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ABSTRACT  Intricate and precise communication between the blastocyst and the uterus orchestrates 
embryo implantation. However, many questions remain unanswered regarding the molecular com-
plexities of implantation. On-time implantation requires a receptive uterus and a mature blastocyst 
with trophoblast cells capable of adhering to and invading the endometrium. Defects in uterine 
receptivity or embryo/uterine signaling can cause implantation failure or early pregnancy loss, 
whereas deficient trophoblast differentiation can generate placental abnormalities that produce 
adverse pregnancy outcomes. This review will discuss several examples of signaling pathways 
that regulate trophoblast and uterine development during this period. Leukemia inhibitory fac-
tor is involved in uterine priming for implantation. The epidermal growth factor signaling system 
contributes to trophoblast-uterine communication, as well as trophoblast adhesion and invasion. 
Indian hedgehog signaling synchronizes tissue compartments within the uterus, and WNT signal-
ing mediates numerous interactions within the implantation site and developing placenta. The 
autocrine, paracrine and juxtacrine interactions mediated by these signaling pathways contribute 
significantly to the establishment of pregnancy, although there are many other known and yet 
to be discovered factors that synchronize the maternal and embryonic developmental programs.
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Introduction

Successful implantation and placentation in humans and other 
eutherian mammals depend upon complex interactions between 
the embryo and a receptive uterus. Steroid hormones, particularly 
estrogen and progesterone, are well established as having a criti-
cal role. However, an abundance of evidence shows that various 
cytokines and growth factors are crucial for implantation to succeed; 
in part, because they mediate the actions of the steroid hormones 
(Zhang et al., 2013a). 

In this brief review, several key signaling systems will be dis-
cussed that coordinate the distinct developmental programs of the 
endometrium and embryonic trophoblast during the constitution of 
a viable conceptus. The mouse, which is amenable to genetic and 
experimental approaches, has been a useful model for understand-
ing the molecular dialogue between embryo and maternal tissue. 
However, there are important physiological differences between 
murine and human reproductive biology that are beginning to 
surface through the increasing impact of translational studies with 
human tissues and cell lines. Where possible, signaling pathways 
critical to human reproduction will be highlighted. 
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Leukemia inhibitory factor

Leukemia inhibitory factor (LIF), a pleiotropic cytokine, is 
essential in the early stages of pregnancy. LIF is a member of 
the interleukin-6 family that is highly glycosylated and exerts its 
physiological effects by interacting with the LIF receptor (LIFR) 
and gp130 to activate the Jak/STAT downstream pathway (Hein-
rich et al., 1998). The first evidence linking LIF to implantation 
was obtained in experiments with transgenic mice. Blastocyst 
implantation does not occur in LIF gene deficient mice; how-
ever, their embryos are able to implant in non-LIF deficient mice 
(Stewart et al., 1992). Furthermore, delivering exogenous LIF to 
LIF deficient dams enables implantation (Stewart et al., 1992). It 
has also been shown that inhibition of the LIF-dependent STAT 
3 pathway in mice significantly reduces embryo implantation 
(Catalano et al., 2005). 

In humans, evidence suggests that LIF plays a crucial role in 
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implantation and is secreted maximally during the luteal phase. 
LIF mRNA is detected in the human endometrium, increasing 
during the secretory phase (Arici et al., 1995). More specifically, 
LIF and LIFR are maximally expressed during the “window of 
implantation” and correspond with the presence of pinopodes in 
endometrial biopsies (Aghajanova, 2004). Immunohistochemical 
analysis of LIF in 89 biopsies of fertile women reveals its highest 
expression during the mid-luteal phase in the luminal epithelium, 
significantly greater than in glands or stroma (Leach et al., 2012). 
Thus, LIF is positioned for signaling directly to the peri-implantation 
blastocyst. LIF secretion by the glandular endometrium depends 
on progesterone, as treatment with mifepristone, a progesterone 
receptor antagonist, reduces LIF secretion from glandular endo-
metrium (Danielsson et al., 1997). Endometrial LIF transcription 
and biosynthesis is complex and is regulated by various growth 
factors and cytokines, including interleukin-1, tumor necrosis factor 
(TNF), platelet-derived growth factor and epidermal growth factor 
(EGF), while it is inhibited by interferon gamma (Lass et al., 2001). 

LIF plays a critical role in uterine communication to the em-
bryo, as it is secreted from the endometrium and human embryos 
contain LIFR (Charnock-Jones et al., 1994). Earlier in embryonic 
development, LIF is secreted from the ampullary portion of the fal-
lopian tube (Keltz et al., 1996). Furthermore, LIF concentration in 
follicular fluid positively correlates with embryo quality (Arici et al., 
1997). Interestingly, supplementation of serum-free culture medium 
with LIF increases human blastocyst formation, as compared to 
non-supplemented controls (Sargent et al., 1998). These findings 
suggest that LIF could regulate embryonic growth and development 
in preparation for implantation. 

