
 

Ecdysone-mediated programmed cell death in Drosophila 
SHANNON NICOLSON, DONNA DENTON and SHARAD KUMAR*

Centre for Cancer Biology, University of South Australia, Adelaide, Australia

ABSTRACT  During Drosophila development, the steroid hormone ecdysone plays a key role in 
the transition from embryo into larva and then into pupa. It is during larval-pupal metamorphosis 
that extensive programmed cell death occurs to remove large obsolete larval tissues. During this 
transition, ecdysone pulses control the expression of specific transcription factors which drive the 
expression of key genes involved in cell death, thus spatially and temporally controlling programmed 
cell death. Ecdysone also controls cell death in specific larval and adult tissues. This review focuses 
on the current knowledge of ecdysone-mediated cell death in Drosophila. 
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Introduction

Programmed cell death (PCD) is a vital process that functions 
to remove damaged or potentially harmful cells, maintain homeo-
stasis, and to shape and remove obsolete tissues during tissue 
morphogenesis (Fuchs and Steller, 2011). The latter function is 
particularly evident during development of the fruit fly Drosophila 
melanogaster. PCD occurs widely throughout different stages of 
the Drosophila life cycle including embryogenesis, larval develop-
ment, and during larval-pupal metamorphosis where it functions to 
remove larval tissues and cells that are not required for the adult 
fly (Denton et al., 2013a, Xu et al., 2009). The genetic amenability 
and well-characterised involvement of PCD during its development 
has made Drosophila a powerful model organism for deciphering 
the cell death machinery and its regulation.

Steroid hormones play critical roles in regulating developmental 
PCD and morphogenesis across different species. For example, 
sculpting of the tadpole tail by PCD is mediated by thyroid hormone 
(Tata, 1966). Similarly, in mammals glucocorticoids mediate thy-
mocyte apoptosis by controlling the transcription of key prosurvival 
transcription factors (Distelhorst, 2002). In Drosophila, develop-
mentally timed pulses of the steroid hormone 20-hydroxyecdysone 
(ecdysone) initiates processes such as molting and larval-pupal 
metamorphosis (Riddiford et al., 2000, Thummel, 2001). Of these 
processes, ecdysone induces the histolysis of many obsolete 
larval tissues during larval-pupal metamorphosis such as the mid-
gut, salivary gland, anterior and abdominal muscles, and distinct 
subsets of neurons in the nervous system and optic lobe (Choi 
et al., 2006, Fahrbach et al., 2005, Hara et al., 2013, Jiang et al., 
1997, Kumar and Cakouros, 2004, Lee et al., 2002a, Winbush 
and Weeks, 2011, Zirin et al., 2013). Additionally, ecdysone is 
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important for the remodelling of the fat body and nervous system 
(Boulanger and Dura, 2014, Kirilly et al., 2009, Kuo et al., 2005, T. 
Lee et al., 2000, Loncle and Williams, 2012, Rusten et al., 2004, 
Williams and Truman, 2005). In this review, we begin by providing 
a brief overview of the cell death machinery in Drosophila and then 
discuss the role of ecdysone in mediating and regulating PCD.

Cell death machinery in Drosophila

Apoptosis
The majority of cell death in Drosophila is mediated by apoptosis, 

a caspase-dependent cell death pathway that is highly conserved 
among metazoans (Fig. 1)(Kumar, 2007). Caspases are cysteine 
proteases consisting of initiator caspases activated in response 
to apoptotic stimuli, and effector caspases activated by initiator 
caspases that cleave the majority of substrates to cause cell death 
(Kumar, 2007). There are seven caspases in Drosophila (Dronc, 
Dredd, Strica, Drice, Dcp-1, Decay and Damm), of which Dronc, 
Dredd and Strica contain long amino-terminal prodomains that are 
a feature of initiator caspases (Chen et al., 1998, Dorstyn et al., 
1999a,b, Doumanis et al., 2001, Fraser and Evan, 1997, Harvey 
et al., 2001, Song et al., 1997). Of these initiator caspases, Dronc 
is the essential apical death caspase and has a function similar 
to CED-3 in Caenorhabditis elegans and caspase-9 in mammals 
(Chew et al., 2004, Daish et al., 2004, Dorstyn et al., 1999a). Deletion 
or ablation of dronc causes a block in most developmental as well 
as stress-induced cell death (Chew et al., 2004, Daish et al., 2004, 
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Waldhuber et al., 2005, Xu et al., 2005). As is the case for activation 
of CED-3 and caspase-9, activation of Dronc requires its recruit-
ment to the apoptosome complex consisting of Dark, an adaptor 
protein functionally similar to C. elegans CED-4 and mammalian 
Apaf-1 (Yang et al., 1998, Yu et al., 2006). Somewhat surprisingly 
however, cytochrome c is not required for the formation of the Dark 
apoptosome, Dronc activation or apoptosis in Drosophila despite 
the essential role of cytochrome c for apoptosome assembly in 
mammals (Dorstyn et al., 2002, 2004, Dorstyn and Kumar, 2006, 
2008, Kumar, 2007, Yuan et al., 2011).

