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ABSTRACT  Endocrine disruptors (EDs) belong to a large group of compounds, usually present as 
environmental pollutants, which can alter the homeostasis of living organisms by modifying hor-
monal balance and changing the normal patterns of gene regulation during development and cell 
differentiation. Hence, the development of male gonads and their functionality may be affected by 
exposure to specific EDs or their mixtures. The molecular mechanisms of action of these reprotoxi-
cants leading to pathologies of the reproductive system such as testicular cancer, are complex and 
not well characterized. It is likely, however, that these compounds alter the interaction between 
the mechanisms of gene regulation and functional gene networks in windows of risk, mainly dur-
ing embryonic development. Moreover, such changes could be transmitted through generations 
by epigenetic mechanisms. There are examples of the action of EDs on the expression of mRNAs, 
small non-coding RNAs and epigenetic marks in the developing testis associated with cellular 
and molecular alterations found in germ cell tumors. In the present review, we will discuss vari-
ous aspects of genetic, transcriptomic and epigenetic changes related to testicular development, 
exposure to EDs and the occurrence of germ cell tumors. 
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Introduction

Testis development involves a series of processes of differen-
tiation from early embryogenesis, mainly based in mammals on 
genetic determinants of male on chromosome Y. Mechanisms of 
germ and Sertoli cell differentiation, lead to the formation of semi-
niferous tubules that along with the intertubular Leydig cells form 
the cellular network of spermatogenesis. Autocrine, paracrine and 
endocrine regulations and precise specific gene expression allow 
setting the appearance of male characters and the continuous 
production of sperm in adult life (Brennan and Capel, 2004; Park 
and Jameson, 2005).

Spermatogenesis involves complex processes of proliferation, 
differentiation, cell interactions and morphogenetic changes to pro-
duce highly differentiated and haploid cells such as in spermatozoa. 
Although the time course of cell differentiation can be very variable 
among different mammals, basic traits of spermatogenesis at the 
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cellular and molecular levels, as well as the developmental progres-
sion are comparable; this enables predictions using animal models 
of study. The exclusive nature of some of these processes requires 
developmentally orchestrated control of gene expression. It has 
been estimated that about 4% of the mouse genome, represent-
ing above 2300 genes, is specifically expressed in testis (Schultz 
et al., 2003). In addition, alternative forms of post-transcriptional 
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regulation of gene expression such as alternative splicing (Yeo et 
al., 2004), different polyadenilation sites and thus 3’-UTRs (Par-
raga and del Mazo, 2000; Wang et al., 2006), and differences in 
the length of poly(A) tails of mRNAs (de Luis and del Mazo, 1998), 
are frequent in testicular germ cell differentiation. 

The recent developments in the “world of small RNAs” are 
causing a revolution in our knowledge of gene regulation. RNA 
interference mediated by small non-coding RNAs is a powerful 
mechanism in the control of gene expression associated with 
cell differentiation and pathologies. In germ cells, three types of 
endogenous small RNAs, microRNAs (miRNAs), piwi-interacting 
RNAs (piRNAs) (initially considered specific of germ cells) and 
endogenous small interfering RNAs (endo-siRNAs), with cell-type 
regulated biogenesis (Gonzalez-Gonzalez et al., 2008; Garcia-
Lopez and del Mazo, 2012), are being studied to determine their 
role in the differentiation of germ cells and its pathologies, including 
infertility and testicular cancers (He et al., 2009).

The cells and biological systems can be affected by environ-
mental contaminants through alterations of genetic systems, by 
multiple mechanisms of action also interacting with the genetic 
backgrounds (Edwards and Myers, 2007). The adverse effect of 
environmental pollutants on reproductive health is well documented 
(Woodruff et al., 2008). An important and extensive group of 
chemical contaminants, widespread in the environment, is called 
endocrine disruptors (EDs). These are wide groups of chemical 
compounds such as: pesticides and herbicides, organic com-
pounds, pharmacological substances, heavy metals, persistent 
organic pollutants, air contaminants that interfere with endocrine 
pathways and can induce gene deregulation in exposed organisms. 
To date, hundreds of compounds considered EDs and thousands 
of others are suspected of having similar properties have been 
identified. The testis has been clearly identified as a significant 
target for the deleterious action of these environmental toxicants. 
This knowledge generates worldwide concern as to consequences 
for reproductive health both in humans and wild species (Colborn 
and Clement, 1992). The causal relationship between endocrine 
disruption by environmental chemicals and disorders such as 
cancer and infertility has been the subject of numerous scientific 
reports. A classical, albeit contested, report (Toppari et al., 1996) 
reached the conclusion that there has been a general, although 
not necessarily global decline in semen quality during the last fifty 
years as was previously reported (Carlsen et al., 1992). The report 
also showed that 2-4% of the annual increase in testicular cancer 
was diagnosed in men under 50 years old in Britain, Scandinavia, 
Australia and the USA. Epidemiological and experimental data 
indicate that developmental exposure to EDs could induce, at the 
level of male gonad development and reproduction, the so-called 
“Testicular Dysgenesis Syndrome” (TDS) (Sharpe and Skakke-
baek, 1993; Skakkebaek et al., 2001). TDS includes four clinical 
and etiologically related traits: hypospadias, cryptorchidism, low 
sperm counts and testicular tumors (Asklund et al., 2004). The 
impact of EDs, however, is still unclear due to the wide range of 
possible mechanisms for ED action, levels of ED exposure, mixture 
of chemicals potentially acting as EDs and the genetic sensibility 
of individuals or populations to the compounds. 

The effects in germ cells not only may affect the exposed 
individual but can also be inherited and potentially influence the 
phenotype of subsequent generations by epigenetic mechanisms. 
The term “epigenetic”, introduced by C.H. Waddington (1905-75) to 

describe interactions of genes with their environment (Waddington, 
1942), is now used to define heritable changes in gene expres-
sion that are not coded in the DNA sequence. Main epigenetic 
mechanisms include DNA methylation and histone modifications 
(Kim et al., 2009). More recently, additional mechanisms have 
been identified, among them microRNAs (miRNAs) can act on 
the epigenetic machinery, and in turn miRNA expression can 
also be controlled by epigenetic mechanisms (Sato et al., 2011). 
The epigenetic patterns can be transmitted to the daughter cell, 
and possibly also through generations. In turn, deregulation of 
miRNAs can affect the regulation of expression of mRNA targets, 
generating complex mechanisms of alterations with pathological 
consequences in testis development and function.

