

Comparative molecular portraits of human unfertilized oocytes and primordial germ cells at 10 weeks of gestation

FERDINAND DIEDRICHS¹, BARBARA MLODY¹, PEGGY MATZ¹, HEIKO FUCHS^{1,2}, LUKAS CHAVEZ¹, KATHARINA DREWS¹ and JAMES ADJAYE^{*,1,2}

¹Department of Vertebrate Genomics, Molecular Embryology and Aging Group, Max Planck Institute for Molecular Genetics, Berlin, Germany and ²Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany

ABSTRACT Primordial germ cells (PGCs) are precursors of gametes and share several features in common with pluripotent stem cells, such as alkaline phosphatase activity and the expression of pluripotency-associated genes such as OCT4 and NANOG. PGCs are able to differentiate into oocytes and spermatogonia and establish totipotency after fertilization. However, our knowledge of human germ cell development is still fragmentary. In this study, we have carried out genomewide comparisons of the transcriptomes and molecular portraits of human male PGCs (mPGCs), female PGCs (fPGCs) and unfertilized oocytes.We detected 9210 genes showing elevated expression in fPGCs, 9184 in mPGCs and 9207 in oocytes, with 6342 of these expressed in common. As well as known germ cell-related genes such as BLIMP1/PRDM1, PIWIL2, VASA/DDX4, DAZL, STELLA/ DPPA3 and LIN28, we also identified 465 novel non-annotated genes with orthologs in the mouse. A plethora of olfactory receptor-encoding genes were detected in all samples, which would suggest their involvement not only in sperm chemotaxis, but also in the development of female germ cells and oocytes. We anticipate that our data might increase our meagre knowledge of the genes and associated signaling pathways operative during germ cell development. This in turn might aid in the development of strategies enabling better differentiation and molecular characterisation of germ cells derived from either embryonic or induced pluripotent stem cells. Ultimately, this would have a profound relevance for reproductive as well as regenerative medicine.

KEY WORDS: PGC, oocyte, transcriptome, signaling pathway, meiosis, olfactory receptor

Introduction

Primordial germ cells (PGCs) are the embryonic precursors of gametes. They could be regarded as the mother of all stem cells because of their unique ability to retain true developmental totipotency. But despite many similarities with embryonic stem cells (ESCs), they exhibit only temporary self-renewal capability and have distinct lineage-specific characteristics. In fact, under normal conditions, PGCs are believed to differentiate into germ cells only, which are oocytes in the female and prospermatogonia in the male, to ultimately produce eggs and sperm, respectively. It is not until the fertilization of the egg that the intrinsic germ cell program for totipotency is established. Although restricted in developmental potency, PGCs share several molecular characteristics of pluripotent cells, these include high alkaline phosphatase activity (Ginsburg *et al.*, 1990; Goto *et al.*, 1999), expression of key pluripotency-related genes such as *POU5F1/OCT4*, *NANOG* and *ESG1* (Goto *et al.*, 1999; Western *et al.*, 2005; Sabour *et al.*, 2011). In addition, PGCs can give rise to embryonal carcinoma (EC) cells, the stem cells of testicular tumors, *in vivo*. Besides, when cultured under stimulation with

Abbreviations used in this paper: dpc, days post coitum; EC cells, embryonal carcinoma cells; EG cells, embryonic germ cells; ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells; mPGC/fPGC, male/female primordial germ cell; Oocs, oocytes; OR, olfactory receptor; rep, replicate.

^{*}Address correspondence to: James Adjaye. Department of Vertebrate Genomics, Molecular Embryology and Aging Group, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin, Germany. Tel: +49-211-81-08191. Fax: +49-211-81-19147.

e-mail: adjaye@molgen.mpg.de; James.Adjaye@med.uni-duesseldorf.de - web: http://www.molgen.mpg.de/~molemb

http://www.uniklinik-duesseldorf.de/unternehmen/institute/institut-fuer-stammzellforschung-und-regenerative-medizin/research

Supplementary Material (one figure + 5 tables) for this paper is available at: http://dx.doi.org/10.1387/ijdb.120230ja

Final, author-corrected PDF published online: 5 February 2013.

specific growth factors, PGCs can be converted into pluripotent embryonic germ (EG) cells. However, unlike EC and EG cells, PGCs cannot be cultured indefinitely, do not form embryoid bodies in culture and when injected into a host blastocyst cannot populate either the soma or the germline (Donovan and de Miguel, 2003).

PGCs are difficult to study because they are limited in number, deeply embedded within the embryo, and are known to migrate during development (Ginsburg *et al.*, 1990; McLaren and Southee, 1997), which limits the number of effective studies using these cells. Previous studies have demonstrated that around day 7 post coitum (dpc) in mice, PGCs can be detected at the base of the allantois within extraembryonic mesoderm. There, PGCs develop as a cluster of 40 - 50 cells. At 10 dpc the PGCs migrate to the genital ridge (Ginsburg *et al.*, 1990; Goto *et al.*, 1999; Anderson *et al.*, 2000; Molyneaux *et al.*, 2001; Saitou *et al.*, 2002), the sex determination starts and ends around 13 dpc. Female germ cells start entering meiosis, in contrast to male germ cells which pause at the mitotic stage and start meiosis at day 10 after birth (Ewing *et al.*, 1993).