Any aberration in LIF secretion is likely to have an adverse ef-
fect on fertility. In fertile patients, LIF increases two-fold between 
proliferative and secretory phases, whereas it fails to increase in 
infertile women (Hambartsoumian, 1998). Even during the prolif-
erative phase, overall endometrial LIF levels decrease in infertile 
women as compared to fertile women (Wu et al., 2013). It has also 
been suggested that heterozygous mutations of the LIF gene could 
lead to decreased availability or decreased biological activity of 
LIF in the uterus and contribute to infertility in women (Giess et 
al., 1999). Significantly better in vitro fertilization (IVF) outcomes 
are associated with elevated LIF expression in the endometrium 
of infertility patients (Serafini et al., 2009). 

The presence of LIF and LIFR in decidua and placenta implicates 
a role not only in implantation, but also in placentation (Kojima et 
al., 1994, Sharkey et al., 1999). Moreover, LIFR deficient mouse 
embryos display significant placental defects and growth abnor-
malities in other organs (Ware et al., 1995).

LIF is required for expression of the EGF family of growth factors 
during implantation, illustrated by uteri of LIF knockout mice that 
are deficient in the subepithelial expression of EGF-like growth 
factors at implantation sites (Song et al., 2000). Conversely, the 
upregulation of LIF expression by human uterine epithelial cells 
cultured with heparin binding EGF-like growth factor (HBEGF) 
suggests that LIF expression is dependent upon the EGF signaling 
system (Lessey et al., 2002). Studies of human preimplantation 
embryos cultured in growth factors indicate that LIFR expression 
is dependent on HBEGF signaling, and that the HBEGF receptor 
ERBB4 is upregulated by LIF (Kimber et al., 2008). These data 
highlight the complexity of cross talk amongst growth factors during 
implantation and placentation.

Epidermal growth factor (EGF) signaling system

The EGF family of growth factors and their receptors regulate 
a variety of biological processes that include proliferation, dif-
ferentiation and survival. Growth factors in the EGF superfamily 
include EGF, HBEGF, transforming growth factor-alpha (TGFA), 
amphiregulin (AREG), betacellulin (BTC), epiregulin (EREG), epi-
gen and the neuregulins (NRG) (Holbro and Hynes, 2004, Riese 
and Stern, 1998). Recent studies have examined the roles of each 
EGF family member in implantation and placentation.

The EGF-like growth factors activate receptor tyrosine kinases in 
the plasma membrane that include epidermal growth factor receptor 
(EGFR/ERBB1) and related ERBB family proteins (ERBB2, ERBB3, 
ERBB4). Growth factor binding initiates an intrinsic protein-tyrosine 
kinase activity, autophosphorylation of the cytoplasmic domain 
and receptor dimerization to generate a downstream signaling 
cascade (Holbro and Hynes, 2004). The EGF-like growth factors 
are synthesized as membrane bound proteins that signal to their 
receptors on adjacent cells, also called juxtacrine signaling, or 
they are secreted through proteolytic cleavage of their extracel-
lular domain, carried out by metalloproteinases, for autocrine or 
paracrine signaling (Riese and Stern, 1998). 

Mouse implantation
The importance of the EGF signaling system for blastocyst 

implantation is suggested by the EGFR knockout (Miettinen et al., 
1995, Sibilia and Wagner, 1995, Threadgill et al., 1995), which, 
depending on the genetic background of host mice, has a perinatal-
lethal phenotype. However, the picture is less clear from studies of 
embryos with deletion of EGF family growth factors where several 
knockouts produce mice that are viable and fertile, while others 
have roles in early post-implantation embryonic development that 
make interpretation difficult. It remains to be determined whether 
the EGF signaling system has a specific role in the process of 
implantation or if it is more involved in embryonic survival and dif-
ferentiation. Alternative approaches provide evidence to support the 
hypothesis that this complex signaling system directly influences 
the success of blastocyst implantation.

Experiments in mice establish that HBEGF is present in the 
uterus shortly before embryo implantation, providing the earliest 
known signaling between the blastocyst and maternal cells (Lim 
and Dey, 2009). In situ hybridization demonstrates that HBEGF 
is expressed in the luminal epithelium specifically at sites sur-
rounding blastocysts 6-7 hours prior to the attachment reaction 
(Das et al., 1994). HBEGF is also expressed by blastocysts prior 
to implantation (Liu and Armant, 2004), suggesting its role in a 
two-way dialogue. Experimentally induced delayed implantation 
in ovariectomized mice reveals no HBEGF expression at implan-
tation sites; however, HBEGF becomes upregulated in both the 
uterus (Das et al., 1994) and blastocyst (Hamatani et al., 2004) 
with administration of estrogen to activate the blastocyst to implant. 
Its receptors ERBB1 and ERBB4 are concomitantly regulated by 
estrogen along with HBEGF in the blastocyst (Paria et al., 1993, 
Paria et al., 1999). HBEGF signaling between the trophoblast and 
uterine epithelial cells is most likely initiated by embryonic HBEGF 
shedding, as depicted in Fig. 1A.

