
 

Transformation of leguminous plants
to study symbiotic interactions

ANELIA IANTCHEVA1, KIRANKUMAR S. MYSORE2 and PASCAL RATET*,3

1AgroBioInstitute, Sofia, Bulgaria, 2Plant Biology Division, The Samuel Roberts Noble Foundation, OK, USA and 
3Institut des Sciences Végétales, Centre National de Recherche Scientifique, Gif sur Yvette, France

ABSTRACT  Legume plants are important in agriculture because they represent an important source 
of protein for human and animal consumption. This high protein content results from their capacity 
to use atmospheric nitrogen for their nutrition as a consequence of their symbiotic interaction with 
rhizobia. Understanding this interaction at the molecular level is a prerequisite for its better use in 
agriculture and for the long term objective of its transfer to other crops. Agrobacterium-mediated 
transformation is a tool of choice for studying this interaction and for unraveling the function of the 
different genes discovered through classical genetic approaches. However, legume plants are often 
recalcitrant to regeneration and transformation. This paper describes the technology developments 
(regeneration, transformation, insertion mutagenesis) related to Agrobacterium transformations 
that were established in the legume plants, as well as different examples of the technology devel-
opments or gene discoveries resulting from these studies. 

KEY WORDS: legume plant, agrobacterium, rhizobium, transformation, symbiosis

Legumes and their importance

Amongst the mineral nutrients required by plants, nitrogen is the 
most important but its availability is unfortunately low in most soils. 
The intensive use of industrial nitrogen fertilizers in modern agricul-
ture in the last 50 years has allowed the development of very produc-
tive crops, but their intensive use also resulted in eutrophication of 
continental waters including some areas in Europe. There is thus 
a strong need to reduce application of chemical nitrogen fertilizers 
and improve alternative nitrogen inputs (Graham and Vance 2003; 
Ferguson et al., 2010) in agriculture. A key contribution of legumes 
to sustainable agriculture and nitrogen cycle is their ability to fix 
atmospheric nitrogen in most agricultural ecosystems. They form 
specialized organs, the root nodules, in association with specific 
soil bacteria called rhizobia (including the genera Azorhizobium, 
Allorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium and 
Sinorhizobium). In these organs the bacteria differentiate into a form 
called the bacteroids and catalyze the reduction of atmospheric 
nitrogen gas (N2) into ammonia using the nitrogenase enzyme 
complex. This process is commonly referred as “symbiotic nitrogen 
fixation”. Annually the legume-rhizobia symbiosis produces around 
200 million tons of nitrogen (Graham and Vance 2003) to the host 
plant thus reducing the need for nitrogen fertilizers. Members of the 
family Leguminosae are major crops used for human food, animal 
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feed, and vegetable oil. They represent the third largest group of 
angiosperms and are the second largest group of food and feed 
crops grown worldwide. These plants are cultivated on 12–15% of 
available arable land and are responsible for more than 25% of the 
world’s primary crop production. Around 250 million tons of grain 
legumes are produced annually world-wide. The ability of legumes 
to enter into symbiosis with nitrogen-fixing rhizobia provides them 
with a unique advantage compared to other plant species. For this 
reason legumes are called “green manure” and they are used in 
common farming practice as an intercrop or to rotate crop species, 
using legumes such as clover or alfalfa in the rotation. This rotation 
is a process that dramatically improves the organic content of the 
soil and for this reason improvement of the agricultural capacities 
of the legumes is always a goal for researchers in addition to the 
hope that one day this symbiotic capacity could be transferred 
to other non-leguminous crops (Charpentier and Oldroyd 2010).