The most important effector caspase activated by Dronc-
mediated processing in Drosophila is Drice, a functional analogue 
of caspase-3 in mammals (Fraser and Evan, 1997, Kumar, 2007, 
Muro et al., 2006). Dcp-1, another effector caspase which closely 
resembles Drice, plays a redundant role in apoptosis (Xu et al., 
2006). While dcp-1 mutants do not show any significant phenotype, 
drice; dcp-1 double mutants show more profound cell death defects 
than drice mutants alone. Once activated, Drice and Dcp-1, cleave 
many proteins to execute apoptosis (Kumar, 2007). 

The function of the other caspases, Dredd, Strica, Damm and 
Decay in cell death is less well established. Strica has some level 
of redundancy with Dronc during PCD in the ovary and a subset of 
neurons that secrete the neuropeptide Corazanin (vCrz) (Baum et 
al., 2007, Lee et al., 2011). Along with Drice, Decay is responsible 
for high levels of caspase activity present in the larval midgut during 
PCD although its function here is unknown (Denton et al., 2009). 
Dredd, a caspase-8-like caspase, is primarily involved in innate 
immunity, whereas the function of Damm is still unknown (Leulier 
et al., 2000, Stöven et al., 2000, 2003). 

Interestingly, BH3-only proteins that provide an essential link 
between death signals and activation of the caspase cascade in 
mammals are absent in Drosophila. BH3-only proteins mediate their 
function through prosurvival and prodeath Bcl-2 family members 
(Happo et al., 2012). While Drosophila has two Bcl-2-like proteins, 
Buffy and Debcl, neither is essential for cell death or survival 
except in specific contexts (Brachmann et al., 2000, Colussi et 

al., 2000, Quinn et al., 2003, Doumanis et al., 2007, Sevrioukov 
et al., 2007, Wu et al., 2010). In the absence of a BH3-only Bcl-2 
controlled mechanism, the main proapoptotic factors in Drosophila 
are the RHG proteins consisting of Reaper (Rpr), Head involution 
defect (Hid) and Grim (Kornbluth and White, 2005). The levels of 
these genes are regulated by upstream signals such as stress, 
developmental cues or the steroid hormone ecdysone (Jiang et al., 
2000, Lohmann et al., 2002, Zhang et al., 2008). The key function 
of RHG proteins is to bind to the Drosophila inhibitor of apoptosis 
protein (Diap1), an essential protein for keeping caspases from 
being activated in the absence of apoptotic stimuli (Wang et al., 
1999). The binding of RHG proteins initiates the autoubiquitination 
and degradation of Diap1 alleviating the block on caspases to al-
low Dronc and downstream caspase activation (Yoo et al., 2002).

Autophagy
Whilst most PCD in Drosophila is executed by caspase-de-

pendent apoptosis, PCD involving macroautophagy (autophagy) 
also occurs in specific tissues (Denton et al., 2012). Autophagy 
is an evolutionary conserved process through which cytoplasmic 
contents such as long-lived and damaged proteins, and organelles 
are degraded and recycled by the cell (He and Klionsky, 2009, 
Meléndez and Neufeld, 2008). Autophagy is primarily a cell survival 
mechanism induced in response to stress conditions to provide 
products for biosynthesis and energy (Lum et al., 2005). However, 
autophagy also contributes to cell death in special circumstances 
as evident during PCD of the larval salivary glands and midgut 
in Drosophila (Berry and Baehrecke, 2007, Denton et al., 2009, 
2012). How autophagy causes the death of these tissues remains 
an unanswered question.