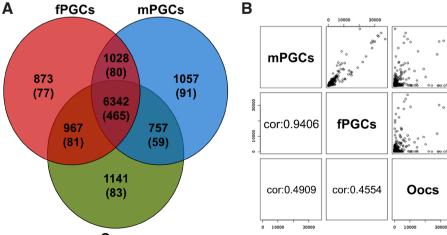
In human, PGCs are identified in the hind gut at 4 weeks of gestation and then migrate to colonize the developing gonads by 7 weeks of gestation (Witschi, 1946; Gondos and Hobel, 1971; Motta and Makabe, 1986). At ~10 weeks of gestation, female PGCs (fPGCs) start to enter meiosis, while male PGCs (mPGCs) continue to divide mitotically until they are arrested in mitosis at 16–18 weeks of gestation (Gondos and Hobel, 1971; Goto *et al.*, 1999).

Many factors control the migration, proliferation and organisation of PGCs to developing gonads as well as the integration of somatic cells surrounding the PGCs. Bone morphogenetic proteins (BMPs) regulate gene expression and formation of PGCs (Ying *et al.*, 2000; Ying and Zhao, 2001; Pesce *et al.*, 2002). Recent successful studies have demonstrated that PGCs can be derived from pluripotent stem cells *in vitro*, these can then be further differentiated into oocyte-like cells or spermatogenic-like cells (Hubner *et al.*, 2003; Toyooka *et al.*, 2003; Geijsen *et al.*, 2004; Kee *et al.*, 2006; Nagano, 2007; Qing *et al.*, 2007; Wei *et al.*, 2008; Panula *et al.*, 2011).

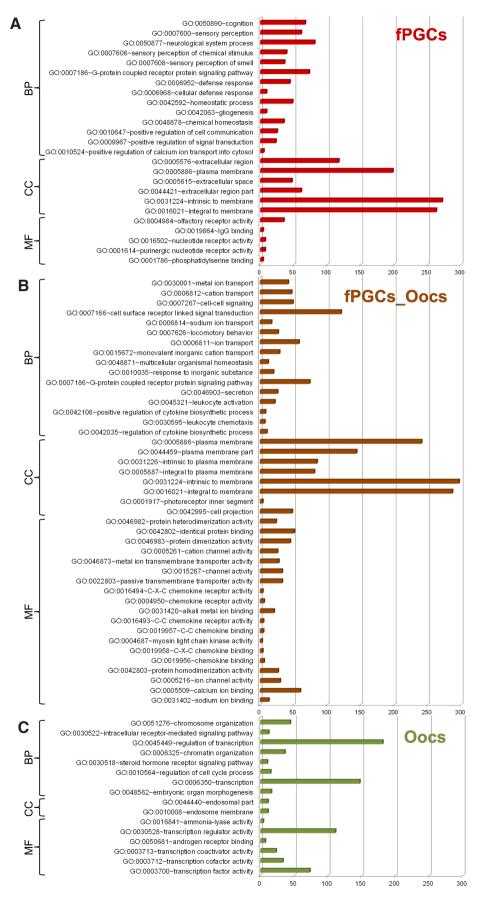
Based on the complex control system during migration, proliferation and development of PGCs into gonads many disorders can arise if this developmental program is skewed. For example, different types of germ-cell tumors (GCTs) can result from mis-regulated expression of key PGCs-related genes. GCTs are a heterogeneous