The legume-rhizobia symbiotic interaction

The first step of the symbiotic interaction starts with the exudation 
of flavonoids (phenolics compounds) into the rhizosphere by the 
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host plant roots. The specific flavonoid composition of the exudate 
determines the rhizobia species attracted. With the exception of 
rhizobium species NGR 234, which is able to colonize about 112 
species, rhizobia are generally able to establish symbiosis with 
only few legumes. This attraction of specific rhizobia to the roots 
of host legume leads to the activation of bacterial nod genes and 
production and secretion of specific lipochito-oligosaccharides 
called Nod Factors (NFs) (Ferguson et al., 2010; Oldroyd et al., 
2011) that are necessary for the bacterial invasion and the nodule 
organogenesis. The NFs are composed of an oligosaccharide 
backbone of N-acetyl-D-glucosamine units with a fatty acyl group 
attached to the non-reducing sugar. Specific modifications of this 
backbone happen in different rhizobium strains that define the 
specificity required for the plant bacterial recognition. In the rhizo-
sphere, rhizobia attach to root-hair tips, initiate root hair deforma-
tion and curling and penetrate the root hair via a structure called 
the infection thread. This structure allows the symbiotic bacteria 
to reach the cortical cells of host plant. Increasing concentration 
of NF leads to mitotic activation of cortical cells in the root and 
starts the development of the nodule primordium. The infection 
thread grows towards the newly induced dividing cells and bacteria 
are released into an infection droplet in the host cell cytoplasm, 

forming an organelle like structure called the symbiosome. In the 
symbiosome, bacteria differentiate into bacteroids. In fully devel-
oped mature nodules, atmospheric N2 is reduced into ammonia by 
bacteroids and subsequently assimilated by the plant (Ferguson 
et al., 2010; Oldroyd et al., 2011). 

Legume nodules are of the determinate or indeterminate type 
(Fig. 1A). There are three main differences between these two 
nodule types: the site of initial internal cell division, the lifetime of 
meristematic cells and the shape of the mature nodules. Indeter-
minate nodules are characterized with initial anticlinal division of 
inner cortex and periclinal divisions in endodermis and pericycle, 
leading to the formation of nodule primordia. Their persistent 
meristem divides continuously giving rise to new nodule cells and 
thus results in nodules with elongated shape. Legume species 
like Medicago sativa (alfalfa), Trifolium repens (clover), Pisum 
sativum (pea) and the model legume Medicago truncatula form 
indeterminate nodules. Determinate nodules are characterized 
by their round shape and lacks persistent meristem that results 
in the absence of developmental gradient. The initial cell division 
occurs sub-epidermally in the outer cortex. Legumes that form 
determinate nodules include Glycine max (soybean), Phaseolus 
vulgaris (common bean), and Lotus japonicus. M. truncatula and 
L. japonicus are used as model legumes to study indeterminate 
and determinate types of nodules, respectively (Handberg and 
Stougaard, 1992; Stiller et al., 1997). 

In this review we discuss about various protocols available for 
legume regeneration and transformation. In addition, we will also 
describe how transformation technology has helped in deciphering 
some of the molecular events that allow legume plants to establish 
symbiosis with rhizobia. 

Legume regeneration and transformation

The main component of most system biology approaches is a 
high-throughput regeneration/transformation system to decipher 
gene function. Transformation offers strategies for overexpressing 
or suppressing endogenous genes as well as expressing various 
gene fusions thus understanding their biological role during plant 
development. Large scale accumulation of data from “omics” plat-
form in legumes necessitates the development of transformation 
protocols for rapid in vitro and in vivo investigation of functions and 
subcellular localization of the target genes. In addition to understand-
ing gene function legume transformation also provides possibilities 
for crop improvement. For example, transgenic soybean is being 
widely cultivated in North and South America (Yamada et al., 2012). 

Legume in vitro regeneration which has long been an obligatory 
step for transgenic production is still a challenge for plant scientists, 
thus making many legumes recalcitrant to efficient Agrobacterium 
tumefaciens-mediated plant transformation. However, the extensive 
use of the model legume plants like M. truncatula and L. japonicus 
for molecular studies has favoured the development of efficient 
regeneration and Agrobacterium-mediated transformation protocols 
for these two plant species. Agrobacterium- mediated transformation 
protocols rely on the availability of highly totipotent cells (targets for 
the transformation events), specific genotypes and proper selection 
of transformed tissue followed by 4 to 6 months of tissue culture.

