
apoptosis. In these CLL responding cells, anti-IgM stimulation does 
not induce cell proliferation whereas normal peripheral blood B 
cells, which expressed low to absent CD38, are able to produce 
Ca2+ signals and to proliferate after IgM stimulation. 

It has been demonstrated that CLL B cells with unmutated VH 
genes generally express ZAP-70, in contrast to normal B cells or 
most patients with CLL that use mutated IGHV (Chen et al., 2002). 
Recruitment of ZAP-70 to BCR phosphorylated ITAMs can induce 
the activation of PLCg2 and subsequently Ca2+ transients along 
with the Ras/MAPK pathway (Kane et al., 2000). B cells generally 
lack ZAP-70, but a related PTK, called p72Syk, play similar roles in 
BCR signaling pathways. Chen and collaborators nicely demon-
strated that ZAP-70 acts as an adapter protein that enhances BCR 
signaling and notably Ca2+ signaling independently of its tyrosine 

kinase activity or its ability to interact with c-Cbl (Chen et al., 2008)
In a study from our group, heterogeneity of Ca2+ responses 

were also linked to modulation of spontaneous apoptosis in CLL 
B cells stimulated by sIgM cross-linking (Nedellec et al., 2005). 
Absence of Ca2+ response was observed in a subgroup of CLL 
patient’s cells (named I) that do not present modulation of in vitro 
spontaneous apoptosis after BCR stimulation. In contrast, a more 
sustained increase in intracellular Ca2+ was seen in cells from another 
subgroups (referred as IIa) that display a decrease in apoptosis 
and an increase in cell proliferation associated with higher activ-
ity of ERK, relative to p38, in the presence of antigen stimulation. 
Patients classified in this subgroup IIa express more CD38 and 
present unmutated BCR. This subpopulation may correspond to 
CLL B cells where an increase in cell survival has been observed 
after anti-IgM stimulation. In the remaining cells (subgroup IIb), 
more transient Ca2+ signals were observed and associated with 
an increase in apoptosis and a greater activity of p38, relative to 
ERK. Activation of PI3K was constitutive in subgroup IIa, but not 
in subgroup IIb. Expression of Zap70 was restricted to B cells from 
subgroup IIb patients. CLL agressivity seems also to be higher in 
group IIb compare to group IIa. These results reflect once more 
the potential link between Ca2+ signals heterogeneity and B cell 
fate even if we would predict in this latter study that sustained Ca2+ 
signals may be associated with induction or modulation of apoptosis.

Although CLL B cells accumulate and are resistant to cell death 
in vivo, they undergo apoptosis during in vitro culture. However 

Fig. 3. B-cell receptor (BCR) activation by the 
phosphorylation of CD79a/b leads to enhanced 
Ca2+ influx and activation of Erk and Akt. (A) 
Tonic signal is essential for survival and is pro-
moted by intermolecular interaction between 
the HCDR3 of the sIg to the CDR2 of another 
sIg (Dühren von Minden et al., 2012). (B) Chronic 
antigen-dependent BCR activation triggers a 
strong intracellular signal leading to proliferation. 
(C) BCl2 interacts with the InsP3R to repress 
endoplasmic reticulum (ER) Ca2+ release. HCDR3, 
heavy chain complementary-determining region 
3; Ag, antigen; Y, tyrosine; PLC g2, phospholipase 
Cg2; PKC, protein kinase C; PI3K, phosphoinositide 
3-kinase; ERK, extracellular-signal related kinase; 
BAX, Bcl-2 associated X protein; ER, endoplasmic 
reticulum; InsP3R, inositol-1,4,5,-triphosphate 
receptor.

some CLL B cells evade from apoptosis in 
vitro through an enhanced survival response 
after BCR stimulation (Deglesne et al., 
2006, Efremov et al., 2007, Stevenson et 
al., 2011). Induction of anti-apoptotic and 
survival signals after BCR triggering are 
usually associated with prolonged activation 
of the MEK-ERK and PI3K-AKT pathways 
and activation of NF-KB (Ringshausen et al., 
2002, Petlickovski et al., 2005, Longo et al., 
2008). All these studies point to the fact that 
sustained BCR signaling including enhanced 
PLC activity lead to a greater apoptosis 
resistance and that BCR responsiveness 
and consequently Ca2+ signals may set the 
threshold of B CLL cell fate.
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The tonic BCR dependent Ca2+ signal

As we previously mentioned, BCR signaling is clearly involved 
in B CLL cell fate. Ag stimulation is of prime importance for disease 
progression, based on the strong association between the course 
of the disease and deregulations of BCR signaling. However, a 
number of studies brought evidences for an ongoing stimulation 
of CLL cells in vivo, indicated by constitutive activation of signal-
ing kinases such as Syk or ERK and up regulation of associated 
transcription factors in unmanipulated CLL cells (Muzio et al., 2008, 
Gobessi et al., 2009). Evidences seem to support that constitu-
tive signals could be induced by Ag binding or be considered as 
« tonic » and Ag independent (Fig.3 A-B). 