CANONICAL PATHWAYS ENRICHED IN FEMALE PGC AND OOCYTE TRANSCRIPTOMES

	fPGCs		Oocs	
IPA Canonical Pathways	p-value	Ratio	p-value	Ratio
EIF2 Signaling	3.98E-17	68%	5.01E-13	64%
Regulation of eIF4 and p70S6K Signaling	2.51E-14	63%	1.58E-11	60%
mTOR Signaling	7.94E-11	60%	4.90E-10	59%
ILK Signaling	1.74E-06	58%	4.90E-05	56%
Mitochondrial Dysfunction	3.31E-05	47%	7.08E-06	48%
Ephrin Receptor Signaling	3.39E-05	51%	4.47E-07	54%
Huntington's Disease Signaling	3.72E-05	52%	6.61E-05	52%
Wnt/β-catenin Signaling	6.31E-05	57%	3.31E-05	58%
Aminoacyl-tRNA Biosynthesis	1.07E-06	37%	2.04E-03	30%
PI3K/AKT Signaling	3.16E-06	55%	1.70E-04	51%
Pyrimidine Metabolism	8.13E-06	40%	1.45E-04	38%
Clathrin-mediated Endocytosis Signaling	9.77E-06	56%	1.70E-03	51%
Cell Cycle Regulation by BTG Family Proteins	1.05E-05	78%	2.29E-03	67%
Protein Ubiquitination Pathway	1.55E-05	54%	2.04E-04	52%
Role of CHK Proteins in Cell Cycle Checkpoint Control	1.62E-05	70%	1.35E-02	57%
Cyclins and Cell Cycle Regulation	2.69E-05	59%	1.74E-04	57%
Oxidative Phosphorylation	7.59E-05	54%	2.75E-04	52%
Role of BRCA1 in DNA Damage Response	8.13E-05	63%	1.22E-01	48%
AMPK Signaling	9.77E-05	48%	3.72E-04	46%
Integrin Signaling	1.55E-04	53%	1.00E-06	57%
Axonal Guidance Signaling	1.12E-04	48%	3.24E-06	50%
Germ Cell-Sertoli Cell Junction Signaling	1.17E-03	53%	3.47E-06	58%
Signaling by Rho Family GTPases	1.20E-03	49%	6.31E-06	53%
Rac Signaling	1.62E-03	49%	7.24E-06	55%
CDK5 Signaling	1.48E-03	55%	9.55E-06	62%
Molecular Mechanisms of Cancer	8.51E-04	47%	1.12E-05	49%
Mitotic Roles of Polo-Like Kinase	1.62E-03	59%	1.35E-05	67%
ERK/MAPK Signaling	6.17E-04	50%	1.86E-05	53%
Actin Cytoskeleton Signaling	3.24E-03	47%	2.09E-05	52%
RhoGDI Signaling	2.88E-03	47%	3.39E-05	51%
Ephrin B Signaling	2.63E-03	55%	3.47E-05	61%
Breast Cancer Regulation by Stathmin1	1.58E-03	50%	3.63E-05	53%
IL-8 Signaling	2.14E-03	49%	4.79E-05	52%


Summary of canonical pathways significantly enriched (p < 0.0001, highlighted in red (fPGCs) or green (oocytes)) in the set of genes expressed in fPGCs (9210) and oocytes (9207) as determined by IPA. The ratio describes the number of transcripts expressed in each data set that map to the pathway divided by the total number of genes that exist in the canonical pathway. To point out an additional level of enrichment bold numbers highlight differences between the fPGCs- or oocytes-specific ratios greater than or equal to 5%. The entire IPA output, including corresponding p-values and gene lists, is given in Supplementary Table 3.

group of neoplasms and are classified into five groups (I-V). They arise in ovaries and testes as well as in different extragonadal regions (Oosterhuis and Looijenga, 2005; Looijenga, 2009).


In this study, we aim at deriving molecular portraits of human unfertilized oocytes, male and female PGCs using mRNAs previously isolated in earlier studies (Adjaye *et al.*, 1999; Goto *et al.*, 1999; Adjaye and Monk, 2000). We anticipate that this data will form the

0000

Fig. 1. Venn diagram-based analysis and correlation of the transcriptome of female PGCs, male PGCs and oocytes. (A) The Venn diagram depicts the overlaps of genes with elevated expression levels in fPGCs, mPGCs and oocytes as determined by microarray-based transcriptome profiling. The numbers in brackets represent the number of "novel" genes in each section which have not been functionally annotated to date, including, e.g. "LOC389936", "C12orf12", "FA-M10A6," "FLJ31568," "KIAA0895L," "MGC35361 " (B) Scatter plots depicting the correlation of complete gene expression data sets of mPGCs, fPGCs and oocytes. Raw data were normalized by quantile normalization and Pearson correlation coefficients (cor) calculated between the different samples.

Oocs

foundation for more extensive functional studies that might increase our meagre knowledge of the genes and associated pathways operative in these cells. This knowledge should also aid in our understanding of the aetiology of female germ cell derived cancers.

Results

Global gene expression analysis

Our aim was to profile and further analyse the transcriptomes and molecular portraits of distinct cell types of the female germ line, i.e. fPGCs and oocytes, using a microarraybased approach. We included mPGCs in the analyses to enable on the identification of genes specifically expressed in fPGCs and oocytes, i.e. female germ line-specific genes, in contrast to mPGCs-specific genes. Using our cut-off threshold, we detected 9210 genes showing elevated expression in fPGCs, 9207 genes for the oocytes sample and 9184 genes for the mPGCs as depicted in Fig. 1A. The majority of the 6342 germ cell-related genes, which includes housekeeping genes, are expressed in common between fPGCs, oocytes and mPGCs. Not surprisingly there are more genes in the overlap of fPGCs and mPGCs (1028) than in fPGCs and oocytes (967), or mPGCs and oocytes (757). Accordingly, the correlation coefficient between mPGCs and fPGCs is very high (0.94), whereas that between the PGCs and the oocytes are much lower (0.46 and 0.49, respectively, Fig. 1B).