In vitro regeneration of legumes is based on direct organogen-
esis, indirect organogenesis or somatic embryogenesis (Fig. 2)
starting with different plant explants. Successful regeneration is 

Fig. 1. Indeterminate and determinated nodules. (A) Schematic repre-
sentation of the indeterminate (left) and determinated (right) nodules. The 
meristem position is represented by an orange oval in apical position. The 
infected cells in which nitrogen fixation takes place are represented by orange 
dots. (B) An indeterminated nodule expressing a nodule vascular tissue 
specific GUS fusion. (C) A determinated nodule expressing a cyclin F box 
promoter-GUS fusion at the base of the nodule and in the vascular tissues.
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accomplished by determination of species-specific parameters 
like explant source, plant genotype and media components. The 
somatic embryogenesis approach has been favoured because 
each event of regeneration is supposed to be derived from one 
cell and chromosomal rearrangements are less frequent (Arcioni et 
al., 1989). In the legume crops like alfalfa and red clover (Trifolium 
pratense) different dominant genes are thought to be involved in 
the control of somatic embryogenesis (McLean and Nowak, 1988; 
Reisch and Bingam, 1980). Dramatic improvement of embryogenic 
capacity has been observed after several cycles of recurrent selec-
tion mainly in the Medicago genus. Using this approach, lines with 
high embryogenic capacity were selected in M. sativa Rengelander 
(Atanassov and Brown, 1984), M. sativa Regen–SY (Samac et al., 
2004), M. varia A2 (Deak et al., 1986), M. sativa R4 (Barbulova et 
al., 2002), M. falcata 47/1/150 (Denchev et al., 1991), M. truncatula 
cv. R108-1 (Hoffman et al., 1997), M. truncatula cv. Jemalong 2HA 
(Nolan et al., 1989) and M. truncatula cv.Jemalong M9-10a (Araujo 
et al., 2004). It has been shown in Medicago (Rakocevic et al., 
2009) and in Lotus (Madsen et al., 2005; Fukai et al., 2008; Fukai et 

al., 2012) that in vitro regeneration activates endogenous retroele-
ments. We can therefore postulate that these recurrent selections 
have resulted in chromatin modification (epigenetic modifications) 
and/or insertion of new copies of endogenous elements that are 
deregulating genes that act as negative regulators of embryogen-
esis (Srinivasan et al., 2007). These highly embryogenic lines can 
then be considered as mutant lines.

For M. truncatula, direct regeneration as well as somatic embryo-
genesis protocols are well described (Cosson et al., 2006; Wright 
et al., 2006; Crane et al., 2006, Iantcheva et al., 2001, Chabaud et 
al., 1996; Zhou et al., 2004). It should be noted that each protocol 
was developed for a specific line and may not be applicable to the 
whole species. For L. japonicus cv. Gifu, regeneration and stable 
Agrobacterium-mediated transformation protocols, mainly based 
on the use of hypocotyl explants, were develop by Handberg and 
Stougaard (1992) and improved by Stiller et al. (1997) who also 
established an A. rhizogenes hairy root transformation method. 

Somatic embryogenesis in legumes is affected by exogenously 
supplied auxin, which plays important role in somatic embryo in-
duction and development. In most legumes the auxin analog 2,4D 
(2,4-dichlorophenoxyacetic acid) induces high frequency of embryo 
production, but large numbers of these embryos are morphologically 
abnormal and unable to convert to plantlets (Garg et al., 1996). In 
pea and soybean, embryos with normal morphology are obtained 
using the auxin NAA (1-naphthaleneacetic acid; Lazerri et al., 
1987; Ozcan et al., 1993). Induction of somatic embryogenesis 
by cytokinin alone is rare but it is required for induction of somatic 
embryos from intact seedlings of Phaseolus species (Malik and 
Saxena, 1992a). In contrast, its presence strongly inhibited direct 
somatic embryo induction in pea and soybean (Kysley and Jacob-
sen, 1990; Lazzeri et al., 1987). The highly embryogenic effect of 
cytokinin is observed for indirect somatic embryogenesis after an 
extensive callus induction step notably in the genera Medicago 
and Trifolium. The synthetic plant growth regulator thidiazuron 
(TDZ) with both auxin and cytokinin activity possess remarkable 
regeneration ability in some leguminous plants like bean (Malik and 
Saxena, 1992), peanut (Arachis hypogeal; Murthy et al., 1995) and 
some diploid Medicago species (Iantcheva et al., 1999). Interest-
ingly, in peanut TDZ induced somatic embryogenesis is genotype 
independent (Saxena et al., 1992). Somatic embryo maturation is a 
crucial step during somatic embryogenesis and it has been shown 
that cytokinin alone or in combination with an auxin is important 
for this somatic embryo maturation in chickpea (Cicer arietinium; 
Kumar et al., 1995) and Vigna aconitifolia (Kumar et al., 1988).