Developmental origin of testicular germ cell tumors

Testicular germ cell tumors (TGCTs) are the most common 
solid cancers in men aged 15–40 years in developed countries 
(Huyghe et al., 2003; Hussain et al., 2008), constituting 2% of all 
human malignancies (Richiardi et al., 2004; Motzer et al., 2012) 
and representing the most frequent cause of death as a conse-
quence of solid tumors in this age group (Oosterhuis and Looijenga, 
2005). Germ cell tumors represent about 95% of malignant tumors 
arising in the testes whereas only 1-5% of the testicular cancers 
have their origin on somatic components of the testis: Sertoli and 
Leydig cells (Mostofi, 1973; Giglio et al., 2003). During the last 
five decades the prevalence of these tumors increased 2-3 times 
and each year about 9,000 new cases of TGCTs are diagnosed 
in USA (Siegel et al., 2012). 

TGCTs consist of a heterogeneous group of neoplasms, estab-
lished at different anatomical locations in the testis. Simplistically, 
TGCTs can be classified in seminomas (SGCTs) and non-sem-
inomas (NSGCTs). Seminomas have features of the primordial 
germ cells (PGCs) or gonocytes, the ancestors of spermatogonia 
while non-seminomas include mixed germ cell tumors (the most 
common), embryonal carcinoma, teratoma, choriocarcinoma, and 
yolk sac tumors. 

The fetal origin of some types of TGCTs is widely supported 
(Rajpert-De Meyts et al., 1998; Looijenga et al., 2007b; Kristensen 
et al., 2008; Wohlfahrt-Veje et al., 2009). Due to their physiological 
and genetic similarities, PGCs are considered the cell origin of the 
TGCTs (Rajpert-De Meyts, 2006). Indeed, seminomas have clear 
features of PGCs (see below) (Jiang and Nadeau, 2001; Oosterhuis 
and Looijenga, 2005; Gilbert et al., 2011). Both seminomas and 
teratocarcinomas derived from abnormal germ cells that initiate 
within the seminiferous epithelium as carcinoma in situ (Skakkebaek, 
1972). Carcinoma in situ and embryonic stem cell display similar 
profiles of gene expression (Almstrup et al., 2004).

Although controversial (Vidaeff and Sever, 2005), epidemiological 
studies in humans associate the exposure to different environmental 
toxicants with the development of TGCTs. Epidemiological studies 
support the hypothesis that testicular cancer is associated with 
exposure to some EDs, at least to estrogens (Storgaard et al., 
2006), during the fetal or early postnatal life. Exposures to persis-
tent organochlorine pesticides (POPs) have been associated to 
risk increase of seminomas and non-seminomas testicular cancers 
(McGlynn et al., 2008). However, no association with exposure to 
polychlorinated biphenyls (PCBs) (even, inverted association) was 
detected (McGlynn et al., 2009), speculatively explained by the 
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wide range of effects of the different PCBs and mixes (estrogenic, 
antiestrogenic, androgenic, and antiandrogenic).

The Sertoli cells as somatic components of the seminiferous 
epithelium play a pivotal role in the development of a functional 
testis, and as consequence in the development of the male phe-
notype (Skinner and Griswold, 2005). Their direct interaction with 
male germ cells into the seminiferous epithelium is crucial during 
spermatogenesis. Disorders in the correct maturation or numbers 
of Sertoli cells thus may be the cause of male reproductive disor-
ders (reviewed by Sharpe et al., 2003). Similarly, the Leydig cell 
represents a crucial element of testis functions, basically through 
the secretion of androgens (Payne et al., 1996). The effects of EDs 
on such cells are considered of special relevance due to hormonal 
regulation of Sertoli and Leydig cells functions and by the hypothesis 
that the TDS could be mainly caused by functional disorders in 
Sertoli and Leydig cells (Sharpe et al., 2003). However, dysregula-
tion of gene expression in these cell types as consequence of ED 
exposures seems to cause dysfunctions in traits of TDS other than 
testicular cancer. Therefore, Sertoli or Leydig cells tumors will not 
be discussed in this review.

Genetic background of testicular germ cell tumors

From the genetic point of view, chromosomal unbalance is 
usually found in diverse forms of TGCT. The most common cyto-
genetic alteration is the amplification of human chromosome 12p 
region (Looijenga et al., 2003b; Rodriguez et al., 2003; Zafarana 
et al., 2003; von Eyben, 2004). Different TGCTs show particular 
chromosome abnormality pattern. While in non-seminoma germ 
cell tumors gain of proximal 17q and loss of 10q have been usu-
ally detected (Mohamed et al., 2012), seminomas show high-level 
amplification of 12p (Zafarana et al., 2003; Mohamed et al., 2012). 
Interestingly, this chromosome region contains multiple genes 
postulated to be involved in TGCT, such as CCND2, STELLAR 
and NANOG, expressing in PGCs and playing important roles in 
stem cell maintenance (Houldsworth et al., 2006).

Compared to chromosomal abnormalities, specific gene 
mutations in TGCT are less frequent. The most frequent single 
genes affected in TGCTs are: KIT, TP53, K-RAS, N-RAS, and 
B-RAF (reviewed bySheikine et al., 2012). Genetic susceptibility 
to TGCTs conditioning the familial testicular germ cell tumors has 
been established, confirming mutations or single nucleotide poly-
morphisms (SNPs) affecting some genes involved in the normal 
germ cell differentiation such as KITLG, SPRY4, PDE11A and 
BAK1 (Greene et al., 2010).

Genetic susceptibility to TGCTs by exposure to some types of 
EDs is currently being studied more intensively. Genetic polymor-
phism in humans, such as those found on hormone-metabolizing 
genes including CYP17A1 and HSD17B1, can also modified the 
association between TGCT risk and exposure to specific EDs such 
as POPs (Chia et al., 2010). The combination of genotyping and 
transcriptome analysis (named genetical genomics) could differ-
entiate the genetic from the environmental components of gene 
expression variations (Gibson, 2008). After genome-wide associa-
tion (GWA) studies, new approaches based on gene–environment 
(G×E) interactions methodology (Thomas, 2010; van Ijzendoorn et 
al., 2011) will probably contribute to clarify the complex pathways 
involving multiple genes and exposures.

Comparing gene expression in PGCs and testicular 
germ cell neoplasias

In mammals, PGCs are the embryonic precursors of both 
female and male germ cells (De Felici, 2001). As we are going 
to discuss below, in the mouse embryo, PGCs are determined 
in the extraembryonic mesoderm of the yolk sac wall around the 
gastrulation period (6.5 days post coitum, dpc; and around the 
third week of gestation in humans) (McLaren, 2003; Saitou et al., 
2003; De Felici, 2012). From this region, they migrate within the 
developing gonadal ridges where they differentiate into female or 
male germ cells. Within the fetal testis, PGCs after a proliferation 
period exit temporarily from the cell cycle and are arrested in G0. 
Such quiescent cells included inside seminiferous cords are now 
called prespermatogonia or gonocytes. The sexual dimorphism of 
the mouse gonads is evident at 12.5-13.5 dpc (Fig. 1). Spermatogo-
nial stem cells (SSCs) of the newborn and prepuberal testis derive 
from gonocytes although the processes of their differentiation from 
these cells are unknown. SSCs can self-renew and generate a large 
number of differentiated germ cells. In particular, they give rise to 
type A spermatogonia which after some rounds of proliferation 
differentiate into type B spermatogonia; these latter entering into 
meiosis become spermatocytes. After meiotic divisions, haploid 
spermatids are produced, suffering morphogenetic changes until 
their subsequent differentiation into spermatozoa.