Crosstalk with other signaling pathways mobilizes HBEGF from 
intracellular stores in the trophectoderm and demonstrates the 
complexity of the maternal-embryo dialogue. Lysophosphatidic 
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acid (LPA) produced in the maternal reproductive tract accelerates 
blastocoel formation at the morula stage and trophoblast differentia-
tion at the early blastocyst stage through downstream intracellular 
Ca2+ signaling (Liu and Armant, 2004, Stachecki and Armant, 1996). 
LPA activates cognate G protein-coupled receptors that signal 
through phospholipase C to generate inositol-1,4,5-trisphosphate 
and diacylglycerol that, in turn, mobilize cytoplasmic free Ca2+ and 
activate protein kinase C (PKC), respectively (Contos et al., 2000). 
Signaling by both cytoplasmic Ca2+ and PKC is known to stimulate 
HBEGF shedding (Dethlefsen et al., 1998, Dong and Wiley, 2000) 
and the subsequent transactivation of ERBB signaling (Umata et 
al., 2001). Immunofluorescence microscopy demonstrates that 
HBEGF is sequestered from the plasma membrane during blas-
tocyst development, but accumulates transiently at the embryo 
surface in response to LPA-induced intracellular Ca2+ release (Liu 
and Armant, 2004). Therefore, uterine LPA secretion could activate 
HBEGF shedding from blastocysts in apposition to the uterine wall, 
signaling its presence to the adjacent uterine epithelium (Fig. 1A).

Several studies support the hypothesis that expression of 
HBEGF in the peri-implantation endometrial epithelium is induced 
by embryo derived HBEGF signaling. HBEGF is expressed in both 
mouse and hamster preimplantation blastocysts (Hamatani et al., 
2004, Liu and Armant, 2004, Wang et al., 2002). Interestingly, when 
growth factor-soaked beads the approximate size of blastocysts are 
transferred into the uteri of pseudopregnant mice only HBEGF and 
insulin-like growth factor-1 (IGF1) provoke discrete implantation-
like responses (Paria et al., 2001). Furthermore, highly localized 
expression of HBEGF occurs in the uterine epithelium adjacent 
to apposition stage blastocysts (Das et al., 1994). These studies 
suggest a positive feed-forward regulation of uterine HBEGF ex-
pression initiated by the blastocyst during the apposition stage of 
implantation. While HBEGF secreted by the embryo is sufficient to 
induce HBEGF expression in the luminal epithelium, other factors 
secreted by embryos (e.g., IGF1) could have equivalent activity and 
perhaps compensate in HBEGF deficient embryos, which are able 
to implant normally when transferred to wild type pseudopregnant 

dams (Xie et al., 2007).
HBEGF protein appears on the surface of the uterine epithe-

lium early on gestation day 5 in mice as the attachment reaction 
commences (Das et al., 1994). The primary target of HBEGF in 
the luminal epithelium is the trophoblast (Fig. 1B). Late on day 4, 
HBEGF signaling in the blastocyst becomes robust as a result 
of ERBB4 trafficking to the trophoblast surface (Wang et al., 
2000). ERBBs 1-3 are already localized at the apical surface as 
the blastocyst forms. However, ERBB4 is the preferred receptor 
for HBEGF in blastocysts (Paria et al., 1999). Thus, ERBB1 and 
ERBB4 both become available on the trophoblast at approximately 
the time when uterine HBEGF first appears. These events posi-
tion HBEGF and its receptors to mediate blastocyst adhesion and 
trophoblast differentiation. 

HBEGF-induced ERBB autophosphorylation advances tropho-
blast adhesive differentiation (Das et al., 1994, Paria et al., 1999, 
Wang et al., 2000). In blastocysts cultured serum-free, HBEGF 
induces trafficking of integrin subunits, including ITGA5 (Fig. 1B), 
into the plasma membrane of trophoblast cells approximately 24 
hours earlier than in control embryos, which promotes their adhe-
sion to fibronectin in the maternal extracellular matrix (Wang et 
al., 2000). In vitro experiments suggest that after apoptosis of the 
apposing luminal epithelial cells, ligation of the integrin ITGA5/
ITGB1 by the exposed basement membrane activates phospholi-
pase Cg (Wang et al., 2007), leading to trafficking of ITGA2B into 
the plasma membrane (Rout et al., 2004), which strengthens cell 
adhesion as trophoblast invasion commences (Fig. 1C). 

Experiments have been reported suggesting that HBEGF 
supports the attachment reaction during implantation in addition 
to its ability to advance hatching and trophoblast differentiation. 
Using engineered cells that express membrane bound HBEGF to 
simulate receptive uterine epithelial cells, it has been demonstrated 
that cell surface HBEGF binds to day 4 mouse blastocysts, but 
not to delayed blastocysts (Raab et al., 1996). HBEGF signaling 
activates Ca2+ influx across the plasma membrane through N-
type voltage-gated Ca2+ channels (Fig. 1B) that stimulates PKC 