Regeneration/transformation procedures based on repetitive 
somatic embryogenesis (a process of formation of secondary so-
matic embryos on primary ones) have been described for several 
legume species including alfalfa, soybean, peanuts and diploid 
medics (Lupotto 1983; Finer and Nagasawa, 1988; Parott and 
Bailey, 1993; Iantcheva et al., 1999). Repetitive embryogenesis was 
explored for Agrobacterium-mediated transformation of M. sativa 
(Nincovic et al., 1995) and M. truncatula (Iantcheva et al., 2005). In 
soybean, regeneration and transformation protocols are established 
either on somatic embryogenesis using immature embryos (Parott 
at al. 1989) or cotyledons (Hinchee et al., 1988) or organogenesis 
from cotyledonary nodes or geminating seeds (Olholt et al., 2003). 
In chickpea, different regeneration/transformation protocols have 
been developed using leaf or stem (Srinivasan and Sharma 1991; 
or cotyledons and cotyledonary nodes (Bhattacharjee et al., 2010) 

Fig. 2. Regeneration of Medicago plants using in vitro somatic em-
bryogenesis. Leaf explants (A) are placed on callus inducing medium (B) 
in order to induce embryogenesis (C). Embryos (D-F) are differentiating on 
hormone free medium in plantlets (G) that are placed on rooting medium 
(H) and allow to develop in true plantlets (I). These are later adapted and 
transferred in the green house for further development (J) and seed pro-
duction (K). In panel J the plant in the left is M. truncatula ssp truncatula 
Jemalong and the plant in the right is M. truncatula ssp tricycla R108.
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or mature embryogenic axes (Mehrotra et al., 2011). In pea, seg-
ments of embryogenic axis (Polowick et al., 2000), cotyledonary 
nodes (Bean et al., 1997), and immature cotyledons (Grant et al., 
2003) have been used for transformation. The above protocols are 
generally genotype dependent, less efficient and lead to produc-
tion of chimeric plants.

In addition to the peculiarity of the in vitro regeneration of legume, 
another bottle neck to generate transgenic legume plants is the 
choice of the Agrobacterium strain used for transformation. Some 
strains used currently for Brassicaceae or Solanaceae species 
(for example strain LBA4404) are less efficient in transforming 
legume cells. Legume transformation has been improved by the 
use of hyper virulent strains like EHA105, EHA101 (Hood et al., 
1993), KYRT1 (Grant et al., 2003; Ko et al., 2003) and eventually 
by adapting protocols to reduce the biotic stress created by the 
infection. Use of acetosyringone (improved virulence gene activa-
tion) and/or stress protectants like cystein and dithiothreitol, offers 
improved Agrobacterium-mediated plant transformation in soybean 
(Olhoft et al., 2003, Paz et al., 2004), maize (Vega et al., 2008) 
and cell suspension of M. truncatula (Iantcheva et al., unpublished 
data). Finally the optimization of selection-marker used during the 
transformation procedure is also important and should be carefully 
defined for each plant species (Cosson et al., 2006). 

An alternative method for production of transgenic material uses 
the A. rhizogenes-mediated transformation, as the production of 
transgenic legume plants is not always necessary when studying 
symbiosis. This is a rapid method to produce hairy roots on com-
posite plants (transformed roots are induced on a non-transformed 
plant). Induced transgenic hairy root system can be nodulated by 
symbiotic bacteria or can establish symbiosis with mycorrhizal 
fungi. Hairy roots possess hormone-independent growth, are much 
more branched, and contain numerous root hairs. The capacity to 
produce chimeric transgenic plants is an important tool for scientists 

involved in root, nitrogen fixing and endomycorrhizal symbiotic 
studies. A. rhizogenes-mediated transformation in legumes was 
first described for Lotus corniculatus (Jensen et al., 1986). Such 
transgenic roots can be nodulated directly and this technology 
has now been reproduced in other (model) legumes such as M. 
truncatula (Boisson-Dernier et al., 2001; Gourion et al., 2012), V. 
aconitifolia (Lee et al., 1993), L. japonicus (Stiller et al., 1997), red 
clover (Diaz et al., 2000), bean (Estrada-Navarrete et al., 2006), 
Aeschinomene indica (Bonaldi et al., 2010) and peanut (Sinharoy 
et al., 2009).

