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ABSTRACT A lecture course on morphogenesis for fourth-year Moscow State University Specialist

Diploma students specializing in embryology is described. The main goal of the course is to give the

students an extensive theoretical background based on the tenets of the modern theory of Self-

Organization and to show them how important this theory is for the proper understanding of

developmental events. The corresponding mathematics are bound as tightly as possible to the

actual morphogenetic processes. All of the lectures take the format of an active dialogue between

the students and a tutor.
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Background Information

Scholarly Interests of the Author
I supervise the small Laboratory of Developmental Biophysics,

affiliated with the Department of Embryology, at Moscow State
University. The aim of the laboratory is to search for the basic
physical laws of morphogenesis, assuming that the latter is, in its
essence, a process of self-organization. As such a process, it
should involve different kinds of feedback relations. Already sev-
eral decades ago, we concluded that embryonic tissues are me-
chanically stressed, that the stresses exhibit regular patterns both
in time and in embryonic space, and that remodeling of the stresses
leads to extensive morphogenetic disturbances (Beloussov et al.,
1975, 1994). Together with Jay Mittenthal from the University of
Illinois, we suggested that morphogenetic feedback can be to a
great extent based upon a special kind of relationship between
passive (that is, established prior to a given time moment or
originating in another part of the embryo) and active (generated
within a given part of the embryo and at a given time moment as a
result of the activity of mechanochemical devices) mechanical
stresses. We have hypothesized that the feedback is directed
toward a hyperrestoration of an initial stress value. This suggestion
has been tested in several kinds of experiments and by using a
model approach. All of our studies today are based on self-
organization theory (SOT). Meanwhile, we are well aware that the
developmental applications of SOT depend not only upon the
mechanics of development but also upon the chemokinetics, or on
a combination of both. Therefore, in our lecture course we do not
pay so much attention to developmental mechanics proper as to the
general background that is common to different applications.

Representative Publications
Certainly, most recommended readings for my students are in

Russian. However, for the international audience of this journal, I
list below references to a few papers written in English that are
more or less parallel to the Russian publications.

BELOUSSOV, L.V. (1989). Dynamical levels in developing systems. In Dynamic
structures in biology (Eds. Goodwin, B., Sibatani, A., Webster, G.). Edinburgh
University Press, Edinburgh, pp. 121-131.

This article describes briefly some elementary principles of SOT that are most
relevant to developmental events, and shows how to formulate the concepts of
competence, determination, differentiation and induction within the SOT frame-
work.

BELOUSSOV, L.V., SAVELIEV, S.V., NAUMIDI, I.I. and NOVOSELOV, V.V. (1994).
Mechanical stresses in embryonic tissues: patterns, morphogenetic role and
involvement in regulatory feedback. Int. Rev. Cytol. 150: 1-34.

Here for the first time we tried to link morphogenesis, SOT, and mechanics,
pointing to a possible involvement of feedback between passive and active
stresses in driving morphogenesis forward.

BELOUSSOV, L.V. (1998). The Dynamic Architecture of a Developing Organism. An
Interdisciplinary Approach to the Development of Organisms. Kluwer Academic
Publishers, Dordrecht.

This book is the first comprehensive attempt to consider the development of
organisms as a multilevel feedback-linked, self-organizing process. Accordingly,
the data related to morphogenetic cell activities and to the development of entire
organisms are reconsidered and reformulated in terms of theories of symmetry
and self-organization, which are described in nonspecialist terms. The important
role of biomechanical feedback is emphasized.

General Teaching Philosophy
My teaching philosophy is simple and even trivial. Its main idea

is that each next course should be linked with the previous one and
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that the students should grasp during the first exposure the main
ideas rather than the small details. In our department, the lecture
course on morphogenesis is immediately preceded by that on
molecular and cell biology (MCB). Both deal with the formation of
structures. However, these two disciplines differ from each other by
the important and often neglected criteria of the characteristic
spatial (linear) and time scales of the studied processes. MCB is
concerned roughly with spatial scales on the order of 10-9–10-5 m
and time scales on the order of 10–3–101 s, whereas morphoge-
netic processes are characterized by spatial scales on the order of
10–4–100 m and time scales on the order of 102–104 s. Such a
distinction is far from being purely phenomenological. A certain
important barrier lies between the two scales that was first noticed
by Joseph Frankel of the University of Iowa. By studying the
structure of the so-called oral field in ciliates, which is composed of
arrays of microtubules, Frankel noticed that up to a certain dimen-
sional level or scale (which in this case was roughly 1 µm, but it may
vary to some extent), the structure and the symmetry of the oral
field components are “dependent only on the intrinsic properties of
the building blocks” (Frankel, 1989, p. 143), while the larger blocks
may acquire quite another type of symmetry, related to the entire
body handedness rather than to the chirality of the microtubules
themselves. This crucial dimensional level, which we propose to
call “Frankel’s barrier,” is the upper limit of effectiveness of intermo-
lecular forces, and hence constitutes a natural barrier between
MCB and morphogenesis. Structures that are larger than Frankel’s
barrier are determined by what are essentially macroscopic forces,
whose properties cannot be directly derived from the intermolecu-
lar forces proper. Such a situation is not a biological phenomenon
only. We will return to this issue when we present the definition of
autowaves given by Krinsky and Zhabotinsky (see below).