This autonomous or tonic signaling has been recently confirmed 
by forcing the expression of BCRs derived from CLL B cells in a 
murine pre-B cell line (lacking the expression of pre-BCR and 
BCR). As a result, cells with CLL-BCR but not those with control-
BCR display intracellular Ca2+ mobilization without additional BCR 
crosslinking (Duhren-von Minden et al., 2012). According to Duhren-
von Minden et al., CLL-derived BCRs induce Ag-independent cell-
autonomous signaling through the presence of an internal epitope 
present on the heavy-chain complementarity-determining region 
3 (HCDR3) of the BCR. As a consequence, insertion of CLL HC-
DR3s converted a normal human BCR that did not signal into an 
autonomously active receptor. “Strength” of this BCR autonomous 
signal may be relatively weak as suggested by the partial activation 
of SYK in unmanipulated CLL B cells (Carsetti et al., 2009). In this 
study and as also previously observed in other works on CLL and 
anergic B cells, basal [Ca2+]i is elevated in unmanipulated CLL B 
cells. In murine pre-B-cell line, expressing BCRs derived from CLL 
cells, autonomous Ca2+ signaling could only occur after induction 
of SLP65/BLNK expression. In these conditions, enhancement of 
basal [Ca2+]i could not be detected and return to higher levels of 
[Ca2+]i after induction of autonomous Ca2+ transients induced by 
SLP65/BLNK expression can’t obtained from the data provided in 
this study. Responsiveness to BCR crosslinking and the character-
istics of subsequent Ca2+ transients after induction of autonomous 
signals was unfortunately not explored in this study. That could 
be worthwhile to determine if the decrease in BCR-induced Ca2+ 
signaling observed in CLL or anergic B cells could be at least par-
tially explained by HCDR3-internal epitope autonomous signaling.

One of the important questions that still have to be answered is 
the specificity of signaling pathways activated by antigen-dependent 
or independent BCR signaling. Study from Carsetti and collabo-
rators brought some answering elements. Syk phosphorylation 
is observed on tyrosine 352 in the case of antigen-independent 
activation whereas residues 525/526 and 352 are phosphorylated 
after BCR stimulation (Carsetti et al., 2009). Syk phosphorylation 
on residue Y352 only is sufficient to transiently activate key regu-
latory proteins, such as PLCg2, Akt and ERK but cannot sustain 
B-cell proliferation although prolonging survival. In contrast, Syk 
phosphorylated 525/526 and 352 sites induces sustained PLCg2, 
Akt and ERK activation and allows growth-factor independent 
B-cell proliferation.

It is tempting to propose that these BCR dependent signals 
initiated without fixation of an external ligand on this receptor 
(“tonic” BCR signal) may play a role in the survival of B-cells. CLL 
survival would be partially explained by tonic BCR survival signals 
delivers continuously. 

BCL2, Ca2+ and CLL

It has been now firmly established that the Bcl2 protein contrib-
utes through its ability to inhibit apoptosis to cancer progression 
mechanisms and modulation of response to cancer therapeutic 
agents (Akl et al., 2014). Deregulation of Bcl2 expression has been 
link to disease occurrence in Bcl-2–positive lymphoid malignan-
cies such as follicular lymphoma and CLL (Sanchez-Beato et al., 
2003, Buggins et al., 2010, Scarfo et al., 2013). The up-regulation 
of anti-apoptotic Bcl2 family members gives cancer cells a survival 
advantage and is a frequent event in leukemia such as CLL. One 
possibility is that Bcl2 contributes to the development of CLL by 
suppressing proapoptotic Ca2+ signals downstream of constitutively 
active BCR signals (Fig. 3C).