Autophagy is a multistep process that is regulated by distinct 
Autophagy-related (Atg) proteins (Chang and Neufeld, 2010, He 
and Klionsky, 2009). Autophagy is induced through activation of 
an Atg1 kinase complex triggering the formation of an isolation 
membrane which expands to enclose the cytoplasmic contents in 
a double-membrane vesicle called the autophagosome (Kabeya et 
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Fig. 1. The core cell death machinery in C. 
elegans, Drosophila and mammals. In C. el-
egans, CED-9 (Bcl2-like) prevents the activation 
of CED-3 (caspase-9 like) by directly binding to 
CED-4 (Apaf-1 like). Upon cell death induction, 
EGL-1 sequesters CED-9 permitting the release 
of CED-4 to activate CED-3 and thus execution 
of apoptosis. In Drosophila in the absence of 
apoptotic stimuli, the Drosophila inhibitor of 
apoptosis protein, Diap1, prevents the activation 
of the caspases Dronc (caspase-9 like) and Drice 
(caspase-3 like). Upregulation of the inhibitor of 
apoptosis protein (IAP) antagonists RHG causes 
the autoubiquitination and degradation of Diap1 
thereby facilitating activation of Dronc by Dark 
(Apaf-1 like) and downstream effector caspases 
Drice and Dcp-1. Upon apoptotic signalling in 
mammals, the BH3-only proteins are activated 
to cause cytochrome c release from the mito-
chondria, a process inhibited by Bcl-2 proteins in 
the absence of stimuli. Apoptosome formation is 

facilitated by binding of cytochrome c to Apaf-1 to activate caspase-9. Caspase-9 in turn activates caspase-3 to execute apoptosis. Alternatively, in the 
extrinsic pathway of apoptosis, effector caspases may be activated through activation of caspase-8 by death receptors of the tumour necrosis factor 
(TNF) family, which specifically requires its adaptor FADD for caspase-8 recruitment.
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al., 2005, Kamada et al., 2000, Kawamata et al., 2008). Formation 
of the isolation membrane requires the class III phosphatidylinositol 
3-kinase (PI3K) complex to generate phosphatidylinositol (3)-phos-
phate (PtdIns(3)P) thereby recruiting other proteins involved in the 
autophagy pathway (Kametaka et al., 1998, Obara and Ohsumi, 
2008). During elongation and expansion of the autophagosomal 
membrane, two conserved ubiquitin-like conjugation systems are 
active, Atg12 and Atg8 (Geng and Klionsky, 2008). Atg12 is activated 
by Atg7, an E1-like enzyme, and is subsequently conjugated to 
Atg5 through the action of the E2-like enzyme Atg10. Atg12-Atg5 
forms a complex with Atg16 through Atg5, and this Atg12-Atg5-
Atg16 complex homodimerises through Atg16 and localises to the 
isolation membrane. Atg8 is also activated by Atg7 but requires 
initial cleavage by the cysteine protease Atg4 at its C terminus for 
this to occur. Atg8 is subsequently conjugated to phosphatidyl-
ethanolamine (PE) by the E2-like enzyme Atg3.

Ecdysone-regulated PCD
At the completion of embryogenesis, the developing embryos 

hatch as first instar larvae and undergo two molting events to 
become third instar larvae. During the middle of the third instar 
larval stage, low-titre pulses of ecdysone trigger a switch in the 
mechanism of caspase activation from apoptosome-independent 
to apoptosome-dependent through upregulation of the apopto-
some components dark and dronc as well as drice (Kang and 
Bashirullah, 2014). Towards the end of the third instar larval stage 
a high-titre pulse of ecdysone initiates larval-pupal metamorphosis 
and destruction of the larval midgut, and abdominal and anterior 
muscles (Cakouros et al., 2004b, Fahrbach et al., 2005, Jiang et 
al., 1997, Lee et al., 2002a, Yin and Thummel, 2005, Zirin et al., 
2013). A second pulse of ecdysone approximately 12 hours after 
puparium formation (h APF) signals the transition from prepupal to 
pupal development and initiates PCD of the larval salivary glands 
(Jiang et al., 1997, 2000, Lee et al., 2002b). In addition, ecdysone 
regulates the PCD of the optic lobe and two distinct groups of 
neurons in the ventral central nervous system (Choi et al., 2006, 
Hara et al., 2013, Winbush and Weeks, 2011). Ecdysone-mediated 
PCD is not only restricted to larval-pupal metamorphosis but also 
occurs in the adult fly ovary (Pritchett et al., 2009). Although not 
strictly cell death processes, ecdysone is also needed for larval fat 
body remodelling involving apoptosis and autophagy, and neuronal 
remodelling to remove obsolete axons and dendrites (Kirilly et al., 
2009, Kuo et al., 2005, T. Lee et al., 2000, Loncle and Williams, 
2012, Rusten et al., 2004, Williams and Truman, 2005).