The transcriptional repressor BLIMP1 (B-lymphocyte-induced 
maturation protein 1) participates in the initial specification of 
PGCs repressing their somatic program (Saitou et al., 2003; 
McLaren and Lawson, 2005; Ohinata et al., 2005; Vincent et al., 
2005). Subsequently, PGCs move from the proximal epiblast to the 
extraembryonic mesoderm of the yolk sac wall and then through 
the hindgut and dorsal mesentery to the gonadal ridges (11.5 dpc 
in mice and the 6th week in humans) (Godin et al., 1991; Wylie, 
1993; Donovan, 1994; Runyan et al., 2006; Sheikine et al., 2012). 

Fig. 1. In mice, the sexual dimorphism of the fetal gonads is clearly 
evident at 13.5 dpc. The mesonephros, with an important role in sexual 
differentiation, is associated with the left of each gonad.
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During this period, PGC development is regulated by a variety of 
growth factors and cytokines including BMPs (bone morphogenic 
proteins), Kit ligand (KITLG), also known as the stem cell factor 
(SCF), and SDF1 (stromal cell derived-1) (for a review, see (De 
Felici and Farini, 2012). PGCs and gonocytes express several 
markers typical of stem cells such as TNAP (tissue not specific 
alkaline phosphatase), NANOG, ESG1, SOX2, POU5F1 (also 
known as OCT3/4), and SALL4 (Saitou et al., 2002; Saitou et al., 
2003; Gashaw et al., 2007; Niwa, 2007), as well as germ cell specific 
such as MVH, NOBOX, DAZL, NANOS3 (reviewed by De Felici, 
2009). PGCs and in part gonocytes have their original genomic 
imprinting pattern erased, which allows development of gender-
specific germ cell lineages. PGCs maintain intrinsic pluripotency 
up to their differentiation into oocytes and gonocytes as shown by 
their capability to produce teratomas/teratocarcinoma or embryonal 
germ (EG) cells (for a review, see(Donovan and de Miguel, 2003). 

It is likely that at least in part PGC intrinsic pluripotency depends 
on the methylation status of imprinted genes such as H19, IGF2, 
IGF2R and SNRPM (Szabo and Mann, 1995). The loss of imprint-
ing in PGCs could be considered as one of the pathways implied 
in their differentiation and loss of pluripotency. In the presence of 
the Y chromosome, the gonadal stromal cells of the gonadal ridges 
express the transcription factor SRY and its target gene SOX9 driv-
ing Sertoli cell differentiation (Polanco and Koopman, 2007). The 
Sertoli cells create a microenvironment that allows differentiation 
of gonocytes into SSCs. During the differentiation process, germ 
cells gradually lose expression of NANOG, PLAP, and POU5F1, 
partially of KIT and SALL4, and acquire expression of other genes 
including MAGE4A, and TSPY (Cao et al., 2009). Gene signature of 
deregulation in TGCTs respect to normal male germ cells has been 
reported based on array analysis in different histological entities 
of TGCTs (Okada et al., 2003; Gashaw et al., 2005). These stud-
ies have associated patterns of deregulation of specific genes as 
potential molecular markers of gene expression that define types of 
TGCTs and prognosis of such tumors (Gashaw et al., 2005). One 
feature that could define the fetal origin of TGCTs is the similarity 
of the patterns of gene expression between PGCs/gonocytes and 
neoplasic cells of testicular tumors (Almstrup et al., 2004). Analy-
sis by cDNA microarrays defined expression profile of 895 genes 
that were upregulated in human embryonal stem (ES) cells and 
carcinoma lines respect to the controls, showing highest expres-
sion the OCT3/4 gene and confirming the hypothesis that human 
seminomas most closely resemble transformed PGCs (Sperger et 
al., 2003). Interestingly, high representations of deregulated genes 
are localized on the 12p chromosome region.

In humans, seminomas, embryonal carcinoma, carcinoma in situ 
(CIS) and yolk sac tumors show expression of OCT3⁄4 (Palumbo et 
al., 2002; Looijenga et al., 2003a; de Jong et al., 2005; Richie, 2005; 
Jung et al., 2006), NANOG (Hart et al., 2005; Hoei-Hansen et al., 
2005) and LIN28 (West et al., 2009; Gillis et al., 2011) which are not 
detectable in either normal testicular tissue or in teratomas. During 
development of human germ cell, the genes OCT3⁄4, NANOG and 
LIN28 are expressed in PGCs and gonocytes being LIN28 extended 
to prespermatogonia (Yeom et al., 1996; Brehm et al., 1998; Gillis 
et al., 2011), amongst others involved in pluripotency (Nichols et al., 
1998). In mouse, LIN28 regulates the expression of members of the 
family of miRNA: miR-let-7 (Hagan et al., 2009), which potentially 
regulates other multiple potential mRNA targets. The regulation of 
specific gene expression during early development is also medi-

ated by DNA methylation as occurs in the expression of OCT3⁄4 
(Gidekel and Bergman, 2002) whose expression levels appear a 
crucial key in the neoplasic process (Gidekel et al., 2003). Other 
functional markers of gene expression in TGCTs common to early 
differentiated germ cells and CIS, are PLAP (Hustin et al., 1987) 
and c-KIT (Rajpert-De Meyts and Skakkebaek, 1994; Strohmeyer 
et al., 1995; Honecker et al., 2004; Motzer et al., 2012).