In the past 15 years, the efforts of the legume scientific com-
munity concentrated on studying host genes involved in the 
legume-rhizobium symbiosis. As indicated above, two model 
species, M. truncatula and L. japonicus are popularly used for 
these studies. Subsequently, a large number of genes involved in 
NF perception and symbiotic signal transduction, bacterial infec-
tion, nodule organogenesis, and regulation of nitrogen fixation 
have been identified in these two species. It should be noted that 
the arbuscular mycorrhizal (AM) symbiosis can also be studied 
in these model leguminous plants and has benefited from the 
knowledge developed for the rhizobia symbiosis. However, the 
benefit of the transformation methods to study AM symbiosis will 
not be discussed here. This review emphasizes the role of the 
transformation approach as a tool for understanding the functions 
of key regulatory and signaling related genes, as well as the role 
of phytohormones and other signal molecules involved in differ-
ent stages of the symbiosis between legume plants and rhizobia.

Insertion mutagenesis

One important outcome of establishing regeneration/transfor-
mation protocols in model legumes was the possibility to develop 
insertion mutagenesis in these plants. Insertion mutagenesis has 

Experiment Gene Gene function References 

Agrobacterium tumefaciens-stable transformation 
Gene fusion (GUS) Enod12-early nodulin gene Early nodule development Chabaud et al. (1996)  

Gene fusion (GUS) DNF2-GUS Bacteroid maintenance Bourcy et al., (2013) 

Gene fusion (GUS) NOOT-GUS Nodule identity Couzigou et al., (2013) 

Overexpression P5CS-(D-pyrroline-5-carboxylate synthetase)  Enhanced nodule activity during the condition of osmotic stress Verdoy et al. (2006) 

Ectopic expression of dominant negative 
form of the AT SINAT5DN 

SINA (Seven in Absentia Proteins ) Affects plant growth and nodulation Den Herder et al. (2008) 

Genomic DMI2 construct fused to a dual 
affinity tag 

DMI2 (does not make infection) Biochemical characterization of symbiotic receptor kinase Reily et al (2012) 

Agrobacterium rhizogenes-hairy root transformation 
Complementation MtLyk3 (HCL) NF entry receptor Smit et al. (2007) 

Gene fusion (GUS) MtIRE Unknown Pislariu et al., (2007) 

RNAi MtLyk3 (HCL) NF entry receptor Limpens et al., (2003) 

RNAi NFP (nod factor perception) NPF Nod factor perception Arrighi et al. (2006) 

RNAi DMI1(does not make infection) DMI1 (calcium spiking) Ane et al 2004 

Complementation NSP1, NSP2 Nodulation Signaling Pathway Efficient nodulation Kalo et al., (2005); 
Smit et al., (2005) 

Complementation; RNAi EFD ethylene response factor required for nodule 
differentiation 

Nodule initiation and development Vernie et al. (2008) 

RNAi CHS chalcone synthase Nodule initiation and regulation of auxin transport Wasson et al (2006) 

RNAi MtCRE1 Cytokinin Response1 Control of nodulation Gonzalez-Rizzo et al. (2006) 

RNAi LAX auxin influx carrier Early steps of nodule development Billy et al. (2001) 

RNAi PIN auxin efflux carrier Nodule development Huo et al. (2006). 

 CDC16 gene / CELL DIVISION CYCLE16 / Root and nodule development Kuppusamy et al. et al. (2009) 