Fig. 1. Heparin binding EGF-like growth factor (HBEGF)- 
signaling and cell differentiation during implantation 
in mice. Blastocyst-uterine interactions shown at the top 
of the diagram illustrate the (A) apposition, (B) attachment 
and (C) invasion stages of implantation. The regions within 
the green boxes are expanded below to summarize sig-
naling pathways that orchestrate trophoblast and uterine 
epithelial cell differentiation at each stage, as discussed in 
the text. Arrows depict growth factor secretion or shedding, 
binding to receptors, intracellular trafficking, ion influx, and 
de-repression in the case of TRO and ERBB4. Double lines 
indicate juxtacrine signaling and/or cell-cell adhesion. ECM, 
extracellular matrix; HBEGF, heparin-binding EGF-like growth 
factor; ITGA, integrin alpha subunit; ITGB, integrin beta 
subunit; LPA, lysophosphatidic acid; LPAR, LPA receptor; N, 
N-type voltage-gated Ca2+ channel; PKC, protein kinase C; 
PLC, phospholipase C; TRO, trophinin; X, indicates apoptosis 
induced by nuclear localization of PKCδ.

B CA
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and calmodulin, consequently accelerating trophoblast invasion 
(Wang et al., 2000). It appears that there are complex autocrine, 
paracrine and juxtacrine pathways that integrate HBEGF signaling 
with input from other growth factors, as well as through cell-cell 
interactions between the trophectoderm and uterine epithelium 
during implantation (Fig. 1).

Maternal HBEGF deficiency targeted to the uterus defers the 
window of implantation and compromises pregnancy outcome, thus, 
implicating the importance of two-way communication between the 
embryo and the uterus (Xie et al., 2007). However, another heparin-
binding member of the EGF family, AREG, partially compensates 
for HBEGF loss. Progesterone upregulates AREG throughout the 
uterine luminal epithelium of the mouse early on gestation day 4 
independently of the blastocyst (Das et al., 1995), but it becomes 
restricted to the implantation site by day 5. Studies conducted to 
clarify the mechanism of AREG signaling at the embryonic-maternal 
interface suggest that the presence of fertilized embryos in the 
reproductive tract elevates expression of AREG on day 4 (Lee et 
al., 2006a). Therefore, the presence of embryos in an HBEGF-
deficient uterus could induce partially-compensating production of 
AREG, which can activate only ERBB1 (Riese and Stern, 1998).

Another EGF family member, TGFA, has extensive sequence 
homology to EGF and comparable affinity for ERBB1, its only 
receptor. Immunohistochemical, in situ hybridization, northern blot 
and RT-PCR analyses clearly demonstrate TGFA expression in the 
uterus and embryo (Rappolee et al., 1988, Tamada et al., 1991). 
Additionally, a reduction in the number of implantation sites in rats 
after administration of intraluminal anti-TGFA injections supports the 
involvement of TGFA in implantation (Tamada et al., 1997). Addition 
of TGFA to in vitro culture medium is favorable for preimplantation 
embryo development and trophoblast differentiation (Haimovici and 
Anderson, 1993, Machida et al., 1995). However, this involvement 
is controversial, as TGFA knock out mice have normal implantation 
(Luetteke et al., 1993, Mann et al., 1993). Similarly, AREG and 
EGF are not essential for implantation, indicated by mice deficient 
in AREG and triple knockout mice lacking TGFA, AREG and EGF, 
which are all fertile (Luetteke et al., 1999). These studies support 
the concept of a compensatory response by other EGF family 
members, perhaps HBEGF, during implantation.

Another group of EGF-like growth factors that mediate cell-
cell interactions, the NRGs, are encoded by four distinct genes, 
NRG-1, NRG-2, NRG-3 and NRG-4 (Burden and Yarden, 1997, 
Falls, 2003). There is evidence for 15 splice variants of NRG-1 that 
are grouped into three subtypes (Ben-Baruch and Yarden, 1994, 
Meyer et al., 1997). Of the three subtypes, Type 1 is comprised 
of neu differentiation factor (NDF), heregulin and acetylcholine 
receptor-inducing activity (Ben-Baruch and Yarden, 1994). Type 2 
consists of the glial growth factor (GGF) and type 3 comprises the 
sensory and motor neuron derived factor (SMDF). (Brown et al., 
2004). NDF and its isoforms are expressed in the preimplantation 
mouse uterus (Reese et al., 1998). Mice with delayed implantation 
do not express NDF; however, upon administration of estrogen, 
the expression of NDF returns. Alternately there is evidence that 
SMDF has a similar cellular distribution to NDF and its expres-
sion becomes prominent at the time of implantation (Brown et al., 
2004). However, no significant expression of GGF is observed in 
the peri-implantation uterus. In the blastocyst, both ERBB3 and 
ERBB4 are present on trophoblast cells, suggesting the capacity 
for signaling with NRG family members (Wang et al., 2000). A 

parallel study observed a similar expression pattern of the EGF 
family members BTC and EREG (Das et al., 1997), suggesting that 
optimal expression of NDF, BTC and EREG requires an activated 
blastocyst. Therefore, it remains possible that these EGF family 
members contribute to mouse implantation. 