As expected we have identified several non-annotated genes (depicted as "LOC...", "C12orf...", "FAM...", "FLJ...", "KIAA..." and "MGC...") which we can assume as novel. This again highlights the novelty and usefulness of this study.

Functional annotation and enrichment analysis of putative female germ linespecific genes

As part of the DAVID functional annotation

Fig. 2. DAVID analysis of female PGC- and oocyte-specific genes. As shown in Fig. 1, all genes exclusively expressed in either fPGCs (873, A) or oocytes (1141, C) or overlapping between fPGCs and oocytes (967, B) were assessed for functional enrichment of biological pathway-associated GOs (BP), cellular component-associated GOs (CC) and molecular function-associated GOs (MF) using the DAVID database. Significantly enriched terms (p <0.01) are depicted. The terms are ordered by increasing p-values from top to bottom. The bars represent the number of genes that mapped to each term. The entire DAVID output, including correspondingp-values and gene lists, is given in Supplementary Table 2.

TABLE 2

BIOLOGICAL FUNCTIONS ENRICHED IN FEMALE PGC AND OOCYTE TRANSCRIPTOMES

Cancer	fPGCs p-value	Oocs p-value
tumorigenesis	6.72E-18	7.22E-17
neoplasia	7.48E-15	1.15E-13
cancer	1.29E-14	3.36E-13
solid tumor	2.31E-11	1.36E-10
carcinoma	4.10E-11	4.99E-10
infection of tumor cell lines	3.36E-07	3.82E-08
infection of cervical cancer cell lines	4.30E-07	7.17E-10
cell transformation	7.28E-07	2.54E-08
mammary tumor	2.40E-06	9.87E-06
colon tumor	2.63E-06	2.63E-06
colon cancer	6.54E-06	4.26E-06
gastrointestinal tract cancer	1.13E-05	7.93E-05
colorectal cancer	1.24E-05	2.13E-05 1.33E-04
colorectal tumor intestinal cancer	8.40E-06 9.14E-06	7.93E-04
hematological neoplasia	3.10E-05	2.20E-03
benign tumor	5.46E-05	2.25E-03
Cell Cycle	3.402-03	2.202 00
cell cycle progression	4.38E-09	7.46E-15
M phase	5.81E-08	1.56E-10
mitosis	1.17E-05	8.78E-12
cytokinesis	1.56E-05	8.78E-08
interphase	8.87E-05	2.88E-08
modification of chromatin	2.11E-03	2.40E-07
remodeling of chromatin	#N/A	7.05E-06
senescence of cells	1.28E-03	1.40E-05
G2/M phase	#N/A	2.53E-05
G2 phase	1.74E-03	3.63E-05
ploidy of cells	4.08E-03	6.63E-05
arrest in interphase	1.97E-03	8.19E-05
metaphase	#N/A	8.36E-05
aneuploidy of cells	2.29E-03	9.12E-05
segregation of chromosomes	2.17E-04	9.31E-05
Cell Death		_
cell death	3.59E-22	2.08E-24
apoptosis	5.60E-16	2.59E-17
necrosis	1.11E-13	9.63E-13
cell death of tumor cell lines	6.55E-09	3.42E-09
apoptosis of tumor cell lines cell survival	9.86E-07 1.09E-06	1.21E-05 1.52E-05
neuronal cell death	1.49E-06	4.76E-05
cell death of connective tissue cells	2.85E-06	4.17E-06
cell viability	3.10E-06	1.72E-04
fragmentation of DNA	2.45E-05	1.41E-03
cell viability of tumor cell lines	7.70E-05	#N/A
cell death of epithelial cells	9.88E-05	2.28E-03
cell death of cervical cancer cell lines	4.56E-03	3.59E-06
Cellular Movement / Interaction		
cytokinesis	1.56E-05	8.78E-08
binding of cells	6.73E-05	#N/A
cell movement	1.14E-04	8.86E-06
cell movement of tumor cell lines	5.52E-04	3.85E-05
Development / Morphology		
morphology of reproductive system	8.82E-07	1.31E-05
abnormal morphology of embryonic tissue	1.75E-06	1.19E-05
morphology of embryonic tissue	2.36E-06	4.99E-06
size of embryo	5.98E-06	2.23E-09
proliferation of tumor cell lines	4.15E-05	2.63E-05
morphology of genital organ	2.69E-05	2.94E-04
abnormal morphology of genital organ	5.89E-05	4.13E-04
proliferation of embryoblast	6.48E-05	2.06E-04
fibrogenesis	7.61E-05	1.15E-04
formation of embryonic tissue	1.84E-03	9.76E-06
abnormal morphology of extraembryonic tissue	6.59E-04	2.79E-05
growth of embryo	7.44E-03	3.30E-05
morphology of extraembryonic tissue	1.23E-03	3.69E-05
morphology of gonad	1.16E-04	5.19E-05