TABLE 1

A REPRESENTATIVE (NON EXHAUSTIVE) LIST OF SYMBIOTIC GENES STUDIED
USING AGROBACTERIUM-MEDIATED STABLE OR HAIRY ROOT TRANSFORMATION IN M. TRUNCATULA
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been instrumental in the development of molecular tools neces-
sary for the understanding of plant physiology and development 
because it allows efficient gene disruption (KO mutations) and 
gene tagging that facilitate isolation of the mutated gene. In both 
L. japonicus and M. truncatula, the T-DNA tagging strategy devel-
oped in Arabidopsis thaliana could not be applied because of the 
absence of high throughput transformation protocols (Brocard et 
al., 2006) necessary for the production of large insertion mutant 
collections. On the contrary, this was possible using the Tnt1 and 
MERE retroelements in M. truncatula (d’Erfurth et al., 2003; Tadege 
et al., 2008; Revalska et al., 2011; Rakocevic et al., 2009) and 
Lore1 retroelement in L. japonicus (Madsen et al., 2005; Fukai et 
al., 2012). The Tnt1 tobacco retroelement was introduced in M. 
truncatula using a T-DNA based approach but it was shown that its 
autonomous transposition is induced only during in vitro somatic 
embryogenesis. The MERE1 endogenous retroelement was first 
characterized as a somaclonal mutation in a transgenic line obtained 
after T-DNA transformation. Similarly to Tnt1, MERE1 transposes 
during the process of in vitro somatic embryogenesis. The Lore1 
element in L. japonicus was characterized as an element respon-
sible for somaclonal variations in the progeny of plants, obtained 
through in vitro culture regeneration. Transposition occurs at high 
frequency in genes of these plants. The retroelement-mediated 
insertion mutant collections in these two plants have now allowed 
the characterization of numerous symbiotic mutants in both the 
plant species (http://medicago-mutant.noble.org/mutant/, http://
www.kazusa.or.jp/lotus, see also Table 1 and Table 2) and con-
tinue to contribute to the understanding of the symbiotic process 
in legume plants. 

Model plants

Medicago truncatula, a model for indeterminate nodule for-
mation

In M. truncatula, the model plant to study indeterminate nod-
ules, the different transformation technologies have facilitated the 
identification of the signaling pathway necessary for symbiotic in-

teractions. Both stable transformation and hairy root transformation 
systems have been used in M. truncatula. The hairy root system 
was used mainly for complementation or gene knockdown. In ad-
dition, promoter-GUS fusions or fusions to other reporter genes 
were used in these studies. Only few of the research investiga-
tions related to endosymbiosis were done using stable transgenic 
plants. This is because obtaining stable transformants through 
Agrobacterium-mediated transformation is labour-intensive, ex-
pensive and time consuming. There are two pioneer studies of 
Chabaud et al. (1996) and Trinh et al. (1998) on transformation of 
M. truncatula and M. sativa with transcriptional reporter constructs. 
These stable transgenic plants have the advantage that they can 
be reproduced, propagated and crossed to mutant genotypes and 
used for different studies.

Some examples of the results obtained, using transgenic tech-
nology, to understand the M. truncatula-Sinorhizobium symbiosis 
based on stable and hairy roots transformation methods are sum-
marized below in Table 1. A transgenic nodule expressing the GUS 
reporter gene in vascular tissues is schown Fig. 1B.

Lotus japonicas, a model for determinate nodule formation
L. japonicus a member of the genera Loteae is used as a model 

legume to study determinate type of nodulation (Handberg and 
Stougaard, 1992). Similar to what has been achieved in M. trun-
catula, the different transformation technologies developed for L. 
japonicus have facilitated the identification of various components 
of the Nod factor signaling pathway necessary for the interaction. 
Some examples using the transgenic technology to understand 
the L. japonicus-Mesorhizobium loti symbiosis are outlined in Table 
2.  A transgenic Lotus nodule expressing a cyclin-like F box-GUS 
gene fusion is schown Fig. 1C.

Crop plants 

Alfalafa (Medicago sativa)
Alfalfa is one of the major forage crops in the world and also the 

first legume species regenerated and transformed in vitro (Deak 

Experiment Gene Gene function References 

Agrobacterium tumefaciens-stable transformation 
pGH3:GUS:GFP Soybean auxin responsive promoter.  Auxin distribution during the process of nodule development Pacios-Bras et al. (2003) 

Complementation HAR1 Control of the nodule number Nishimura et al., (2002a) 

Complementation ASTRAY Control of the nodule number Nishimura et al., (2002b) 

Complementation IGN1 Bacteroid persistence Kumagai et al., (2007) 

Overexpression NahG salicylate hydroxylase Reduction of SA levels in respect to control of nodule Stacey et al. (2006) 

Agrobacterium rhizogenes-hairy root transformation 
Complementation NFR1; NFR5 nod factor recognition Initiation of the symbiotic interaction Radutoiu et al. (2003); Madsen et al., (2003) 