Human implantation
In contrast to its regulation in mice that have a short estrus cycle, 

HBEGF is regulated independently of the presence of an embryo in 
the stromal and epithelial compartments during the menstrual cycle 
of the human endometrium (Chobotova et al., 2002a, Leach et al., 
1999, Yoo et al., 1997). There is evidence that HBEGF mediates 
maternal-blastocyst signaling and attachment in humans as its does 
in rodents owing to the switch in expression of HBEGF mRNA and 
protein from the subepithelial stroma during early secretory phase 
to glandular and luminal epithelium in the mid-secretory phase 
(Leach et al., 1999). ERBB4 is expressed by the trophoblast cells 
of human peri-implantation blastocysts, suggesting that HBEGF 
present in the luminal epithelium could stimulate the blastocyst 
through paracrine or juxtacrine signaling (Chobotova et al., 2002b). 
HBEGF not only accelerates the development of human embryos 
to the blastocyst stage, but also aids in hatching from the zona 
pellucida (Martin et al., 1998).

Evidence indicates that proliferation in human endometrial 
stromal cells is regulated by both the soluble and transmembrane 
forms of HBEGF, along with other EGF family members, EGF and 
BTC, suggesting key functions for the EGF family of growth factors 
in regeneration and maturation of the human endometrium and 
to prepare the embryo for implantation (Chobotova et al., 2002a). 
However, this induction is under the cooperative effect of TNF. 
Another study shows that the endometrial stromal cells produce 
both the soluble and transmembrane forms of HBEGF to regulate 
TNF and TGFB (Chobotova et al., 2005). This provides a survival 
function that prevents apoptosis of endometrial cells exposed to 
apoptotic factors, which highlights the importance of HBEGF and 
its receptors in the human endometrium.

HBEGF appears to participate in a broader dialogue that in-
cludes other molecules, exemplified by trophinin-bystin signaling. 
Both human trophoblast cells and the uterine epithelium express 
the transmembrane protein trophinin that mediates cell adhesion 
through homophilic binding (Suzuki et al., 1999). Trophinin forms 
a complex with its cytoplasmic partner bystin and ERBB4, which 
inhibits ERBB tyrosine phosphorylation required for invasive tro-
phoblast differentiation (Fig. 1B). However, during the attachment 
reaction between the blastocyst and luminal epithelium, homophilic 
trophinin binding releases bystin, thus derepressing ERBB4, which 
can then become activated by HBEGF to promote trophoblast dif-
ferentiation (Sugihara et al., 2007, Tamura et al., 2011). Meanwhile, 
in the luminal epithelium, homophilic trophinin binding disrupts its 
tethering of protein kinase Cδ to the plasma membrane, freeing 
the latter to enter the nucleus where it induces apoptosis (Tamura 
et al., 2011). Thus, trophinin signaling removes the cellular barrier 
to blastocyst implantation as it licenses activation of trophoblast 
adhesion competence.

Human placentation
Most components of the EGF signaling system are present 

throughout pregnancy. Transcripts from placental tissues obtained 
in all three trimesters demonstrate expression of HBEGF, with the 
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highest abundance in first trimester decidua (Yoo et al., 1997). 
Strong staining for HBEGF is observed in villous and extravillous 
trophoblast cells in both normal placentas and those delivered 
preterm (Leach et al., 1999, Leach et al., 2002). Other EGF family 
members and ERBB receptor tyrosine kinases are expressed in 
placental trophoblast populations (Hofmann et al., 1992, Tanimura 
et al., 2004), indicating that the EGF signaling system is highly 
active during placental development. 

There is evidence to support the hypothesis that HBEGF, and 
possibly other EGF family members, promote trophoblast inva-
sion (Jessmon et al., 2009). The capacity for invasion weakens 
as gestation progresses (Damsky et al., 1994, Librach et al., 
1991), indicating the importance of the EGF signaling system in 
first trimester trophoblast cells (Bass et al., 1994). EGF, TGFA and 
HBEGF can stimulate first trimester trophoblast cells to become 
invasive and differentiate to the extravillous phenotype (Bass et 
al., 1994, Leach et al., 2004). However, the effectiveness of EGF 
diminishes with trophoblast cells obtained from the second or third 
trimester (Bass et al., 1994), suggesting that their loss of invasion 
competence is intrinsic rather than a product of their environment. 
Invading extravillous trophoblast cells are necessary for adequate 
remodeling of the uterine spiral arteries that perfuse the developing 
placenta (Norwitz et al., 2001).