In contrast to other cancers, there are few animal models of 
TGCTs. In mouse, the only strain that developed TGCTs, and 
which also proved to originate from PGCs is the 129/SvJ strain, 
discovered by more than 50 years ago by Stevens (Stevens and 
Little, 1954; Stevens and Hummel, 1957; Stevens, 1962; Stevens, 
1964; Stevens, 1967; Stevens, 1973; Stevens, 1984). More re-
cently, it has identified mutations in the mouse homologous gene 
of zebrafish (Weidinger et al., 2003): dead end homolog 1 (Dnd1) 
gene as an inducer of this phenotype (Matin and Nadeau, 2005; 
Youngren et al., 2005). Dnd1 encodes a protein participating in the 
“editosome” with activity of RNA-binding protein (Youngren et al., 
2005). RNA editing is a post transcriptional key regulator of gene 
expression (Keegan et al., 2001) that generate alternative RNAs 
including mRNAs and double stranded RNAs such as are the miR-
NAs precursors (Nishikura, 2010). Recently, it has been reported 
the binding of Dnd1 to transcripts encoding negative regulators of 
the cell-cycle, involved in developing male germ cell mitotic arrest 
(Western et al., 2008), such as: p21Cip1, p27Kip1, Lats2, pRB, p53 
and Pten promoting translation regulation (Cook et al., 2011) as 
was previously suggested (Western, 2009). Experimental deletion 
of Pten in PGCs drives to testicular teratomas and abnormal germ 
cell proliferation (Kimura et al., 2003; Moe-Behrens et al., 2003). It 
has been proposed that a regulatory mechanism of Dnd1 is based 
on the protection of specific transcripts, as those mentioned, to the 
negative post-transcriptional regulation of miRNAs. In this view, the 
binding of the transcripts to 3’ UTR regions protects for the binding 
and activity of miRNA competing for the same mRNA regions, as 
was observed in zebrafish where Dnd1 protein is able to protect 
Nanos from the negative translation regulatory action of miR-430 
during PGC development (Kedde et al., 2007). Combining both 
potential activities of Dnd1, a dual action of Dnd1 can be hypoth-
esized: modification the sequence of miRNAs in their biogenesis 
and therefore divert them from their initial target, or alternatively 
competition with the target miRNAs. Consequently, complex regula-
tory mechanisms at postranscriptional level could also be involved 
in the genetic program of germ cells development in the embryo 
being their unbalance involved in testicular tumorogenesis.

Effects of endocrine disruptors on gene expression in 
PGCs and developing testis

Studies of transcriptome changes in testicular cells after chemi-
cal exposure have been carried out in mouse models using both 
in vitro and in vivo approaches. In vitro analysis allows to define 
changes of gene expression in specific cell types. Yet, the in vitro 
approaches create a handicap due to the removal in isolating cells 
from their natural physiological conditions. This method also is 
valid for cell types present in the precise time frame during testis 
development such as PGCs. For example, the level of AKT kinase 
activity, that is induce by phosphorylation of the KIT-ligand, crucial 
for PGC survival/proliferation, significantly decreased in mouse 
PGCs exposed to lindane (gamma-HCH) in vitro along with the 



EDs, gene deregulation and male germ cell tumors    229 

increase in the number of apoptotic PGCs induced by lindane ei-
ther in culture and in the embryo (La Sala et al., 2009). Moreover, 
in a similar in vitro assay 17-beta-estradiol (E2) was able to rapid 
stimulation of AKT, KIT ERK2 and SRC phosphorylation in mouse 
PGCs (La Sala et al., 2010). 

Others in vitro studies have shown differential response of PGCs 
to toxicants with different mechanisms of action. In vitro cultured 
PGCs exposed to N-ethyl-N-nitrosourea (ENU) (a classical toxicant 
and mutagen, with effects on spermatogenic cells) (Lessard et al., 
2004) or Doxorubicin (trade name Adramycin, ADR) an anthracycline 
widely used in cancer therapy, with apoptotic effects on spermato-
genic cells (Sjoblom et al., 1998) demonstrated growth inhibition 
and apoptosis induction, whereas exposure to mono (2-ethylhexyl) 
phthalate (MEHP) (the direct metabolite of the di (2-ethylhexyl) 
phthalate or DEHP), a widespread plasticizer, ubiquitously found as 
environmental pollutant affected PGC adhesion to cell monolayers 
(Iona et al., 2002). 

In order to identify gene deregulation as early response to dif-
ferent toxicants cDNA libraries prepared from limited amount of 
cells followed by differential screening showed highly altered gene 
expression in PGCs after exposure in vitro to EDs (Table 1) (our 
own data). Most of deregulated genes detected encode proteins 
involved in pathways basic for cell survival: respiratory chain and 
oxidative stress, ribosomal proteins, metabolism of the cell and 
translation factors. The relationship between mitochondrial reactive 
oxygen species (ROS) and survival/cell death is well established 
(Orrenius, 2007) and was classically related to fertility impairment 
(Sikka et al., 1995). The survival of mammalian cells exposed to 
adverse environmental conditions requires a radical reprogramming 
of protein translation (Yamasaki and Anderson, 2008). 

Studies of gene expression deregulation caused by environmen-

tal reprotoxicant exposure on testis, including EDs, have focused 
on the analysis of specific genes and defined genetic pathways 
(Richburg et al., 2002; Edwards and Myers, 2007). The use of DNA 
microarray technology has implemented the understanding of the 
molecular basis of the effects EDs and other toxicants (Francois 
et al., 2003; Iguchi et al., 2006; Iguchi et al., 2007). Vinclozolin is a 
known ED, used as fungicide, with antiandrogenic activity (Kelce et 
al., 1994). Analysis by microarrays of changes in the transcriptome 
of embryo testes from rats exposed during embryonic period to 
vinclozolin showed altered expression of 576 genes in embryo at 
13-16 dpc (Clement et al., 2010). Gene expression deregulation can 
be based on epigenetic mechanisms as was reported by the same 
research team (Anway et al., 2005; Anway et al., 2006). Some of 
the deregulated genes are close related with cancer development 
such as the tumor suppressor HIC2 (hypermethylated in cancer 2).

Recently, we also reported a comparative analysis of the effect 
of different EDs on gene expression in developing testis, assessing 
at the same time dosage and developmental periods of exposure 
(Lopez-Casas et al., 2012). Five compounds of different nature, but 
all considered as ED, were analyzed. 17beta-estradiol (E2), as a 
natural estrogen; lindane, as one of the oldest synthetic pesticides 
still in use worldwide; mono-(2-ethylhexyl) phthalate (MEHP), bi-
sphenol A (BPA) as a worldwide environmental contaminant and 
zearalenone (ZEA) a non steroidal estrogenic mycotoxin. Experi-
mental deleterious effects of each of these compounds have been 
widely reported. The experimental plan included in vivo exposure 
of mice to several doses of EDs following a defined protocol: moth-
ers were exposed two weeks before mating; the same exposure 
and dose were maintained during pregnancy and four weeks after 
birth. The results indicated that the different EDs act during testis 
development and germ cell differentiation with different mechanisms 
and diverse molecular pathways, as shown by their patterns of 
gene expression deregulation. MEHP and ZEA exposures define 
specific gene expression signatures after unsupervised hierarchical 
clustering analysis of 2670 genes. The pattern of deregulation was 
irrespective of the concentration of the toxicant or the developmental 
period during which exposure occurred, which strongly suggested 
that the mechanisms of action at the level of deregulation of gene 
expression occurred in the early stages of development, since in 
an experimental group of mice the exposure period was only for 
two weeks in pre-matting mothers. Maternal accumulation of the 
EDs or epigenetic effects could explain the pattern of altered gene 
expression in adult testis (Lopez-Casas et al., 2012). Interestingly, 
the most relevant gene network of the deregulated genes is involved 
in pathologies affecting: cancer, developmental and endocrine 
system disorders. In agreement with previous studies of toxicity 
of 309 chemicals, mostly pesticides, analyzed in ES cells in vitro 
(Chandler et al., 2011), we detected that genes involved in oxidative 
stress response pathways such as Nrf2 are highly deregulated by 
exposure to the different EDs analyzed. Genes involved in testicular 
embryonal carcinoma progression, including matrix metalloprotein-
ase 2 (Mmp2) have also been recently reported as overexpressed 
in testicular carcinoma cells exposed to MEHP (Yao et al., 2012).