Selection of functional enrichment of diseases and disorders, molecular and cellular functions as well as physiological system development and function of all genes expressed in either fPGCs (9210) or oocytes (9207) using the IPA software. The complete IPA output, including p-values and the gene sets corresponding to each term, is available in Supplementary Table 4 (p < 0.0001 highlighted in red (fPGCs) or green (oocytes)). analysis we derived biological pathway, cellular component and molecular function Gene Ontology (GO) and KEGG pathway terms for subsets of genes solely expressed in either fPGCs (873) or oocytes (1141) or overlapping between fPGCs and oocytes (967). We considered terms with a p-value < 0.01 to be significantly enriched.

Regarding genes solely expressed in fPGCs we found the KEGG pathways 'hsa04740:Olfactory transduction', 'hsa00140:Steroid hormone biosynthesis' and 'hsa00150:Androgen and estrogen metabolism' being significantly enriched. Concerning the GO terms we would like to emphasize the 'extracellular region' – terms for cellular component GO, 'sensory perception' connected terms for biological process GO and 'olfactory receptor activity' as highest enriched term for molecular function GO. These results indicate that within the genes exclusively expressed in fPGCs there is a significant association with olfactory-related processes and maybe function (Fig. 2A).

With respect to genes exclusively expressed in oocytes we found an association with the KEGG pathway 'hsa04810:Regulation of actin cytoskeleton' as enriched. Furthermore we found 'chromatin organization', 'cell cycle', 'transcription regulation' and 'endosomal' – associated biological property, cellular compartment and molecular function GO terms, respectively, thus indicative of transcriptional control as an active process in oocytes (Fig. 2C).

Regarding genes overlapping between fPGCs and oocytes we found, for example, the KEGG pathways 'hsa04510:Focal adhesion' and 'hsa04020:Calcium signaling pathway' as significant. Furthermore, we found molecular function GO terms associated with 'protein formation', 'chemokine receptor' and 'metal ion binding', cellular compartment GO terms associated with'(plasma-) membrane' and biological pathway GO terms associated with'metal ion transport', 'cell-cell-signaling' and 'secretion' (Fig. 2B).

Ingenuity Systems canonical pathway analysis of all genes expressed in female PGCs and oocytes

In order to acquire greater insights into pathways and functions associated with the total number of elevated transcript levels found in either fPGCs or oocytes, we conducted an IPA Ingenuity-based analysis. We compared transcription regulators, biological functions and canonical pathways most highly enriched in fPGCs and oocytes.

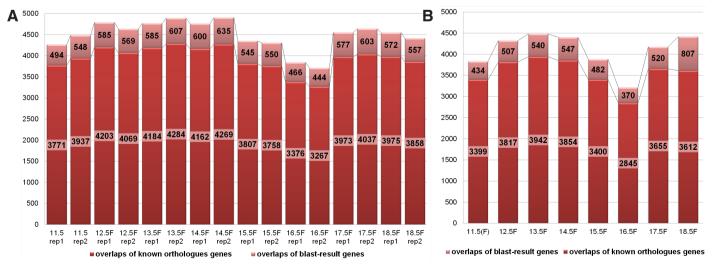
Regarding the canonical pathways output we found 'EIF2-', 'Regulation of eIF4 and p70S6K-', 'mTOR-', 'ILK-', 'Ephrin Receptor-', 'Huntington's Disease-', 'Wnt/β-catenin-' signaling pathways as well as 'Mitochondrial Dysfunction' being most enriched in both fPGCs and oocytes. Notable enrichment and ratio differences were observed in 'Aminoacyl-tRNA Biosynthesis', 'Cell Cycle Regulation by BTG Family', 'Role of CHK Proteins in Cell Cycle' and 'Role of BRCA1 in DNA Damage Response', which are more highly enriched in fPGCs. Whereas 'Germ Cell-Sertoli Cell Junction Signaling', 'Rac Signaling', 'CDK5 Signaling', 'Mitotic Roles of Polo-Like Kinase', 'Actin Cytoskeleton Signaling' and 'Ephrin B Signaling', are more highly enriched in oocytes (Table 1).