The first 10 weeks of pregnancy are a period of low O2 within 
the conceptus (Burton and Jauniaux, 2004, Burton et al., 1999). 
Intrauterine measurements report low (~2%) O2 concentrations in 
placental tissues compared to the surrounding decidua (Jauniaux 
et al., 2001, Rodesch et al., 1992). This environment favors the 
proliferation of the trophoblast cells, while repressing invasion 
(Genbacev et al., 1996, Genbacev et al., 1997). As a result, tro-
phoblast cells accumulate and occlude the maternal blood vessels, 
which maintains the relatively hypoxic state (Burton and Jauniaux, 
2004). The most distal trophoblast cells contact maternal blood, 
exposing them to higher O2 concentrations, which promotes the 
invasive phenotype. As gestation progresses beyond 10 weeks, 
the spiral arteries are remodeled to an extent that reperfuses and 
oxygenates the placenta by dislodging the occluding trophoblast 
cells. The widespread expression of HBEGF in placental trophoblast 
cells and surrounding decidua (Leach et al., 1999) could facilitate 
invasion and contribute to remodeling of the spiral arteries. It has 
been demonstrated that when the HTR-8/SVneo human first trimes-
ter cytotrophoblast cell line is cultured at 2% O2, HBEGF, but not 
other EGF family members, is upregulated and secreted (Armant 
et al., 2006). However, trophoblast cells in villous explants from 
term placentas do not elevate HBEGF in response to low oxygen 
and their survival is compromised by hypoxia (Imudia et al., 2008). 
Addition of HBEGF to term villous explants cultured at 2% O2 
inhibits apoptosis, demonstrating its capacity as a survival factor. 

The placenta is programmed to survive at a low O2 tension during 
the first trimester, while trophoblast invasion progresses slowly at 
the vascular interface in preparation for the full onset of placental 
perfusion (Norwitz et al., 2001). However, if reoxygenation does not 
occur on time, placental insufficiency ensues, which can increase 
risk for obstetric disorders that include pregnancy loss, intrauterine 
growth restriction or preeclampsia (Burton and Jauniaux, 2004). 
These disorders are associated with poor trophoblast invasion 
and increased apoptosis (Brosens et al., 1972, DiFederico et al., 
1999), two functions that are strongly regulated by HBEGF signaling 
(Jessmon et al., 2009). Placental tissues from preeclamptic pregnan-

cies have reduced expression of HBEGF compared to gestational 
age-matched normotensive placentas, as well as reduced HBEGF 
mRNA expression (Leach et al., 2002). These findings suggest the 
hypothesis that the reduction in expression of HBEGF could contrib-
ute to the shallow trophoblast invasion and poor survival observed 
in preeclampsia. It remains to be established whether the reduced 
expression of HBEGF precedes the onset of preeclampsia or if it is 
merely associated with late placental demise. There is also clinical 
evidence of HBEGF disruption associated with infertility in women 
(Aghajanova et al., 2008). The decreased HBEGF expression in 
infertile couples was not confirmed in a larger clinical study, but it 
was noted that a significant increase between the early and mid 
secretory phases was absent in the infertile patients (Leach et al., 
2012). The clinical significance of HBEGF signaling during human 
pregnancy will not be fully appreciated without more sophisticated 
experimental approaches that take into account its interactions 
with other signaling pathways.

Indian hedgehog

Another secreted factor shown to be necessary for implantation 
and placentation is Indian Hedgehog (IHH). In humans, blastocyst 
implantation is progesterone dependent (Lee et al., 2006b). IHH 
is a key element in the progesterone priming of the uterus for im-
plantation (Zhang et al., 2013a). The highly conserved hedgehog 
family of genes was discovered in 1980 in a study of abnormalities 
in the Drosophila body plan (Nusslein-Volhard and Wieschaus, 
1980). The requirement of IHH for mouse development was first 
described in 1993 (Echelard et al., 1993). Since then IHH has been 
linked to the formation of many organs, including bone, intestines, 
and heart (Ingham and McMahon, 2001). In mice, IHH increases in 
response to progesterone in the uterine glandular epithelium during 
the implantation window (Takamoto et al., 2002). The hedgehog 
receptor, PATCHED (PTC), and GLI-Kruppel family transcription 
factors, GLI1, 2 and 3, are simultaneously upregulated in the un-
derlying stroma (Matsumoto et al., 2002). The epithelial-stromal 
interaction mediated by progesterone and IHH is regulated by 
chicken ovalbumin upstream promoter transcription factor II (Coup 
TF II), a transcription factor found in the uterine stroma of mice 
(Kurihara et al., 2007). Deletion of COUP TFII results in decidu-
alization and implantation failure, similar to that of IHH deletion, 
indicating that IHH may work in a paracrine fashion within the 
uterus to orchestrate progesterone-induced inhibition of epithelial 
proliferation necessary for implantation (Matsumoto et al., 2002). 
The uterine effects of IHH knockout mice cannot be studied due 
to its lethality; however, targeted ablation of IHH in progesterone 
positive uterine cells shows that these mice are infertile due to 
impaired implantation, resembling mice with progesterone receptor 
knockout uteri (Lee et al., 2006b). 

In the human endometrium, IHH is upregulated in conjunction 
with progesterone receptor during the secretory phase (Talbi et al., 
2006). IHH, PTC, GLI1 and GLI2 all increase during the secretory 
phase (Wei et al., 2010). In contrast to the mouse, IHH mRNA has 
been found in both the stroma and epithelium in human endome-
trium. This provides evidence that in humans, similar to mice, IHH 
is likely upregulated by progesterone and plays an essential role in 
uterine decidualization and implantation. Interestingly, it has been 
shown that IHH is abnormally expressed in the endometrium of 
endometriosis patients as compared to healthy controls, implicating 
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a role in the decline of fertility experienced by endometriosis patients 
and possibly others, as well (Smith et al., 2011). Pathology occurs 
throughout the reproductive tract, causing decreased fertility rates 
in these patients. Recently, impaired endometrial receptivity has 
been postulated (Wei et al., 2009). It would be instructive to know 
whether IHH signaling is disrupted in patients with progesterone 
resistance (Al-Sabbagh et al., 2012). 