Increased levels of ecdysone activate transcription through 
binding to the heterodimeric nuclear hormone receptor complex 
consisting of ecdysone receptor (EcR) and ultraspiracle (USP) (Hall 
and Thummel, 1998, Koelle et al., 1991, Thomas et al., 1993, Yao 
et al., 1992). The EcR exists as three isoforms, A, B1 and B2 which 
share common DNA and ligand binding domains but have unique 
amino termini (Talbot et al., 1993). These isoforms are expressed 
in different tissues and stages of the Drosophila lifecycle, and are 
required for different ecdysone-induced processes (Talbot et al., 
1993). EcR-A mutants arrest at pupal stages, and display persistent 
salivary glands and abnormal legs (Davis et al., 2005, Talbot et 
al., 1993). Alternatively, loss of EcR-B1 results in developmental 
arrest at the onset of metamorphosis and defects in tanning of 
puparium, the midgut and abdomen, and neuronal pruning (Bender 
et al., 1997, T. Lee et al., 2000, Schubiger et al., 1998). EcR-B2 

has been difficult to study due to the lack of a specific antibody 
and mutant. In terms of regulating transcription, EcR-A has an 
inhibitory function whereas EcR-B1 and EcR-B2 have activation 
functions (Mouillet et al., 2001). 

Salivary glands
Among the various Drosophila tissues that undergo ecdysone-

mediated PCD, the larval salivary gland is the best studied. Both 
autophagy and apoptosis are required for this process as inhibition 
of either pathway alone results in partial salivary gland removal 
whereas combined inhibition of both pathways completely delays 
removal (Berry and Baehrecke, 2007). Larval salivary gland PCD 
is triggered by a high-titre ecdysone pulse 12 h APF (Jiang et al., 
1997, 2000, Lee et al., 2002b). Ecdysone released in this prepupal 
pulse initiates a transcriptional cascade firstly activating the expres-
sion of a set of primary response or ‘early’ genes encoding the 
transcription factors Broad-Complex (BR-C), E74A and E93 which 
are all required for larval salivary gland PCD (Fig. 2)(Baehrecke and 
Thummel, 1995, Burtis et al., 1990, Cakouros et al., 2002, DiBello 
et al., 1991). BR-C, E74A and E93 in turn upregulate secondary 
response or ‘late’ genes including key prodeath genes rpr, hid, 
dark, drice and dronc, and downregulate the death inhibitor diap1 
(Fig. 2)(Cakouros et al., 2002, Daish et al., 2003, Jiang et al., 2000, 
Kilpatrick et al., 2005, C. Y. Lee et al., 2000, Lee et al., 2002b). EcR/
USP also regulates the transcription of rpr and dronc by directly 
binding to regions in their promoters (Fig. 2)(Cakouros et al., 2004a, 
Daish et al., 2003, Jiang et al., 2000). Although autophagy is also 
required for larval salivary gland PCD, of the autophagy genes 
transcriptionally upregulated during this process, Atg1 is the only 
identified Atg gene to be directly regulated by EcR/USP (Fig. 2)
(Denton et al., 2013b, Gorski et al., 2003, Lee et al., 2003, Martin 
et al., 2007). Other secondary response genes have been identified 
in the larval salivary gland such as brwd3, pak, pgs2, med12 and 
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Fig. 2. Ecdysone induces a transcriptional cascade to regulate PCD 
of the larval salivary glands during larval-pupal metamorphosis. A 
prepupal pulse of ecdysone induces larval salivary gland PCD by binding 
to the heterodimeric complex consisting of EcR/USP. This complex in turn 
directly regulates the transcription of genes in the case of dronc, rpr and 
Atg1 by binding to their respective promoters, or indirectly by upregulating 
the transcription factors E74A, E93 and BR-C that in turn regulate transcrip-
tion of cell death genes.
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med24 as they require the function of all three primary response 
genes for their expression during larval salivary gland PCD and 
are needed for the downstream expression of rpr and hid (Ihry 
and Bashirullah, 2014). The function of these genes in ecdysone-
mediated PCD however is yet to be thoroughly investigated. One 
such secondary response gene med24 encodes a component of 
the RNA Pol II mediator complex that is required for salivary gland 
removal and the optimal but not temporal expression of rpr and hid 
(Ihry and Bashirullah, 2014, Wang et al., 2008, Wang et al., 2010). 

In addition to these secondary response genes, many other 
genes required for ecdysone-mediated PCD have been isolated from 
various screens. For example, components of the ribosome (RpS5, 
RpL13A, RpL37, RpLP1), the sorting nexin-like gene SH3PX1, a 
formin-like protein Fhos, a predicted malate dehydrogenase Mdh2 
and the transcription factor Sox14 (Anhezini et al., 2012, Chittaran-
jan et al., 2009, Ritter and Beckstead, 2010, Wang et al., 2010). 
Knockdown of sox14 in salivary gland results in reduced transcripts 
of rpr, dronc and E93 but not Br-C, however it is unknown whether 
Sox14 directly regulates their transcription and what position Sox14 
sits in the ecdysone-mediated transcriptional cascade if it does 
at all (Chittaranjan et al., 2009). Mutants for mdh2 display larval 
salivary glands persisting past the normal developmental timing 
of removal (Ihry and Bashirullah, 2014, Wang et al., 2008, Wang 
et al., 2010). The expression of apoptosis genes upregulated by 
ecdysone during larval salivary gland PCD occurs as normal in 
mdh2 mutant animals indicating that the function of mdh2 is not 
related to that of the ecdysone transcriptional cascade (Wang et 
al., 2010). However, mdh2 mutants display inhibition of caspase 
activity and nuclear lamin breakdown, features of apoptosis, but 
not autophagy. mdh2 encodes a predicted malate dehydrogenase 
in the mitochondria that functions in the citric acid cycle. mdh2 
mutants accumulate citric acid cycle products and have reduced 
ATP levels at the onset of larval salivary gland PCD perhaps 
indicating an energy requirement for ecdysone-mediated PCD of 
larval salivary glands (Wang et al., 2010).