With respect to the output associated with biological function we found mammary-, colon- and colorectal tumor/cancer terms

TABLE 3

PUTATIVE CRUCIAL TRANSCRIPTION FACTORS ACTIVE IN FEMALE PGCs AND OOCYTES

	fPGCs	Oocs	
Transcription Regulator HNF4A	p-value 1.78E-18	p-value 8.60E-18	
MYCN	3.94E-14	1.59E-10	
MYCN	3.94E-14 3.77E-08		
E2F4		4.10E-05	
E2F4 HTT	7.48E-06	1.08E-04	
	6.05E-05	9.06E-03	
IRF4	1.17E-04	> 0,05	
NFE2L2	1.88E-04	8.49E-04	
TP53 (includes EG:22059)	2.45E-04	7.81E-03	
SREBF2	2.46E-04	3.40E-03	
HSF2	4.29E-04	7.86E-03	
XBP1 (includes EG:140614)	5.57E-04	1.92E-03	
CCNE1	1.65E-03	1.75E-03	
E2F1	2.12E-03	> 0,05	
TFEB	2.14E-03	4.82E-02	
KDM5B	2.41E-03	5.00E-03	
ATF4	2.60E-03	> 0,05	
NOTCH4	2.81E-03	> 0,05	
E2F3	3.92E-03	8.90E-03	
CTNNB1	4.39E-03	1.00E-02	
SREBF1 (includes EG:176574)	4.58E-03	> 0,05	
NPAS2	4.77E-03	4.94E-03	
ASCL2	4.77E-03	4.94E-03	
SOX11	6.92E-03	4.82E-02	
TBX2	7.20E-03	2.03E-03	
CDKN2A	1.21E-02	7.00E-04	
PPARGC1B	1.21E-02	2.96E-02	
TFAP2A	1.56E-02	2.84E-03	
SKI	1.57E-02	4.45E-03	
SPDEF	2.62E-02	> 0,05	
ELK3	3.45E-02	6.27E-03	
SKIL	3.91E-02	2.50E-04	
HEXIM1	4.30E-02	4.94E-03	
SIRT2	4.53E-02	4.70E-02	


Genes expressed in either fPGCs (9210) or oocytes (9207) were analysed to predict transcriptional regulators significant in the two gene expression datasets using the IPA software. Significant results are highlighted with decreasing colour gradients (fPGCs in red, oocytes in green) ranging from p < 0.001 over p < 0.001 and p < 0.01 to p < 0.05.

enriched in both of fPGCs and oocytes. 'Hematological neoplasia' and 'benign tumor' are slightly more enriched within fPGCs. The gene list associated with these cancer-related terms can be found in Supplementary Table 4. All of the 'Cell Cycle' terms are much more enriched in oocytes, furthermore we found 'binding of cells' and 'cell viability of tumor cell lines' being by far more enriched in fPGCs in contrast to 'cell death of tumor cell lines' which is enriched at a similar level in both fPGCs and oocytes. Concerning 'Development and Morphology' we found several 'embryonic tissue' related terms enriched in both cell types. The terms 'morphology of genital organ' and 'fibrogenesis' are slightly more enriched within fPGCs whereas 'formation of embryonic tissue', '(abnormal) morphology of extraembryonic tissue' and 'growth of embryo' are slightly more enriched within oocytes (Table 2). The list of genes associated with each of these terms can be found in Supplementary Table 4.

Regarding the transcription regulators output we found HNF4A, MYCN, MYC, E2F4 and HTT being the five most enriched transcription regulators in fPGCs. Most of transcription regulators being enriched at a higher level show a smaller p-value for fPGCs than for oocytes (Table 3).

Comparison of the transcriptomes of human and mouse female PGCs

To further confirm independently the germ cells-specific transcriptome of our fPGCs we analysed the overlaps between our fPGCs with that of the transcriptomes of PGCs isolated from female mouse embryos at distinct stages of development (embryonic days 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, and 18.5) (Sabour et al., 2011). As shown in Fig. 3A, the highest overlap is between human fPGCs and 14.5F replicate (rep) 2 mouse fPGCs (4269 + 635 = 4904). However, Fig. 3B highlights that the overlap between the intersection of 13.5F rep1 and 13.5F rep2 mouse fPGCs (which actually contains less but more conserved genes than each of 13.5F replicate 1 and 2) and the human fPGCs contains more genes than all of the other overlaps of mouse fPGCs intersections and human fPGCs (4482). We identified 9210 genes being expressed in our human fPGCs (Fig. 1A). Of these, 6746 genes belong to the 8876 known orthologous genes mentioned above; therefore 6746 is the maximum number possible for the numbers in the lower parts of

Fig. 3. Comparison of the transcriptomes of mouse and human female PGCs. *Known orthologous genes (8876) and putative orthologous genes resulting from our nucleotide BLAST search (1632) between human and mouse fPGCs (Sabour D et al., 2011) were analysed to identify overlaps.* **(A)** *Comparison of separate mouse fPGCs samples (replicates 1 and 2) at distinct developmental stages (embryonic day 11.5 – 18.5) with our human fPGCs gene expression data set.* **(B)** *Comparison of the intersection of mouse fPGCs replicates 1 and 2 with our human fPGCs transcriptome data.*

TABLE 4

DISTINCT AND OVERLAPPING EXPRESSION OF MEMBERS OF THE OLFACTORY RECEPTOR GENE FAMILY IN FEMALE PGCS, MALE PGCS AND OOCYTES