Wnt signaling

A critical pathway that regulates embryo-uterine interactions and 
placentation is Wnt signaling. The term “Wnt” combines the Wg 
(Wingless) and Int1 genes, which were found to be homologous 
(Nusse et al., 1991). The Wnt pathway includes a large number 
of ligands and receptors (19 and 10 respectively), resulting in 190 
different potential interactions, which can be enhanced or attenu-
ated by additional co-receptors and co-activators with multiple 
signaling activities (van Amerongen et al., 2012). The Wnt signal-
ing pathway is pleiotropic, as abnormalities in Wnt signaling are 
associated with cancers, osteoperosis, degenerative diseases and 
developmental disorders (Sonderegger et al., 2010). Wnt signaling 
operates through both canonical and non-canonical pathways. 

The canonical pathway functions through b-catenin, as shown 
in Fig. 2. In its unstimulated state, b-catenin is complexed with 
adenomatous polyposis coli (APC), Axin, GSK3b and CK1a, which 
mediates constitutive degradation of b-catenin (Liu et al., 2002). 
Upon binding of Wnt ligands to transmembrane frizzled receptors 
(FZD) and low density lipoprotein receptor-related protein co-
receptors-5/6 (LRP5/6), b-catenin is liberated from its complex 
(Metcalfe and Bienz, 2011), accumulates intracytoplasmically and 
translocates into the nucleus where it directs transcription of target 
genes (Behrens et al., 1996). Several diverse non-canonical path-

ways operate independently of b-catenin (Semenov et al., 2007). 
Wnt pathways are crucial for blastocyst-uterine communication 

and subsequent implantation. Mouse morula and blastocyst stage 
embryos express Wnt genes in response to uterine factors induced 
by estrogen prior to implantation (Mohamed et al., 2004). In mice, 
the canonical b-catenin pathway is dynamically activated in the 
uterus, initially in the circular smooth muscle of the myometrium, 
followed by activation in the luminal epithelium directly opposed 
to the blastocyst at implantation sites, both of which require the 
presence of a blastocyst (Mohamed et al., 2005). Inhibition of 
the Wnt/b-catenin pathway prevents implantation (Mohamed et 
al., 2005). Interestingly, it has been shown that interruption of 
nuclear b-catenin signaling in the developing embryo does not 
adversely affect the development of the embryo to the blastocyst 
stage; however it does interfere with implantation (Xie et al., 2008). 
Through embryo transfer experiments, these investigators found 
that implantation failure is due to silencing of the canonical path-
way in the blastocyst rather than its deficiency in the acquisition 
of uterine receptivity. 

Wnt signaling is also necessary in uterine decidualization. Uter-
ine Wnt4 expression is absent prior to implantation, but increases 
during the period of receptivity for implantation and continues to be 
expressed in the decidua (Paria et al., 2001). Additionally, Wnt 5a, 
Wnt 7a, Wnt 11, and Wnt 16 are expressed in the mouse uterus 
during the window of implantation (Hayashi et al., 2009).

Wnt signaling systems are critical for proper placentation 
and trophoblast function in mice. Wnt 2 deficient mice have a 
50% prenatal mortality due to placental defects with histological 
findings of increased fibrinoid and decreased capillary formation 
within the placentas (Monkley et al., 1996). Furthermore, mice 
lacking R-spondin3, an activator of the WNT/b-catenin pathway, 
die prenatally due to improper placental development (Aoki et al., 

β-Catenin 

β-Catenin 

Fig. 2. Canonical Wnt signaling. General schematic of a cell in the unstimulated state (A) and activation of the canonical pathway by WNT binding 
(B), as discussed in the text. In the absence of WNT, b-catenin in the cytoplasm is complexed with adenomatous polyposis coli (APC), Axin, glycogen 
synthase kinase-3b (GSK3b) and casein kinase 1 (CK1), leading to its phosphorylation, ubiquitinization and degradation in the proteosome. In the 
absence of b-catenin, lymphoid enhancer-binding factor-1 (LEF1) inhibits transcription of WNT target genes. WNT binding to a frizzled receptor (FZD) 
and a low density lipoprotein receptor-related protein co-receptor (LRP) frees b-catenin from the complex and prevents its degradation. b-catenin then 
translocates to the nucleus and when paired with LEF1 activates transcription of WNT target genes.

BA
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2007), and FZD5 knockout mice die prenatally with placental ab-
normalities (Ishikawa et al., 2001). Wnt7b is required for fusion of 
the chorion and allantois and Wnt7b deficient mice die prenatally 
due to placental defects (Parr et al., 2001).