Ecdysone also plays an important role in the temporal and spa-
tial regulation of PCD gene expression. For example, BR-C and 
E93 appear to regulate the temporal expression of dronc whereas 
direct binding of the dronc promoter by EcR/USP is important for 
the spatial expression of this caspase (Cakouros et al., 2004a, 
Daish et al., 2003). Animals which lack the EcR/USP binding ele-
ment in the dronc promoter do not express dronc in the salivary 
gland. Additionally, caspase activation occurs in a distinct pattern 
in salivary glands from the anterior at 12h APF to the posterior 
(Takemoto et al., 2007). However, caspase activation does not 
follow this pattern when salivary glands are exposed to ecdysone 
ex vivo, but occurs anteriorally to posteriorally when ecydsone is 
applied to media at the anterior region of the larval salivary glands. 

The timing of larval salivary gland PCD is regulated by the 
transcriptional downregulation of diap1 by CREB-binding protein 
(CBP), a transcriptional coregulator and histone acetyltransferase, 
as well as rpr and hid by the transcription factor Fork head (Fkh) 
(Cao et al., 2007, Yin et al., 2007). diap1 is highly expressed during 
the early stages of larval development thereby preventing larval 
salivary gland PCD before the prepupal pulse of ecydsone (Yin et 
al., 2007, Yin and Thummel, 2004). CBP is upregulated in response 
to a small pulse of ecdysone released during the mid-third instar 
transition and causes transcriptional downregulation of diap1 (Yin 
et al., 2007). The level of Diap1 is reduced to a level where it still 

enables the prevention of larval salivary gland PCD, however the 
balance between this prosurvival factor and prodeath genes is 
upset with the subsequent upregulation of rpr and hid with the 
prepupal ecdysone pulse, thus commencing larval salivary gland 
PCD. Fkh is also highly expressed prior to the initiation of meta-
morphosis and prevents the induction of rpr and hid expression 
before the prepupal pulse of ecdysone (Cao et al., 2007, Renault 
et al., 2001). Following this pulse, Fkh is downregulated by BR-C 
thereby allowing hid and rpr expression, and salivary PCD. In addi-
tion, the TATA box-binding protein (TBP) related factor 2 (TRF2) is 
also important for ensuring ecdysone-regulated genes are globally 
induced both to their required level and at the appropriate time for 
salivary gland PCD as well as other ecdysone-regulated processes 
(Bashirullah et al., 2007). 

Midgut
Larval midgut PCD is triggered by the release of ecdysone at 

the end of the third instar larval stage, and is affected in EcR or 
usp mutants along with many other ecdysone-mediated processes 
(Hall and Thummel, 1998, Jiang et al., 1997, Lee et al., 2002a). 
Cell death genes upregulated by ecdysone during this process 
include the IAP antagonists rpr and hid, and the effector caspase 
dronc activated by BR-C and E93 respectively (Daish et al., 2003, 
Jiang et al., 1997, Lee et al., 2002a, Yin and Thummel, 2004).

Despite upregulation of apoptosis genes and other features of 
apoptosis that are observed during larval midgut PCD, removal 
proceeds normally despite mutations in the apoptotic machinery 
(Denton et al., 2009). A high level of Decay and Drice caspase 
activity is observed during larval midgut PCD, but this seems 
dispensible for larval midgut PCD. However, deletion or ablation 
of key components of the autophagy pathway such as Atg1, Atg2 
and Atg18 delays midgut removal (Denton et al., 2009). This delay 
corresponds with reduced autophagy but no change in caspase 
activity indicating autophagy is the primary mechanism of larval 
midgut PCD. Many Atg genes are upregulated immediately prior 
to larval midgut PCD, however how these genes are activated by 
ecdysone signalling and their exact requirements for larval midgut 
PCD remain to be explored (Denton et al., 2009; , Xu et al., 2015). 