Epigenetics

Epigenetics is referred to changes in gene expression transmit-
ted mitotically and meiotically without altering the DNA sequence. 
Consequently, epigenetic changes are key process both in cell 

Compound Gene Symbol Gene Name Regulation 

MEPH Rpl8 ribosomal protein L8 UP 

MEPH Rpl24 ribosomal protein L24 UP 

MEPH mt-Nd1 ND1 NADH dehydrogenase subunit 1 DOWN 

MEPH Rpl10a ribosomal protein L10A DOWN 

MEPH Eif2s2 Eukaryotic translation initiation factor 2, subunit 2 
(beta) 

DOWN 

MEPH Fau Finkel-Biskis-Reilly murine sarcoma virus (FBR-
MuSV) ubiquitously expressed (fox derived) 

DOWN 

MEPH mt-Co3 Cytochrome Oxidase III, COX3 DOWN 

ENU Rplp1 Ribosomal protein, large, P1 UP 

ENU Rpl31 ribosomal protein L31 UP 

ENU Rpl28 ribosomal protein L28 UP 

ENU Rpl35 ribosomal protein L35 UP 

ENU Rps17 ribosomal protein S17 UP 

ENU mt-Co3 Cytochrome Oxidase III, COX3 DOWN 

ENU Rps8 ribosomal protein S8 DOWN 

ENU mt-Co1 cytochrome c oxidase subunit I DOWN 

ENU mt-Nd2 NADH dehydrogenase subunit 2, mitochondrial DOWN 

ENU Sod1 superoxide dismutase 1, soluble DOWN 

ADR Hbb-Y hemoglobin Y, beta-like embryonic chain UP 

ADR Rpl41 ribosomal protein L41 DOWN 

TABLE 1

GENES DEREGULATED IN PGCs AFTER IN VITRO EXPOSURE
TO DIFFERENT TOXICANTS

Deregulated genes were identified by differential screening of gene expression from cDNA libraries

MEHP (mono-2-ethylhexyl phthalate), ADR (adriamycin) ENU (N-ethyl-N-nitrosourea)
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differentiation and as result of environmental impact on biological 
processes (Youngson and Whitelaw, 2008; Feil and Fraga, 2012). 

The most relevant epigenetic processes are: methylation of cy-
tosine residues on DNA (Bird and Wolffe, 1999), post-translational 
modification of histone tails (Jenuwein and Allis, 2001), and regula-
tion by noncoding RNAs (especially miRNAs) (Chuang and Jones, 
2007; Costa, 2008). All this epigenetic processes contribute to define 
the condensed or decondensed chromatin state and consequently 
gene expression. DNA methylation is the most studied mechanism 
of epigenetic regulation. Cytosine methylation primarily occurs in 
CpG dinucleotides in CpG-rich sequences, known as CpG islands 
that is often found near or in the gene promoter regions and usually 
unmethylated in somatic cells but differentially methylated in genes 
of the germline (Bird et al., 1985; Cross and Bird, 1995; Weber 
et al., 2007; Borgel et al., 2010; Popp et al., 2010; Hackett et al., 
2012). DNA methylation, maintained by DNA methyltransferases, 
is a crucial mechanism of epigenetic gene silencing of cell-specific 
genes and transposons, cell differentiation and development, pa-
rental genomic imprinting, X chromosome inactivation in mammals 
and maintenance of cellular pluripotency (De Carvalho et al., 2010; 
Meissner, 2010; Portela and Esteller, 2010).

The epigenetic reprogramming of PGCs development is neces-
sary to provide these cells pluripotency (De Felici, 2011). Global 
demethylation of PGCs appears to be a key mechanism in this 
reprogramming (Popp et al., 2010; Surani and Hajkova, 2010). 
However, some genes potentially germline determinants, escape 
the global demethylation, suggesting transgenerational transmis-
sion of DNA methylation pattern for these specific genes (Borgel 
et al., 2010).

Epigenetic alteration, mainly changes in DNA methylation, is 
a common trait in cancer (Esteller, 2007; Sharma et al., 2010). In 
TGCTs, the pattern of imprinted genes is similar to that observed 
in normal embryonic cells, indicating again the embryonic origin of 
the TGC and the possible role of epigenetic changes in TGCTs in 
adults (van Gurp et al., 1994; Schneider et al., 2001; Sievers et al., 
2005). The analysis of global methylation in TGCTs showed a profile 
distinct to other types of cancer affecting somatic cells (Ushida et 
al., 2012), mimicking the pattern obtained in PGCs (Okamoto and 
Kawakami, 2007). However, differences are also founds between 
seminomas and non-seminomas. Seminomas show hypometh-
ylation at the CpG islands while non-seminomas that show CpG 
island methylation at a level similar to other solid tumors (Smiraglia 
et al., 2002), which can be related with the differentiation state of 
PGCs in the timing of the transformation to tumorogenic cells as 
has been proposed (Rajpert-De Meyts et al., 1998).

Analyses of methylation levels in specific relevant genes also 
show alterations in TGCTs. In this sense, the serine protease 
testisin (PRSS21) expressing in premeiotic testicular cells and 
considered as tumor suppressor gene is also down-regulated in 
TGCTs (Kempkensteffen et al., 2006) probably due to the high 
level of hypermethylation at the promoter region as was detected 
in TGCTs (Manton et al., 2005).

The fact that methylation patterns, and its alterations can be 
transmitted transgenerationally encourage the study of specific 
epigenetic changes in DNA methylation as a result of exposure 
to toxicants compounds during gonadal development and their 
potential pathological consequences. Limited studies have been 
carried out in this respect. MGMT (O6-methylguanine-DNA meth-
yltransferase) is a DNA repair enzyme participating in the natural 

defence against cytotoxics. Loss of MGMT function can facilitates 
mutagenesis in oncogenes and tumor suppressors genes (Ger-
son, 2004). Down-regulation of MGMT due to hypermethylation 
of its promoter has been associated to different types of cancers, 
including testicular cancer showing higher hypermethylation levels 
in non-seminomas respect to seminomas (Smith-Sorensen et al., 
2002; Honorio et al., 2003). 