IPACs_Docs PRCs Occs IPACs OPACs_Docs IPACs_Docs IPACs_DOCS				ors expresse		
ORIOLI ORIO22 ORIA2 ORIOV1 ORI3G1 OR911 OR1051 OR1144 OR2A5 OR111 ORID23 OR101 OR1011 ORIA1 ORA211 OR2A9P OR1N1 OR101 OR11122 OR1A1 OR5147 OR2A9P OR1N1 OR2421 OR1202 OR1L8 OR5161 OR2X11 OR2M2 OR2M1 OR2M2 OR13C4 OR2A74 OR54X2 OR5M1 OR2M2 OR341 OR4012 OR13C4 OR2A10 OR544 OR5270 OR4M2 OR341 OR402 OR341 OR1411 OR802 OR841 OR7277 OR4M2 OR402 OR441 OR242 OR412 OR402 OR441 OR242 OR412 OR402 OR441 OR242 OR412 OR412 OR412 OR412 OR412 OR412 OR412 OR412 OR412 OR414 OR243 OR411 OR243 OR411 OR243 OR411 OR243 OR411 OR243			Oocs	mPGCs	=	
OR10S1 OR11A1 OR2A5 OR10W1 OR10W1 OR13A1 OR4C11 OR2A9 OR1N1 OR11G2 OR1A1 OR51A7 OR2D3 OR2AE1 OR11H12 OR1E2 OR1B OR2D3 OR2AE1 OR12D2 OR1L8 OR5160 OR415 OR2M1P OR13C2 OR1L8 OR52N4 OR5W11 OR2W1P OR13C4 OR2A14 OR54X2 OR5W11 OR2W3 OR1411 OR212 OR6M3 OR6A2 OR3M1 OR2W3 OR141 OR4C15 OR7V4 OR6K6 OR4F4 OR421 OR423 OR414 OR222 OR414 OR222 OR414 OR222 OR421 OR423 OR421 OR423 OR423 OR423 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
OR10W1 OR1A1 OR4C11 OR2APP OR1N1 OR1162 OR1A1 OR5161 OR2D3 OR2AE1 OR11202 OR1L8 OR5161 OR4C16 OR2L1P OR13C2 OR1L8 OR5161 OR416 OR2AT1 OR13C2 OR1N2 OR5K2 OR3W1 OR2M2 OR13C4 OR6X4 OR6AC2 OR3A1 OR4C12 OR13C4 ORAC15 OR7D4 OR6K6 OR411 OR1411 OR2C3 OR8A1 OR5576 OR4V12 OR141 OR4C3 OR8A1 OR5577 OR4N2 OR2A1 OR4C13 OR464 OR6512 OR4N2 OR2A21 OR4C13 OR881 OR512 OR4N2 OR2A25 OR4K17 OR6C76 OR4N2 OR804 OR2A31 OR4K17 OR6C74 OR6C74 OR2A33 OR4K17 OR6C74 OR6C74 OR2A3 OR4K17 OR6C74 OR6401 OR2A3 OR561						OR911
OR11412 OR1A1 OR51A7 OR2D3 OR2AE1 OR11H12 OR1E2 OR1E3 OR4F15 OR2M1P OR12D2 OR1L8 OR51Q1 OR4F15 OR2M1P OR13C2 OR1N2 OR52N4 OR52W1 OR2M2 OR13C4 OR2AT4 OR54X2 OR5M1 OR2M3 OR1411 OR212 OR4K4 OR6A2 OR3A1 OR1411 OR2C15 OR7D4 OR6K6 OR4F4 OR1412 OR4C15 OR7D4 OR6K6 OR4F4 OR141 OR4C2 OR8A1 OR512 OR421 OR2A1 OR7A99 ORC1 OR3W2 OR421 OR2A2 OR4C2 OR882 OR412 OR3W2 OR2A25 OR4K1 OR6C55 OR452 OR7G3 OR2G3 OR4X1 OR6C5 OR451 OR265 OR2G3 OR4X1 OR665 OR451 OR841 OR2G3 OR4X1 OR665 OR451 OR451 OR2G3 OR4X1 OR665 OR451 OR451 OR415<						
OR11H12 OR1E2 OR51BS OR216 OR2LIP OR13C2 OR1N2 OR52N4 OR52W1 OR2M2 OR13C4 OR2AT4 OR5AK2 OR5M3 OR2M2 OR13C9 OR210 OR5K4 OR6A2 OR3A1 OR1411 OR2T10 OR5K4 OR6A2 OR3A1 OR1411 OR212 OR5M3 OR6C76 OR4C12 OR141 OR4C3 OR8A1 OR757P OR4N2 OR2A20P OR4D1 OR882 OR5112 OR6512 OR2A21 OR4K17 OR864 OR6512 OR263 OR4K17 OR263 OR4K17 OR864 OR6512 OR263 OR4K17 OR263 OR4K17 OR864 OR6512 OR263 OR452 OR772 OR263 OR4K17 OR864 OR861 OR861 OR264 OR501 OR263 OR4K1 OR864 OR861 OR861 OR464 OR861 OR263 OR452 OR773 OR861 OR861 OR261 OR261 OR211 OR5A51						