Other ecdysone-regulated genes involved in larval midgut PCD 
include sox14 and the phosphatase Ptp52F (Chittaranjan et al., 
2009, Santhanam et al., 2013, 2014). RNAi-mediated knockdown of 
sox14 delays larval midgut PCD (Chittaranjan et al., 2009). Sox14 
has been implicated in larval salivary gland PCD (as described 
above) and neuronal pruning (as discussed below), however its 
role in larval midgut PCD is currently undetermined (Chittaranjan et 
al., 2009, Kirilly et al., 2009, Kirilly et al., 2011). PTP52F regulates 
larval midgut PCD through dephosphorylation of the transitional 
endoplasmic reticulum ATPase, TER94, and deletion or ablation 
of Ptp52F delays midgut PCD (Santhanam et al., 2014). This 
event causes ubiquitin-dependent degradation of many proteins 
including Diap1 to enhance both autophagy and apoptosis. The 
significance of Diap1 downregulation given that midgut PCD oc-
curs in the absence of caspase activity is yet to be determined.

Other tissues

Muscle
The abdominal muscles known as dorsal external oblique 

muscles (DEOMs) undergo PCD during Drosophila metamorphosis 
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with a small subset, the dorsal internal oblique muscles (DIOMs), 
evading this process (Kimura and Truman, 1990, Zirin et al., 2013). 
This subset aids in the formation of the adult musculature but dies 
shortly after fly eclosure (Bate et al., 1991, Broadie and Bate, 
1991). Ecdysone-mediated apoptosis is required for DEOM PCD as 
knockdown of EcR-B1 that is highly expressed in this tissue delays 
degradation and caspase activation (Zirin et al., 2013). Autophagy 
is observed but is not essential for caspase activation or DEOM 
degradation as this occurs normally despite knockdown of key 
components of the autophagy pathway. In contrast, DIOMs which 
also highly express EcR-B1 do not undergo ecdysone-mediated 
apoptosis. How apoptosis is mediated by ecdysone downstream of 
the receptor, and why DEOMs but not DIOMs undergo ecdysone-
mediated apoptosis at this time requires further investigation.

DEOMs begin degrading at 8h APF with the majority of DEOMs 
degraded by 12h APF (Zirin et al., 2013). The timing of DEOM cell 
death is regulated by the nuclear receptors bFTZ-F1 and HR39 
which have opposite expression profiles in both muscle types. 
Knockdown of ftz-f1 or overexpression of Hr39 in muscles results 
in delayed caspase activation and persistence of DEOMs past the 
normal timing of removal. ftz-f1 overexpression causes premature 
degradation but not caspase activity, whereas Hr39 mutants have 
premature caspase activation and DEOM removal. 

Nervous system
Ecdysone-mediated PCD is required to remove specific subsets 

of neurons during Drosophila metamorphosis in the ventral ner-
vous system, peptidergic neurons that secrete the neuropeptide 
Corazonin (Crz)(vCrz) and RP2 motorneurons (Choi et al., 2006, 
Winbush and Weeks, 2011). PCD of vCrz neurons requires both 
EcR-B isoforms but not EcR-A (Choi et al., 2006). EcR-B mutants 
have persisting vCrz neurons past the normal timing of removal 
(6h APF), and expression of either EcR-B1 or EcR-B2 in an EcR-B 
mutant background rescues PCD in the majority of vCrz neurons. 
On the other hand, EcR-A mutants do not display any PCD defects 
consistent with lack of EcR-A expression in these neurons. The 
RP2 neurons are removed between 14-20h APF in response to the 
prepupal ecdysone pulse (Winbush and Weeks, 2011). Isolating 
abdominal portions of the ventral glia where these neurons are 
found before the ecdysone prepupal pulse, and culturing these in 
ecdysone-containing media, results in PCD. In addition, expression 
of a dominant negative EcR-B1 mutant but not an EcR-A mutant 
results in persisting neurons past the normal developmental time 
of removal.

The optic lobe in the adult fly is responsible for sending visual 
information received by the eye to the brain. The developing optic 
lobe undergoes two stages of PCD with the first occurring during 
metamorphosis where the majority of cells are removed in distinct 
clusters by 24h APF using apoptosis (Hara et al., 2013, Togane 
et al., 2012). The time between 48 h APF and eclosion is when 
the second round of cell death occurs removing a small number 
of cells. EcR isoforms -A and -B1 are expressed in a cell-specific 
and temporal manner throughout the developing optic lobe (Hara 
et al., 2013). EcR-B1 but not EcR-A is required for PCD of the optic 
lobe after 24h APF however, PCD of the optic lobe occurs normally 
in EcR-B1 and EcR-A mutants at an earlier time of PCD. This 
indicates that PCD at this stage may be independent of ecdysone. 