Complementation CASTOR POLLUX Ion channels essential for perinuclear calcium spiking Miwa et al., (2006) 

Complementation SEN1 Nitrogen fixation Hakoyama et al. (2011) 

Complementation NUP133 symbiotic nucleoporin Rhizobial colonization Kanamori et al. (2006) 

Complementation NUP85 symbiotic nucleoporin Rhizobial colonization Saito et al. (2007) 

Complementation CCaMK CYCLOPS Initiation of symbiotic interaction Kistner et al, (2005) 

Complementation NIN Initiation of nodule organogenesis Schauser et al, (1999) 

Gene function Cytokinin receptor NF signaling Tirichine et al., (2006) 

Gene function Ca2+/Calmoduline dependant kinase NF signaling Tirichine et al., (2007) 

Complementation NSP1; NSP2 Formation of infection threads Heckmann et al, (2006) 

TABLE 2

A REPRESENTATIVE (NON EXHAUSTIVE) LIST OF SYMBIOTIC GENES STUDIED
USING AGROBACTERIUM-MEDIATED STABLE OR HAIRY ROOT TRANSFORMATION IN L. JAPONICUS
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et al., 1986; Pichon et al., 1992). The cultivated alfalfa is peren-
nial, tetraploid and allogamous and possesses a relatively large 
genome, making it not suitable for genetic analysis. In contrary, 
M. truncatula that is closely related to alfalfa has a relatively small 
sized diploid genome making it suitable for genetic/genomic studies 
(see above). However, some research related to the role of legume 
lectins during symbiosis was done in alfalfa. One of the proposed 
functions of legume lectins is to determine the specificity of the 
rhizobia-legume symbiosis (Hirsh 1999). For this study, Brill et al. 
(2004) obtained transgenic alfalfa plants that expressed the alfalfa 
lectin MsLEC1 and MsLEC2 in sense and antisense orientations. 
MsLEC1-antisense (LEC1AS) plants were stunted, exhibited 
hypernodulation phenotype, and developed not only abnormally 
large nodules but also numerous small nodules, both of which se-
nesced prematurely. MsLEC2-antisense plants were intermediate 
in growth and nodule numbers compared with LEC1AS. To confirm 
lectin function, seed lectin gene (PSL) from pea was expressed in 
white clover hairy roots. Transformed “hairy” roots were nodulated 
by the pea specific symbiont Rhizobium leguminosarum bv. viciae 
(Díaz et al., 2000) thus demonstrating the role of the lectins in the 
specificity of symbiotic interaction.

Pea (Pisum sativum)
Pea has been a model organism in genetic research for more 

than a century. Intensive genetic and phenotypic analyses using 
pea symbiotic mutant collections showed that more than 40 genes 
are involved in the symbiotic process (Tsyganov et al., 2002). 
However, pea is an orphan species among legumes in respect to 
root symbioses (nodulation and mycorrhiza-formation) molecular 
studies. Pea has a larger genome, relatively long life cycle and 
larger size thus making it unattractive to do genetic research when 
compared to other model legumes. In addition, the pea genome 
sequence is not yet publically available and there are no efficient 
regeneration/transformation-systems developed. For this reason 
only few laboratories have published symbiotic studies using 
transgenic pea plants (Krejci et al., 2007; DeMason et al., 2013). 
There is only one report related to symbiotic studies in pea where 
Agrobacterium-mediated transformation has been used to study 
ENOD12A:GUS gene construct (Schneider et al., 1999). In addition, 
there is one report showing successful formation of hairy roots on 
composite pea plant, for complementation of a nodulation mutant 
(Hohnjec et al., 2003). Clemow et al. (2011) recently established 
a protocol for the rapid development of transformed hairy roots on 
pea composite plants using A. rhizogenes. The authors showed that 
the transformed roots of two non-nodulating pea sym10 mutants 
complemented with the wild-type gene. This protocol should now 
facilitate the studies done with various pea symbiotic mutants. 

Soybean (Glycine max) 
Soybean is one of the most important legume crops in the world. 