Due to the multiple potential mechanisms of action of the EDs, 
diverse environmental epigenetic inferences have been reported 
(Zhang and Ho, 2011). Altered patterns of methylation domains of 
parental imprinted genes were reported in the sperm of mice exposed 
to the antiandrogen vinclozolin (Stouder and Paoloni-Giacobino, 
2010). BPA alters the coat colour in the agouti mice (Dolinoy et 
al., 2007b), character highly sensitive to changes in methylation 
(Dolinoy et al., 2007a). BPA also induced in the mouse hypometh-
ylation of the Hoxa10 gene in uterine cells of females exposed in 
embryonic life (Bromer et al., 2010). Similarly, low dosage of BPA 
induces in neonatal rats hypomethylation of the phosphodiester-
ase Pde4d4 promoter (Ho et al., 2006). The exposure of mice to 
DEHP results in global increase of genome methylation level in the 
testis in addition to significantly increase of transcript expression 
of Dmnt1, Dmnt3a and Dmnt3b methyltransferase genes (Wu et 
al., 2010) which are essentials for the establishment of cytosine 
residue methylation (Li et al., 2003). Transgenerational effects of 
specific ED have been reported. The studies, contested by other 
reported by the chemical industry (Schneider et al., 2008), based 
on the effect on epigenetic mechanisms transmitted by germ cells 
were basically carried out by the exposure to vinclozolin (Anway 
et al., 2005; Skinner and Anway, 2005; Anway et al., 2006; Skin-
ner, 2007; Skinner et al., 2011). The window of exposure during 
development is crucial for the phenotypic manifestation in adults 
and in successive generations. Only exposure in utero, during 
the period of formation of embryonic germ cells and their DNA 
methylation changes, affected later in adult germ cells (Cupp et 
al., 2003; Uzumcu et al., 2004).

Histone methylation is a post-translational modification of these 
key proteins involved in the dynamic and stability of chromatin 
conformation, and potentially in gene expression (Greer and Shi, 
2012). Recent bioinformatics approach, based on previously 
reported data of gene expression in testis in different mammals 
exposed to vinclozolin and dibutyl-phthalate versus unexposed, 
suggests that histone methylation states, and particularly the regu-
lation of demethylase Kdm1, could participate in the phenotypes 
observed as consequence to EDs exposures and their potential 
transgenerational epigenetic inheritance (Anderson et al., 2012). 
Although still incipient, the most studied mechanism concern-
ing histone modification is the histone H3 lysine 9 trimethylation 
(H3K9me3) but hundreds of modifications with potential effects on 
epigenetic modifications should occurs considering all components 
of the core histones of the chromatin (Kubicek et al., 2006; Ban-
nister and Kouzarides, 2011). Recently, the histone demethylase 
(H3K27) UTX has been reported as the safeguard of H3K27me3 
demethylation observed in PGCs (Sansam et al., 2003). However, 
histone modifications potentially due to EDs and effects on testis 
development are rarely reported. 

Based in the concept of epigenetic adaptation to exposure to 
adverse conditions during fetal development (Heijmans et al., 
2009; Tobi et al., 2009), it is suggestive to hypothesize that the 
exposure to a particular ED could modify the epigenetic pattern 
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of cells destined to be germ cells, such as PGCs, conditioning an 
“adaptive” response later for not differentiate, as a “hibernation”, 
in response to the “adverse environment”. Such circumstances 
might condition the maintenance of the undifferentiated state 
throughout the development and be the niche of carcinoma in situ. 
In adulthood, these cells “epigenetically misplaced” and under 
conditions that no longer exists: the environmental element that 
induced such a change, could enter into proliferative processes 
and be the source of TGCS.

The lack of an unequivocal cause-effect relationship or “epi-
genetic gambling” in terms of sensitivity or risk of these events 
could be due to both the genetic background of individuals and 
the ability to “adaptive resistance” of some cells from other (Martin, 
2009), even in the same genetic background as in monozygotic 
twins where there are different responses and patterns of DNA 
methylation (Fraga et al., 2005).

Small non-coding RNAs

From a biological point of view, the transcriptome and the post-
transcriptional regulation is far more complex than originally thought. 
Small non-coding regulatory RNAs have emerged as pivotal post-
transcriptional modulators of gene expression and are involved 
in diverse processes of cell differentiation and development. In 
particular, microRNAs (miRNAs) and Piwi-interacting RNAs (piR-
NAs) are increasingly seen as important elements in both gonadal 
development and spermatogenesis and their pathologies (Yu et al., 
2005; Looijenga et al., 2007a; Ro et al., 2007; Hayashi et al., 2008).

miRNAs are small non-coding RNAs (≈ 22 nt long) that act as 
potent modulators of gene expression by targeting 3’ UTR regions 
of mRNAs inducing their cleavage or translational repression (Am-
bros, 2001; Ross et al., 2007; Guarnieri and DiLeone, 2008; Chua 

Bentwich et al., 2005; Lewis et al., 2005); individual miRNAs can 
suppress the production of hundreds of proteins (Selbach et al., 
2008); more than 1000 miRNA have been predicted as well as 
functional polymorphisms within miRNA-binding sites from mRNAs 
(Mu and Zhang, 2012). Additionally, the double stranded nature of 
the primary miRNAs allow potential editing mechanisms (adenos-
ine to inosine) enhancing the diversity of alternative miRNAs from 
the same precursors and therefore increasing their potential in 
the post-transcription regulatory modulation of mRNA expression 
(Blow et al., 2006). Our recent studies suggest differential and 
active dynamics of miRNA edition and degradation associated to 
fertilization (García-López et al., 2013).

piRNAs are short RNA molecules (but larger than miRNAs) (24-
32 nt long) that are processed in a DICER/DROSHA-independent 
manner and associated to PIWI proteins (Aravin et al., 2006). 
They have a role in transposable elements (TEs) silencing (Siomi 
et al., 2011) and interacting with DNA methylation during sper-
matogenesis, being basically detected in male germ cells (Aravin 
et al., 2006; Girard et al., 2006; Grivna et al., 2006; Kim, 2006), 
although recently they have also been identified in brain cells 
(Rajasethupathy et al., 2012).

Small non-coding RNAs and TGCTs

Recent studies reported the alteration of miRNA expression 
in different cells and tissues induced by diverse environmental 
pollutants, including some considered EDs (Fig.2) (Izzotti et al., 
2009a; Izzotti et al., 2009b; Avissar-Whiting et al., 2010; Hou et 
al., 2011; Hou et al., 2012). Differential expression of miRNAs 
in human cancer compared with normal cells showed defined 
signatures associated to diagnosis, progression and prognosis 
(Calin and Croce, 2006). 