Another interesting requirement of ecdysone is for the transdif-
ferentiation of Rhodopsin 5-photoreceptors (Rh5-PRs) into Rh6-

PRs in the larval eye during development of the adult Drosophila 
eyelet (Sprecher and Desplan, 2008). The larval eye is composed 
of four Rh5-PRs and eight Rh6-PRs, the former switching to Rh6 
and the latter removed by apoptosis during the early stages of 
metamorphosis (Sprecher et al., 2007). Deletion or ablation of EcR 
prevents apoptosis of Rh6-PRs, and the binary switch between 
expression of Rh5 to Rh6 is also prevented with expression of 
mutant EcR (Sprecher and Desplan, 2008).

Fat body and neuronal remodelling
Although not strictly a cell death process, ecdysone is required 

for remodelling during Drosophila development in the fat body and 
nervous system. The Drosophila larval fat body is the equivalent 
of the mammalian liver and adipose tissue, functioning to store 
nutrients and generate energy. During metamorphosis, the fat 
body is extensively remodelled dissociating from a single layer of 
cells to become individual cells which are then eliminated during 
early adulthood (Aguila et al., 2007, Nelliot et al., 2006). As well as 
undergoing autophagy in response to starvation, the Drosophila 
fat body undergoes ecdysone-mediated autophagy during the 
transition from larval to pupal development via downregulation of 
the PI3K pathway (Lindmo et al., 2006, Liu et al., 2013, Rusten 
et al., 2004, Scott et al., 2004). This is also accompanied by an 
ecdysone-dependent increase in caspase activity and apoptotic 
gene transcription but not other classical features of apoptosis 
such as nuclear membrane breakdown and chromatin condensa-
tion (Liu et al., 2013). In fact, caspase activity is enhanced in the 
fat body when autophagy is inhibited and vice versa indicating 
the balance between these two activities is important for fat body 
remodelling. In the fat body knockdown of Br-C reduces caspase 
activity but has no effect on autophagy, E74 knockdown inhibits 
autophagy and increases caspase activity, and both are reduced 
upon E93 knockdown (Liu et al., 2014). An important regulator of 
ecdysone-mediated autophagy in the fat body is the RING finger 
protein Deep Orange (Dor) (Lindmo et al., 2006). Dor is required 
not only to indirectly induce the level of ecdysone to a threshold 
so that PI3K signalling is downregulated, but also for the fusion 
between autophagosomes and lysosomes.

Neuronal pruning is an important process for the development 
of the Drosophila adult nervous system that selectively rids a 
neuron of its processes without inducing cell death of the neuron 
itself (Truman, 1990). This occurs in certain classes of the dendritic 
arborisation (da) sensory neurons in the peripheral nervous sys-
tem and mushroom body g neurons in the central nervous system 
(Kirilly et al., 2009, Kuo et al., 2005, Lee et al., 1999, Williams and 
Truman, 2005, Zhu et al., 2003). Class IV (ddaC) neurons undergo 
extensive dendrite pruning and then develop new dendrites that 
give rise to the adult nervous system before eclosion (Kuo et al., 
2005, Satoh et al., 2012, Williams and Truman, 2005). This initially 
involves severing of the proximal dendrite at 6h APF with the sev-
ered dendrites subsequently fragmented at 10-12h APF and the 
remaining debris removed by phagocytosis at 16-18h APF (Kirilly 
et al., 2009). The pruning of mushroom body g neurons, both den-
drites and axons, begins around 4 and 8h APF respectively and 
are completely removed by 18h APF (Lee et al., 1999, Zhu et al., 
2003). The axons are then regrown a little later in development.

These pruning events are initiated by the prepupal ecdysone 
pulse. In ddaC neurons, this activates both EcR and USP to 
transcriptionally upregulate sox14 and headcase (hdc), both of 
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which are ecdysone-responsive genes and required for dendrite 
pruning (Kirilly et al., 2009, Loncle and Williams, 2012). Sox14 in 
turn directly activates mical, a cytoskeletal regulator required for 
dendrite pruning through an unknown mechanism (Beuchle et al., 
2007, Kirilly et al., 2009, Suzuki et al., 2002, Terman et al., 2002). 
Similarly, an unknown function of Hdc is needed for dendrite prun-
ing and appears to be an ecdysone-responsive gene independent 
of the transcriptional role of Sox14 (Loncle and Williams, 2012). g 
neurons in which EcR-B1 is absent do not undergo pruning however 
the mechanism by which EcR-B1 acts and its downstream targets 
for this process are undetermined (T. Lee et al., 2000).