Bcl2 acts at two different intracellular compartments, the mi-
tochondria and the ER. The most described mechanism for Bcl2 
apoptosis block resides in part by the binding to its proapoptotic 
relatives such as Bax (Bcl-2-associated X protein) located in the 
mitochondria inducing a reduction of mitochondrial cytochrome c 
release (Buggins et al., 2010, Akl et al., 2014). Many small molecules 
such as BH3 mimetics that bind to the BH3 binding pocket have 
been developed to disrupt this interaction of BCl2 with anti-apoptotic 
mitochondrial BCL2 family members in order to selectively favor 
apoptotic cell death in cancer cells (Akl et al., 2014). 

Inhibition of apoptosis by Bcl2 is also mediated at the ER level 
through a down regulation of the InsP3R activity, leading to a de-
crease in ER Ca2+ release and subsequently to reduced elevations 
of cytoplasmic Ca2+ promoting proliferation while insufficient to 
trigger apoptosis (Lam et al., 1994, Pinton et al., 2000, Akl et al., 
2014). Bcl2 is supposed to inhibit high-amplitude, pro-apoptotic 
Ca2+ elevation while it promotes cell survival by enhancing Ca2+ 
oscillations in favor of cell survival (Distelhorst et al., 2011). It has 
been established that inhibition of InsP3R activity involves a direct 
physical interaction with Bcl2 via its N-terminal BH4 domain, and 
that disruption of this Bcl2–InsP3R interaction is sufficient to induce 
InsP3R-mediated proapoptotic Ca2+ elevations. These observations 
lead to the potential therapeutic use of targeting the Bcl2–InsP3R 
interaction. TAT-IDPS peptides targeting the BH4 domain of Bcl-2 
reverse Bcl-2’s inhibitory action on InsP3Rs and trigger spontane-
ous pro-apoptotic Ca2+ spikes and mitochondrial Ca2+ overload 
in cancer B cells, including CLL B cells and diffuse large B-cell 
lymphoma (DLBCL) cells (Akl et al., 2014, Greenberg et al., 2014). 

Conclusions and therapeutic perspectives

Numerous evidences argue for a major role of BCR signaling 
in CLL B cell fate and chronic stimulation by antigens of CLL cells 
through the appropriate BCR, lead to signaling cascades play an 
important role in CLL pathogenesis and progression. Activation 
of BCR dependent pathways such as Ca2+ signaling, MEK-ERK 
and PI3K-AKT pathways has been associated with the induction 
of antiapoptotic and prosurvival signals. It is also clearly estab-
lished for years that there is a marked case-to-case heterogeneity 
in BCR responsiveness in CLL, with the malignant cells being 
markedly less responsive. Crosslinking of the surface IgM results 
in a heterogeneous response, at least in terms of proximal BCR 
signaling events, such as PLCg2 activation and Ca2+ response. 
Responsiveness has been correlated with progressive disease 
and linked to markers such as high CD38 and zap70 expression 
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and lack of extensive VH mutation. It has also been suggested 
that unresponsiveness may reflect an anergic state of B CLL cells 
induced by chronic antigen exposure (Table 1).

The dependence of CLL survival and proliferation on BCR 
signaling and more specifically on both PI3K and BTK signaling, 
has raised a new area of basic and therapeutic research interest 
and has conducted to preclinical studies and trials demonstrating 
dramatic efficacy of different SYK, BTK or PI3K kinases inhibitors 
(Hill et al., 2013, Jones et al., 2014). Modulation of BCR dependent 
Ca2+ signaling in B cell has not been proposed yet as a therapeutic 
target in CLL but regarding the number of deregulations observed, 
propositions in that sense will be certainly done in a close future.

Moreover, a number of studies report an increase in basal activity 
of BCR signaling independently of any external Ag in unstimulated 
CLL cells (Table 1). It is recognized now that some, or perhaps 
all, immunoreceptors can signal independently of ligand result-
ing in a tonic BCR signaling in the cell. Constitutive activation of 
signaling pathways and up-regulation of associated transcription 
factors in CLL cells, may contributes to their increased resistance 
for apoptosis and for maintaining B cell survival and proliferation. 
Tonic signals may not drive CLL cells fate but rather allow them 
to survive longer to eventually receive other expansion signals. 
Expansion and survival of CLL cells also depends on interactions 
with non-leukemic cells in lymphoid tissues. Regarding Ca2+ sig-
naling, the main consequence of this tonic signaling seems to be 
an increase in basal [Ca2+]i that might lead to enhanced survival 
without an accompanying proliferation. However mechanisms 
involved in this Ca2+ defect are still unknown and need to be ex-
plored. Targeting these mechanisms may represent an interesting 
therapeutic opportunity. 
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