Fig. 2. miRNAs deregulated in different tissues after exposure of various contaminant agents 
including endocrine disruptors, such as bisphenol A (BPA). The expression of some miRNAs was 
altered regardless of the inducer chemical agent or environmental factor (in red).

et al., 2009). The majority of miRNA genes 
are transcribed from intergenic regions of 
the genome and the primary transcripts are 
known as pri-miRNAs (≈ 200-100 nt long). 
These pri-miRNAs are double stranded 
RNA molecules fold into hairpins, which 
undergoes two processing steps before to 
render a mature and functional molecule. 
In these processing steps are involved 
two members of the RNase III family of 
enzymes: DROSHA and DICER. The first 
processing step occurs in the nucleus, 
and the product of Drosha cleavage is 
named pre-miRNA (≈ 70 nt long). The pre-
microRNAs are exported to the cytoplasm 
where DICER processed it, generating a 
double stranded structure without hair-
pins, known as miRNA duplex. One or 
both strands could be incorporated into 
the miRNA-induced complex (miRISC or 
simply RISC), whose function is to mediate 
the translational repression of mRNAs by 
base-pair complementarity among miRNA 
and mRNA sequences (Lau and MacRae, 
2009; Snead and Rossi, 2010; Ladomery 
et al., 2011). Thousands of human genes, 
representing about 30% of the human gene 
set, are miRNA targets (Bentwich, 2005; 
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As mentioned, the origins of testicular germ cell cancer have 
been associated to dysfunctional gonocytes from fetal develop-
ment. The expression of PRDM1 (also known as BLIMP1) is es-
sential for PGC commitment (Ohinata et al., 2005). PRDM1 can 
be modulated by miR-let-7 family of miRNAs. In turn, LIN28 is a 
miRNA-binding protein that controls the maturation of the precursor 
of miR-let-7 (Heo et al., 2008; Newman et al., 2008; Piskounova et 
al., 2008; Rybak et al., 2008; Viswanathan et al., 2008; Hagan et al., 
2009). Consequently, increased level of let-7 can block the PGGs 
development. In fact, in vitro knockdown of LIN28 in the mouse 
reduce the number of PGC colonies (West et al., 2009) and also 
alters the expression of Prdm14, which is essential for germline 
specification. Moreover, downregulation of let-7, that is considered 
as tumor suppressor (Johnson et al., 2005; Lee and Dutta, 2007), 
and overexpression of LIN28 were linked to tumorogenesis (Chang 
et al., 2009; Lu et al., 2009). Consequently, the reported associa-
tion of the overexpression of LIN28 and its homologue LIN28b 
with human germ cell tumors is consistent (West et al., 2009). 
Interestingly, the deregulation of LIN28 is only associate to germ 
cell malignant tumors including seminomas, choriocarcinomas, 
embryonal carcinomas and yolk-sac tumours, but not to teratomas 
and normal testis (West et al., 2009).

As in other types of cancer, TGCTs present particular miRNA 
expression profiles but related with the developmental origin (McIver 
et al., 2012). The hsa-miR-302 and the hsa-miR-371~373 clusters 
are overexpressed in seminomas malignant tumors. However, the 
expression of miRNAs of these cluster are not altered in teratomas 
and non-malignant tumors (Palmer et al., 2010). These clusters have 
been involved in the maintenance of pluripotency and their altered 
expression profile could be related with the differentiation grade of 
the tumor. The miRNA expression profile is even different among 
the types of testicular tumors (Gillis et al., 2007). For example, 
hsa-miR-21, miR-155, miR-19a and miR-29a are overexpressed 
in type III tumors and seminomas, while hsa-miR-145, miR-146 
and miR-133a are under-expressed in both types of carcinomas in 
comparison with control samples (Gillis et al., 2007). In general, it 
has been observed lower expression levels of miRNAs in cancers 
compared with control samples (Zhang et al., 2007; Pan et al., 
2011). The relationship between the miRNA decay and cancer could 
be explained by the role of miRNA in cell differentiation and cell 
survival. But not only the miRNA expression decay was related to 
cancer disease, in other cases the up-regulation has awful conse-
quences. In this sense, Voorhoeve et al., (Voorhoeve et al., 2007) 
found increased levels of hsa-miR-371, miR-372 and miR-373 in 
TGCTs. Over-expression of these miRNAs down-regulate a tumor 
suppressor gene expression involved in RAS oncogene pathway. 
Besides, hsa-miR-373 has been identified as a cell migration fac-
tor and together with hsa-miR-520c promoted tumor invasion and 
metastasis (Huang et al., 2008; Negrini and Calin, 2008).

Further studies will be necessaries to identify the exact role of 
all these miRNAs in testicular cancer, but their expression profiles 
could be informative checkpoint for diagnosis. Serum biomarker 
monitoring is employed for diagnosis of TGCTs. More than a 50% 
of TGCT patients have increased levels of a-fetoprotein, human 
chorionic gonadotropin and lactate dehydrogenase, however the 
lack of an increase does not exclude TGCT (Albers et al., 2011). 
It is necessary for a good prognosis to found specific biomarkers 
that permit a best diagnosis for TGCTs. As miRNAs presents a high 
stability in blood and other body fluids, could be good candidates 

to be used as biomarkers (Gilad et al., 2008; Brase et al., 2010; 
Wang et al., 2012; Zhang et al., 2012).

Approximately 45% of the human genome is composed of 
repetitive elements, which consist of interspersed repeats and 
tandem repeats (Jordan et al., 2003). LINE-1 and Alu are two major 
DNA repetitive elements: LINE-1 is a long group of interspersed 
nucleotide elements that constitutes at least 18% of the human 
genome (Kazazian, 2004). Alu and LINE1 elements are normally 
heavily methylated, and contain much of the CpG methylation found 
in normal human tissues (Kazazian, 2004) both LINE-1 and Alu 
repeats were extensively unmethylated in seminomatous TGCTs, 
whereas in non-seminomatous TGCTs, including two EC cell lines, 
the LINE-1 sequence was extensively unmethylated, but Alu ele-
ments were methylated (Ushida et al., 2012). Therefore, as piRNAs 
are key molecules involved in the regulation of the transposable 
elements in germ line, the altered patterns of piRNAs in germ 
cells as consequence of EDs exposure represents an intriguing 
avenue of exploration.