Adult ovary
During development of the adult ovary, PCD occurs periodically 

in the germarium and throughout the mid-stages (Pritchett et al., 
2009). This PCD is dependent on nutrient availability and involves 
ecdysone in mid-stage egg chambers (Pritchett et al., 2009). 
Much of the cell death in Drosophila ovaries is mediated by non-
canonical pathways that do not require RHG proteins (Peterson 
et al., 2007). Interestingly, similar to the larval salivary glands, 
starvation-induced cell death in the ovary is dependent on both 
apoptosis and autophagy (Hou et al., 2008, Nezis et al., 2009). 
Increased levels of ecdysone accompany nutrient deprivation and 
control both cell death and cell survival, via an apparently complex 
interplay involving the ecdysone-induced transcription factors BR-
C, E74 and E75 (Buszczak et al., 1999). The exact mechanism of 
this type of cell death remains unknown. 

Epigenetic regulation of ecdysone-mediated PCD

One of the main questions that remains is how ecdysone medi-
ates the spatio-temporal control of PCD. As summarised below, 
emerging evidence suggests that, at least in part, this control may 
be mediated via epigenetic regulators.

The interaction of the arginine methyltransferase CARMER 
(Coactivator Arg Methyltransferase for EcR/USP) with EcR/USP is 
important for the regulation of apoptosis in response to ecdysone 
(Cakouros et al., 2004b). Expression of CARMER in cells increases 
cell death in response to ecdysone treatment, and it is also important 
for the transcriptional activation of ecdysone-regulated apoptosis 
genes such as the caspases drice, dcp-1 and dronc, the adaptor 
dark and the IAP antagonists rpr and hid. The role of CARMER in 

cell death is specific to ecdysone-induced apoptosis as knockdown 
of carmer in cells does not affect cycloheximide-induced apopto-
sis. The Drosophila lysine ketoglutarate reductase/saccharopine 
dehydrogenase (dLKR/SDH) is an important corepressor of EcR/
USP that acts to repress the function of CARMER to ensure cell 
death genes are transcribed at the appropriate developmental time 
(Cakouros et al., 2008).

Additional regulation of ecdysone-mediated salivary gland PCD, 
comes from a histone-modifying enzyme (Denton et al., 2013b). 
During larval salivary gland PCD, the Drosophila H3K27me3 de-
methylase UTX (dUTX) interacts with EcR/USP to coordinately 
regulate the transcription of key apoptosis and autophagy genes 
by demethylation of H3K27me3, a histone modification associated 
with inactively transcribed chromatin (Kooistra and Helin, 2012). 
The salivary glands of dUTX mutant animals fail to degrade by 
the normal developmental time and display a reduction in both 
caspase activity and autophagy. This corresponds with reduced 
transcription of several apoptosis and autophagy genes, and an 
enrichment of H3K27me3. dUTX is also required for regulating 
the transcription of the primary response gene E93 but not Br-C 
in response to ecdysone. 

Transcriptional activation of sox14 by EcR-B1 in ddaC neurons 
is regulated by the interaction of EcR-B1 and CBP facilitated by 
the chromatin remodelling factor Brahma (Brm) (Kirilly et al., 2011). 
CBP forms a complex with EcR-B1 to transcriptionally activate 
sox14 through the histone acetyltransferase activity of CBP, spe-
cifically by enrichment of H3K27Ac. EcR/CBP complex formation 
is facilitated by Brm as knockdown of brm results in a significant 
decrease in the formation of this complex.

Conclusions

In conclusion, we have summarised the role of ecdysone in 
mediating and regulating cell death in Drosophila (Fig. 3). From the 
discussion presented here it is apparent that the use of Drosophila 
as a model has provided remarkable insights into the mechanisms 
and functions of hormone-regulated PCD. It is interesting to note 
that, in the salivary glands and midgut, where autophagy plays a 
critical role in the removal of larval tissues, ecdysone controls the 
expression of both apoptosis and autophagy genes. It is possible 
that similar regulation exists in other tissues, such as the adult 
ovaries, where starvation-induced cell death is accompanied by 

Fig. 3. Various functions of ecdysone-
mediated PCD in Drosophila. Ecdysone-
mediated PCD is vital for histolysis of the 
larval salivary glands, midgut and abdominal 
muscles. It also functions to regulate the 
death of certain neurons, transdifferentiation 
of larval eye photoreceptors, and remodel-
ling of the larval fat body and nervous system 
through dendrite and axon pruning.
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increased ecdysone levels and autophagy. From emerging data 
it appears that epigenetic modifiers, such as histone methyltrans-
ferases and demethylases, through interaction with EcR, regulate 
both the timing and tissue specificity of cell death. It is likely that 
similar control mechanisms also operate in mammals where co-
ordinate regulation of hormone-induced genes may be necessary 
for specific cellular outcomes.
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