The students taking this course are assumed to be familiar with
basic mathematical analysis techniques, but their calculation tech-
niques do not need to be too refined. I often cite the French
mathematician René Thom, who said that “catastrophe theory
[which is a part of self-organization theory] is more about drawing
pictures than it is about mathematics.” The same may be said of
SOT: a qualitative, rather than a quantitative, approach is preferred
because it is in harmony with the principles of developmental
biology.

General Features of the Lecture Course

This regular lecture course is addressed to fourth-year students
in the Specialist Diploma program at Moscow State University
(MSU) who are specializing in embryology (developmental biol-
ogy). (By a system adopted by the Faculty of Biology, MSU,
students who have completed their first year must select a field of
specialization from one out of about 20 different departments; from
this time on, their education becomes gradually more and more
specialized). The main goal of this course is to make the students
familiar with the extensive theoretical background provided by
modern Self-Organization Theory (SOT) and to show how impor-
tant this theory is for properly understanding developmental events.
More precisely, we focus upon those developmental processes
which are associated with an ordered creation of specific structures
and shapes, that is, morphogenesis. Obviously, most develop-
mental events belong to this category. In this lecture course, our
objective is to regard morphogenesis as a shared fundamental

problem, rather than to consider each different morphogenetic
process separately, which is the usual educational practice.

Such a view of morphogenesis invites the students to assimilate
some very basic scientific and philosophical concepts which are
taught only rarely to biologists. Those are determinism, indetermin-
ism, and stochasticity; different types of causality; the stratified
structure of the world (and its subdivision into discrete structural-
dynamical levels); the role of feedback mechanisms; and so on.
From these abstract notions, we come immediately to very con-
crete developmental events, and we try to bind theory and empiri-
cal developmental biology as closely as possible.

Although the course, Morphogenesis, involves some math, I
always tell the students that my purpose is not to make them
professional mathematicians able to construct models. Rather, my
main aims are to make them able to “understand the language of
models,” as they may have dealings with specialists in this field,
and to teach them to formulate their own and other authors’
empirical results within the framework of a strict system of concepts
elaborated by SOT.

In other words, my main task is to expose the students to an
elegant and universal system of concepts which are, as I strongly
believe, ultimately indispensable for describing properly develop-
mental phenomena and formulating new empirical tasks in this
field. I recommend that the students not be restricted, in their future
researches, to conclusions of the type “I discovered that A affects
B.” Such a conclusion is no more than the starting point for a real
analysis. To achieve an adequate comprehension of a phenom-
enon under study, at least the following questions should be
answered:

What are the characteristic times of the interacting processes?
To what extent are they stable (or, on the contrary, unstable)?
Are there any feedback loops within the system studied? If yes,

are they positive, negative, or both?
Are the observed mutual interactions between the components

of a dynamic or parametric nature?
These questions are especially important in relation to one of the

most acute problems of the modern developmental biology, namely
that of the relationship between genes and morphological struc-
tures. I try to demonstrate in my lectures that the only adequate
solution to the problem is found within the SOT framework.

The lectures take the form of a continuous dialogue between the
tutor and the students. Usually, a general mathematical task is
formulated (for example, draw a “phase portrait” of a given nonlin-
ear differential equation), and the students are invited to do so on
the blackboard, helping one another if necessary. Or, alternatively,
I may ask them to invent a tentative model image for a certain
developmental process. As a rule, they like to do this and are very
active.

Abbreviated Course Content Outline

The course is begun by claiming that the problem of morphogen-
esis is wider than biology itself: one can speak about morphogen-
esis in chemistry, solid- and fluid-body physics, meteorology,
cosmology, etc. Biological morphogenesis per se should be re-
garded as a part of an overall problem of the formation of structures
out of a less-structured state. This encourages us to address the
classical epistemological problem of a uniform (Laplacian) deter-
minism. We discuss why this ideology cannot explain morphoge-
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“flicker noise”). Lastly, we come to the “strange attractor” as the
most important example of dynamic chaos.