In humans, numerous Wnt ligands and receptors have been 
identified in the endometrium, indicating their importance for 
endometrial function (Tulac et al., 2003). Wnt signaling in human 
endometrium during implantation differs from mice. In mice, proper 
uterine decidualization and implantation is estrogen dependent, 
and estrogen dependent Wnt signaling and b-catenin expression is 
crucial. In humans, however, decidualization and implantation are 
progesterone driven. Studies have shown that during the early luteal 
to mid luteal phase of human endometrium, Dickkopk1 (DKK1), an 
inhibitor of the canonical Wnt pathway, is significantly upregulated 
(Carson et al., 2002). This is likely progesterone driven, as pro-
gesterone can increase DKK1 expression in human endometrial 
stromal cells. Furthermore, after treatment with mifepristone, a 
progesterone antagonist, an increase in b-catenin, Wnt ligands 
and Wnt receptors have been observed in human endometrium 
(Catalano et al., 2007), suggesting that progesterone driven hu-
man decidualization down regulates the canonical Wnt pathway. 

Abnormalities in Wnt signaling could contribute to infertility. Sig-
nificantly higher levels of b-catenin expression have been observed 
in the endometrium of the mid-secretory phase in infertile patients 
with endometriosis, compared to fertile counterparts (Matsuzaki 
et al., 2010). Impaired Wnt signaling could also contribute to the 
etiology of endometriosis, as DKK1 mRNA expression was sig-
nificantly decreased in endometriotic fibroblast of endometriosis 
patients compared to women without disease (Aghajanova et al., 
2010). This deficiency could play a role in the development of en-
dometriosis and in maintaining a proliferative phase of the lesions. 

As found in mice, Wnt signaling is essential for human placenta-
tion. Expression of 14 out of 19 Wnt ligands and 8 out of 10 FZD 
receptors has been documented in human placentas (Sonderegger 
et al., 2007). Interestingly, certain Wnts, including Wnt1, Wnt7b, 
Wnt10a, and Wnt10b, were absent in term placentas, although 
they are expressed in first trimester placentas, suggesting a role in 
the critical early period of placental development and trophoblast 
differentiation (Sonderegger et al., 2007). Wnt3a can stimulate 
trophoblast invasion, which could be blocked by DKK1 (Pollheimer 
et al., 2006). Methylation of certain genes encoding inhibitors of 
Wnt signaling has been found in human placentas and trophoblast 
cells, further supporting a role of Wnt signaling in trophoblast inva-
sion (Novakovic et al., 2008). Interestingly, hypermethylation of the 
APC gene promoter, an inhibitor of b-catenin, has been reported 
in choriocarcinoma trophoblast cell lines (Wong et al., 2008). 
Similarly, DKK1 is decreased in choriocarcinoma cell lines, and its 
over-expression induces mitotic arrest (Peng et al., 2006). Nuclear 
localization of b-catenin is significantly elevated in invasive tropho-
blasts of complete hydatidiform mole, compared to normal placentas 
(Pollheimer et al., 2006), suggesting that although activation of the 
Wnt system is critical for placentation, over activation could cause 
excessive invasiveness that may be associated with carcinomas. 
Conversely, repression of the canonical Wnt pathway could lead 
to pregnancy related complications associated with abnormal pla-
centation. Wnt2 and b-catenin are both decreased in placentas of 
women with preeclampsia, whereas DKK1 is increased (Zhang et 
al., 2013b). High levels of DKK1 were also found in patients with 
recurrent miscarriages (Bao et al., 2013). 

Wnt signaling plays crucial roles in many aspects of reproduc-
tion and in humans its inhibition and activation must be properly 
balanced for normal reproductive function. Inhibition of the Wnt 
canonical pathway is critical for proper endometrial decidualiza-
tion and implantation, whereas excessive activation is linked with 
infertility. In placentation, activation of the canonical pathway is 
necessary for normal placental development and differentiation; 
however, overexpression may lead to rare placental carcinomas. 

Conclusions

Significant advancements have been made in unraveling the 
molecular mechanisms governing growth factors involved in im-
plantation and trophoblast invasion. The mouse has provided a 
powerful experimental model; however, its correlation with human 
implantation and trophoblast development is not entirely consistent. 
Infertility affects approximately 15% of reproductive age women and 
in the past four decades, IVF has become a viable and widely used 
treatment option for infertile couples, with over 1.5% of babies in 
the U.S currently conceived through IVF (Sunderam et al., 2013). 
Although relatively successful compared to natural fecundity, one of 
the major barriers to higher IVF implantation rates is a non-receptive 
endometrium (Li and Jin, 2013). A better understanding of the 
molecular mechanisms governing the expression of growth factors 
in implantation and placentation could better define the window of 
implantation and contribute towards higher IVF pregnancy rates. 
Furthermore, this additional information could provide a foundation 
for development of new treatments for clinical pathologies such as 
recurrent pregnancy loss and placental insufficiencies that reduce 
fetal growth rates or cause preeclampsia. Therefore, continued 
investigation of growth factors and the molecular mechanisms that 
ensure successful implantation and placentation has significant 
clinical relevance.
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