Effects of EDs on miRNA expression profiles

As response to other external input, such as chemical drugs, 
EDs can deregulate the expression and physiological pathways 
of small non-coding RNAs (Hudder and Novak, 2008; Zhang and 
Dolan, 2010; Majumder and Jacob, 2011). Besides the direct 
action of EDs on the transcriptional regulation of multiple genes 
encoding proteins, the EDs could alter the balance of the fine post-
transcriptional regulation of mRNAs mediated by non-coding small 
RNAs such as miRNAs. The action of deregulation of expression 
and accumulation of miRNAs by EDs can be carried out through by 
direct agonistic or antagonistic interactions with hormone receptors 
(HRs), which in turn regulate the expression of miRNAs or their 
biogenesis. In this sense, hormone sensitive cells exposed in vitro 
to estrogens (E2) shown deregulation of miRNAs. Some miRNAs 
are transcribed from polycistronic genes such as hsa-miR-17-92 
cluster encodes 6 miRNAs (hsa-miR-17, miR-18a, miR-19a, miR-
20a, miR-19b-1, and miR-92–1). The pri-miRNA of this cluster and 
the mir-106a-363 paralogue cluster are upregulated by the ERa 
in breast cancer cells. Interestingly, the regulation occurs at the 
processing of primary forms to mature forms of miRNAs, as the 
pre-miR-18a is accumulated in ERa-positive and not ERb-positive 
breast cancers (Castellano et al., 2009). Furthermore, hsa-miR-
18a regulates negatively ERa due to targeting of this miRNA in 
the ERa mRNA. In this context, previous studies reported that 
human miR-206 regulates the post-transcriptional expression of 
specific HRs as the ERa but not the ERb, inhibiting the expression 
of hsa-miR-206 the presence of ERa agonists, also indicating a 
feed-back regulation pathway (Adams et al., 2007). In addition to 
the interaction between ERs and miRNAs in breast cancer, new 
studies show the association of miRNAs with other steroid receptors 
such as androgen receptor, progesterone receptor, glucocorticoid 
receptor in non-breast cancers (see review by (Tessel et al., 2010). 

Independently of the interaction between HRs and specific 
miRNAs, impaired biogenesis of miRNAs can be hormonally medi-
ated. The processing of miRNAs can be repressed by the binding 
of DROSHA to ERa (Yamagata et al., 2009). In some hormone-
dependent cancers the global deregulation of miRNAs has been 
associated to the alterations in the expression of two key enzymes: 
DROSHA and DICER, involved in the miRNA processing. Down-
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regulated DICER has been found in breast cancers (Grelier et al., 
2009) or both DROSHA and DICER in ovarian cancers (Merritt et 
al., 2008) and subtypes of breast cancers (Dedes et al., 2011). 
However, opposite regulation of DICER was detected in prostate 
adenocarcinoma (Chiosea et al., 2006). 

Recent studies reported that two well known EDs such as 
DDT and BPA alter the pattern of expression of multiple miRNAs 
of human MCF-7 including the estrogen–regulated hsa-miR-21 
considered as onco-miR in breast cancer (Tilghman et al., 2012). 
Altered expression profiles of miRNAs linked to EDs exposure 
were also observed (Ficociello et al., 2010; Choi et al., 2011; Zhang 
and Ho, 2011). Specifically, it was observed overexpression of 
hsa-miR-146a in two placental cell lines in response to BPA ex-
posure (Avissar-Whiting et al., 2010). Such overexpression, leads 
slower proliferation and increase the sensitivity to other damaging 
compounds (Avissar-Whiting et al., 2010). Furthermore, other 
miRNAs seem to be affected by BPA exposure. Three members of 
let-7 miRNA family increased their expression levels after the BPA 
exposure (Avissar-Whiting et al., 2010). As mentioned above, the 
equilibrium among let-7 family members and LIN-28 is critical for 
regulating the differentiated cell state. Changes in this equilibrium, 

may originate altered rates of cell proliferation (Melton et al., 2010; 
Newman and Hammond, 2010; Viswanathan and Daley, 2010; 
Wang et al., 2010; Chen et al., 2011; Pan et al., 2011). However, 
let-7 is considered as tumor suppressor (Zhang et al., 2007) and 
consequently the possible effect of deregulation of let-7 BPA-
mediated in testis could have be involved in other pathologies of 
TDS different to TGCTs. Similar alteration in miRNA expression 
has been reported in Sertoli cells exposed to nonylphenol. A third 
of miRNAs analyzed showed altered expression after exposure 
to this ED (Choi et al., 2011).

Recent reports show that epigenomic alterations may be paral-
lel to those found in miRNA profiles and explained by crosstalk 
between epigenetic regulation and regulation of miRNA expres-
sion (Chuang and Jones, 2007; Fabbri, 2008), including specific 
patterns in testis (Schilling and Rehli, 2007).

All these studies clearly indicate a correlation between miRNA 
expression, and as a result on the corresponding products of the 
mRNA targets, and the hormone regulation pathways. Conse-
quently, external factors with potential effects on hormonal balance, 
such as EDs, can alter the expression of miRNAs and hence the 
levels of mRNAs and the corresponding coded proteins. The harm-
ful effects of EDs in miRNA expression profiles may be additional 
cause of altered proliferation cell rates on the reproductive system 
and potential source of TGCTs.

Concluding remarks

In mammals, testis development and germ cell fate is a complex 
and highly regulated genetically from early embryonic stages to 
adulthood (Kimble and Page, 2007). Consequently, disturbances in 
any of the regulatory pathways involved functional changes medi-
ated by deregulation of gene expression, leading to reproductive 
dysfunctions and pathologies such as testicular cancer (Fig 3). In 
turn, the different regulatory mechanisms, including hormones, 
operate in a variable way in different stages of development. 
What is evident is that from the beginning of the primordial germ 
cell formation and differentiation in embryonic life there are key 
windows in the process, and therefore there are points of high risk 
susceptible of deleterious disruption by environmental signals.

The EDs and other potential reprotoxicants can alter the ho-
meostasis necessary for correct testicular development and normal 
differentiation of germ cells but at different levels and developmental 
windows. Moreover, the synergistic effects of combinations of these 
compounds broaden the landscape of potential risk. The mecha-
nisms of action of these compounds, leading to various pathologies 
in male gonadal development and function are multiple, but with a 
common core as deregulation of the expression of multiple genes. 
In these dysfunctional processes, different pathways could be 
affected: by direct action on transcriptional regulators, potentially 
mediated by hormones, and/or acting as post-transcriptional regu-
lators such as those that affect miRNAs and piRNAs. Moreover, 
epigenetic deregulation may generate changes that in some cases 
may be inherited and transmitted transgenerationally (Youngson and 
Whitelaw, 2008). All these factors could contribute to the aetiology 
of pathologies manifested as germ cell tumors, along with intrinsic 
risk genomic factors in individuals or populations.

All this complex network of cause-effect can be evidenced 
by new high throughput approaches at molecular, cellular and 
developmental levels. However, considering the difficulties in the 

Fig. 3. Complex interactions between different factors and mechanisms 
of action of endocrine disruptors can lead to various pathologies in the 
development of testis, including germ cell tumors.
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implementation of in vitro systems in germ cells development, the 
abundance and increased risk factors in our environment and their 
additive or synergistic effects, the goal is foreseen a long way but 
as a great challenge.
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