In the last part (but that most closely linked to embryology) of the
lecture course, we come to space-enfolded nonlinear dynamic
equations and corresponding models. These are just what would
be called morphogenetic fields. We begin with the famous one-
dimensional Kolmogorov-Petrovsky-Piskunov-Fisher equation, in
which the diffusional term, which demands nonzero values of the
second derivative, is first introduced. We emphasize the impor-
tance of the coexistence of a diffusional-like smoothing factor and
a local “sharpening” factor for coherent morphogenesis. Then, we
turn from the one-dimensional to two-dimensional equations, which
permit us to model so-called autowaves (which, unlike “classical”
waves, take their energy from an active medium). We use the
definition of an autowave proposed by Krinsky and Zhabotinsky:
“Autowaves exemplify a new type of dynamical process that
generates a macroscopic linear scale from local interactions that
individually possess no linear scale at all.” This is the only definition
that I ask the students to learn by heart.

From wave-like processes, we finally come to stationary dissi-
pative structures. We discuss, of course, the famous Turing
equation, which, in spite of having no direct parallels in biology,
greatly affected the entire scientific community by increasing the
interest in self-organizing processes. Then, we turn directly to
models of biological morphogenesis, first to chemokinetic models
(represented most clearly by those of Gierer and Meinhardt; see
Meinhardt, 1982) and then to those that include mechanical
components. I see the greatest merit of the work of the two above-
mentioned authors in their introduction of the ideas of short-range
activation and long-range inhibition, both of which seem to be
universal and inevitable. However, by my view, models that
include mechanical components are more realistic. Here, we

directly to the basic concepts of SOT (dynamic and parametric
stability/instability, dynamic and parametric regulation) taking as
examples some simple differential equations that describe auto-
catalytic and autoinhibitory processes. We start with first-order
equations and then introduce second- and third-order equations.
These latter will permit us to introduce bifurcations (the main
elements of embryonic differentiation) that proceed in either a “soft”
or a “hard” regime. Then, we return to embryology proper and give
the definitions of competence, determination, differentiation, and
induction in SOT terms, which are the only terms that permit us to
do this in a really strict and unambiguous way.

Afterwards, we pass from one-dimensional to two-dimensional
nonlinear differential equations and study the simple and elegant
methods of zero isoclines, which allow us to create “phase por-
traits” of dynamic processes. We also discuss the important notion
of robustness. We pay special attention to limit cycles and to three
mutually coupled models related to auto-oscillations, relay oscilla-
tions, and a bistable trigger regime. We take as examples cell
aggregation in slime molds, growth pulsations in hydroid polyps,
and mesoderm segmentation in avian (chicken) and mammalian
embryos to illustrate these models.

From deterministic limit cycles, we pass to states with increased
stochasticity and chaotic states, suggesting that the organisms are
probably living just on the verge of chaos. Out of several scenarios
describing the passage from determinism to stochasticity, we
choose one associated with the logistic equation. This equation is
very important to biologists because it describes (among other
events) S-shaped growth. We trace the increase in stochasticity
and the appearance of fractal properties by gradually changing the
parameter of this equation. We notice also a periodical appearance
of “islands of stability” within chaos. We discuss briefly the phe-
nomenon of self-criticality and different kinds of noise (including

Fig. 1. The author with a group of students who have just successfully passed the final examination (2002).

netic processes either in living or
nonliving natural systems. Several
remarkable attempts to go beyond
this ideology are also introduced
(including Driesch’s theory of vital-
ism). Meanwhile, it is only SOT
(which emerged from several dif-
ferent sources about the middle of
the 20th century) which gives a
broad enough conceptual frame-
work for treating the problem of
morphogenesis.
However, before addressing SOT
directly, a brief excursion into sym-
metry theory is undertaken. This is
a relatively easy, very beautiful and
useful branch of mathematics for
all biologists. We focus our atten-
tion on the processes that reduce
symmetry (symmetry breaks) and
analyze the classical Curie prin-
ciple, which is related to the causal-
ity of these processes. This will
bring us in a natural way toward the
idea of instability, which is central
to SOT.