Genetically modified (transgenic) soybean plants have been pro-
duced mainly to improve their field performance and to understand 
gene function. For this, Agrobacterium-mediated or biolistic (par-
ticle bombardment) methods have been used to transform shoot 
meristems, cotyledonary nodes or cultured embryogenic tissues 
(Finner et al., 1991; Hinchee et al., 1988). These transforma-
tion techniques are labor-intensive and inefficient for large scale 
production. For studies related to root biology and symbiotic and 
pathogenic interactions, an efficient A. rhizogenes transformation 

method was developed by Kereszt et al. (2007). Indrasumunar et 
al. (2011) described two highly related lipo-oligochitin LysM-type 
receptor kinase gene products (GmNFR1a and GmNFR1b) as puta-
tive Nod factor receptor components in soybean. Transgenic hairy 
roots of non-nodulating mutant lines overexpressing GmNFR1a 
but not GmNFR1b form nodules with Bradyrhizobium japonicum, 
demonstrating the functionality of GmNFR1a. Other host genes 
referred as Rj genes have been identified as controlling nodulation 
traits upon inoculation with compatible Bradyrhizobium (Hayashi 
et al., 2012). In addition Radwan et al. (2012) have usedRNA 
interference (RNAi) approach to silence SGF14c and SGF14l 
gene expression in soybean roots using A. rhizogenes-mediated 
root transformation. Silencing of these genes encoding 14-3-3 
proteins resulted in reduced numbers of mature nodules and large 
numbers of arrested nodule primordia following B. japonicum in-
oculation. This work suggests a critical role of 14-3-3 proteins in 
early stages of nodule development. Recently it was shown that 
soybean ureide transporters play a critical role in nodule develop-
ment, nodule functioning and in nitrogen export out the symbiotic 
organ. For this, Collier and Tegeder (2012) demonstrated, using 
A. rhizogenes transformation combined with an RNAi approach, 
the function of two soybean proteins, GmUPS1-1 and GmUPS1-2 
in allantoin and allantoic acid transport out of the nodule. The 
repression of GmUPS1-1 and GmUPS1-2 in nodules resulted in 
an accumulation of ureides and decreased nitrogen partitioning 
between roots and shoots. 

Common bean (Phaseolus vulgaris) and cowpea (Vigna un-
guiculata)

Consortia focusing on common bean (www.phaseolus.net) and 
cowpea (http://www.entm.purdue.edu/ngica/) have allowed making 
progresses in these two plants. For common bean and cowpea, 
genetic transformation protocols are not well established. Although 
progress has been made in establishing a transformation protocol 
for Phaseolus acutifolius (Zambre et al., 2005), the developed 
protocol is not routinely used. By using A. rhizogenes-mediated 
hairy root transformation, Estrada-Navarrete et al.,2006) reported 
the successful production of composite plants for the otherwise 
transformation recalcitrant bean species, P. vulgaris, P. coccineus, 
P. lunatus and P. acutifolius.

Conclusions

Leguminous plants are recognized worldwide because of their 
environmental and agricultural benefits. Recent progresses in 
molecular biology, genomics, transcriptomics, proteomics, metabo-
lomics and bioinformatics of model legumes, M. truncatula and L. 
japonicus have provided new opportunities for deciphering gene 
function in legumes. The genome sequences or draft genomes 
of M. truncatula, L. japonicus, G. max, P. vulgaris and C. arietum 
are now available (www.phytozome.net; http://cicar.comparative-
legumes.org). These legume plants share considerable genetic 
synteny with other crop legumes and this has allowed the suc-
cessful translation of knowledge from these well characterized 
legumes to other agriculturally important legumes that are not 
well characterized. A long-lasting research idea is to transfer the 
legume genes required to establish symbiosis with nitrogen-fixing 
rhizobia to non-legume crop species (Charpentier and Oldroyd, 
2010). Such genetic modifications will require transfer of multiple 
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genes or pathways. Recently, Untergasser et al.,2012) developed 
a vector able to transfer eight genes in one-step by Agrobacterium-
mediated transformation. Genes essential for M. truncatula to 
establish a symbiosis with rhizobia were transferred to four non-
leguminous species; strawberry, poplar, tomato and tobacco and 
all the transgenes were shown to be expressed in the root tissue 
of these non-legumes. Long term efforts of scientists will then 
continue to focus on the establishment of successful symbiotic 
interactions of rhizobia with non-legume crops.
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