After this intermezzo, we come
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discuss the excellent models of floral morphogenesis suggested
by the late Paul Green of Stanford University (Green, 1996) and
the models of mesenchymal morphogenesis proposed by Harris,
Oster, and Murray (e.g., Harris et al., 1984). Afterward, we pass
to the model of epithelial morphogenesis (Belintzev et al., 1987).
Its main advantage is in introducing feedback between local and
global events, the first of which is exemplified by each single cell’s

tendency to polarize itself, while the second is exemplified by the
overall tension of a layer that prevents the further polarization of
its cells. As a result, an initially homogeneous cell layer is
segregated, independently of scale, into domains of highly polar-
ized and flattened cells. Then, if time permits, we further elaborate
on this and related models, taking into consideration cell interca-
lation movements and the patterning of axial rudiments in verte-

Fig. 2. An example of a student’s answer sheet for examination questions 13 and 14. The
annotations are as follows: ...Mesenchyme of the feather rudiments in birds; equal density; fluctuation
adhesion, - peak and trough.  Long range: stretching (dozens of micrometers); short range (adhesion);
Gierer-Meinhardt model (reaction-diffusion). (Equations). Oster-Murray-Harris model: adhesion - stretching
of a substrate by forces of elastic tension. Applications of a model: Geometry of a limb: differentiation
of a skeleton depends upon the geometry of a cross section. No stable solutions in transition zones -
hence joints. Levels of gastrulation, 1. biochemical parameters; 2. tensile fields; 3. cell polarization.
Student: Ms. Nastya Koshelyeva.

brate embryos. I also mention the hy-
pothesis of the hyperrestoration of
stress values, suggested in 1990 by
Jay Mittenthal of the University of Illi-
nois and myself. Within the past sev-
eral decades, evidence has been col-
lected by our research group that indi-
cates that the driving forces of mor-
phogenesis within large enough
space–time domains fit this hypoth-
esis (Beloussov, 1998).

Exam Questions
1. Describe the basic concepts of

symmetry theory. Discuss morpho-
genesis in terms of symmetry
breaks and the Curie principle.

2. Describe the concepts of dynamic
stability and instability using linear
chemokinetic models as examples.

3. Describe the concepts of struc-
tural (parametrical) stability and
instability using linear chemokinetic
models as examples.

4. Please give definitions of compe-
tence, determination, induction,
and differentiation in terms of mod-
els of “soft” and “hard” bifurcations
based on third-order nonlinear dif-
ferential equations.

5. Describe the D.S. Chernavsky trig-
ger model of cell differentiation.
Discuss variability during the tran-
sition period (as predicted by the
model), its embryological and evo-
lutionary significance.

6. Describe the concepts of limit
cycles and orbital stability. Distin-
guish between robust and
nonrobust limit cycles.

7. Discuss the importance of positive
and negative feedback in develop-
ing systems. Include in your discus-
sion equations with a small param-
eter, the concept of an attractor,
and models of auto-oscillations and
relay and trigger regimes. Choose
examples from slime molds, hy-
droid polyps, and somitogenesis in
the chicken embryo.

8. Discuss the transition from deter-
minism to chaos, using the logistic
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equation as an example. Describe fractal structures and their
role in biological systems.

9. What is a “strange attractor,” and why does it conflict with
Laplacian determinism?

10. Describe self-organized criticality and define flicker noise.
11. What are space-enfolded systems. How are regular space

structures created from noise. Use equations with a diffusion
term. How did Krinsky and Zhabotinsky define an autowave.

12. Define the following: Stationary dissipative structures; Turing
model; hysteresis; senior and junior modes.

13. Describe the Gierer-Meinhardt model of morphogenesis. Dis-
cuss the concepts of a short-range activation and long-range
inhibition and the role of concentration gradients in embryonic
patterning. Include arguments both pro and con.

14. Describe the role of mechanical stresses in organizing cell
movements and in patterning embryonic tissues. Discuss the
Oster-Murray-Harris model of mesenchymal morphogenesis
as a mechanical analogue of the Turing model (Fig. 2).

15. Describe Belintzev and coauthors’ model of epithelial morpho-
genesis. How is a cell layer patterned according to this model?
What role do contact cell polarization and elastic tensions play.
Give an example of a scale-invariance.

16. How are changes in a layer’s geometry modeled? Use hydroid
polyps as an example.

Textbooks for Assigned Readings

BELOUSSOV, L.V. (1987). Biologicheskii Morfogenez (Biological Morphogenesis).
Izd. Moskovskogo Universiteta, Moskva (in Russian).

BELINTZEV, B.N. (1991). Fizicheskie Osnovy Biologicheskogo Formoobrazovanija
(Physical Foundations of Biological Shape Formation). Nauka, Moskva (in Rus-
sian).

MICHAILOV, A.S. and LOSKUTOV, A. JR. (1990). Vvedenie v Sinergetiku (An
Introduction to Synergetics). Nauka, Moskva (in Russian).

BELOUSSOV, L.V. (1998). The Dynamic Architecture of a Developing Organism. An
Interdisciplinary Approach to the Development of Organisms. Kluwer Academic
Publishers, Dordrecht.

BALL, P. (1999). The Self-Made Tapestry. Oxford University Press, New York.

PRIGOGINE, I. (1980). From Being to Becoming. Time and Complexity in the Physical
Sciences. W.H. Freeman and Co., New York.
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