OR12D2 OR1L8 OR5101 OR2M1 OR2M1 OR13C2 OR1A OR5AK1 OR5AK2 OR5M11 OR2M3 OR13C4 OR2A14 OR5AK2 OR5M11 OR2M3 OR3A14 OR13C4 OR2A110 OR5K4 OR6A2 OR3A1 OR4M3 OR1411 OR4C15 OR7D4 OR6K6 OR474 OR4M3 OR141 OR4C3 OR8M1 OR6C76 OR4C12 OR141 OR4C3 OR8M1 OR7C4 OR4M2 OR2A1 OR4D11 OR882 OR4S1 OR6C65 OR2A20 OR4D2 OR884 OR512 OR4S1 OR2A23 OR4K1 OR6665 OR7G3 OR674 OR2C3 OR4X1 OR8601 OR861 OR843 OR861 OR211 OR8610 OR861 OR861 OR861 OR861 OR233 OR4X1 OR8631 OR8631 OR8631 OR8641 OR244 OR5681 OR861 OR8643 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
OR13C2 OR1102 OR52N1 OR52W1 OR2M2 OR13C3 OR2AT4 OR5AK2 OR5M11 OR2M3 OR13C9 OR2T10 OR5K4 OR6C76 OR4C12 OR11411 OR2112 OR5M3 OR6C76 OR4C12 OR114 OR4C15 OR7D4 OR6K6 OR441 OR14 OR4C11 OR884 OR5112 OR451 OR2A2 OR4D2 OR884 OR5112 OR6C76 OR2A31 OR4D2 OR884 OR5112 OR6C74 OR2A32 OR4K14 OR6C65 OR7C2 OR452 OR2C3 OR452 OR453 OR6C76 OR453 OR2C3 OR452 OR6763 OR6665 OR7C2 OR453 OR4511 OR6655 OR7C3 OR843 OR2C3 OR452 OR451 OR451 OR501 OR2C3 OR451 OR865 OR461 OR501 OR2C3 OR451 OR8651 OR841 OR501						
OR13C4 OR2110 OR5K4 OR6M1 OR2M1 OR13C9 OR2110 OR5K4 OR6C7 OR4C12 OR1411 OR2112 OR6K6 OR4C12 OR4C12 OR141 OR4C3 OR8A1 OR7E37P OR4M2 OR2A2 OR4D2 OR8A1 OR7E37P OR4M2 OR2A2P OR4D9 OR5W2 OR6C65 OR2A25 OR4K1 OR6C65 OR7C4 OR2C3 OR4X1 OR8C1 OR8C74 OR2C3 OR4X1 OR8G1 OR8G1 OR2M4 OR5L1 OR8G3 OR8U9 OR2T3 OR5A3 OR8U9 OR8U9 OR2T3 OR5A3 OR8U9 OR8U9 OR2T3 OR5A31 OR8U9 OR8U9 OR441 OR5A31 OR8U9 OR8U9 OR445 OR5K1 OR8U8 OR445 OR445 OR5K1 OR8U9 OR445 OR445 OR6K1 OR445 OR5M1 O						
OR13C9 OR2T10 OR5M3 OR6A2 OR3A1 OR1411 OR4C15 OR5M3 OR6C76 OR4C12 OR112 OR4A15 OR7D4 OR6K6 OR4F4 OR1414 OR4D11 OR8B2 OR4M12 OR4M12 OR2A2 OR4D1 OR8B2 OR5W2 OR4M14 OR2A25 OR4K14 OR6C65 OR4M1 OR6C76 OR2A25 OR4K14 OR6C65 OR5W2 OR723 OR2A25 OR4K14 OR6C76 OR5W2 OR451 OR2C3 OR4K1 OR6C65 OR451 OR723 OR2G3 OR4K1 OR865 OR733 OR503 OR211 OR511 OR865 OR841 OR843 OR211 OR52N5 OR843 OR843 OR843 OR211 OR52N5 OR843 OR843 OR843 OR211 OR5A51 OR4M2 OR843 OR843 OR4415 OR5A61 OR4454 OR5461 OR461						
OR1411 OR212 OR8010 OR8076 OR4012 OR112 OR4015 OR704 OR801 OR7577 OR4M2 OR2A1 OR4010 OR8841 OR7577 OR4M2 OR2A2 OR4011 OR8841 OR5777 OR4M2 OR2A2 OR4012 OR884 OR5112 OR5776 OR2A2 OR4012 OR884 OR5112 OR5772 OR2A31 OR4417 OR6005 OR4014 OR572 OR2A31 OR4417 OR6005 OR702 OR203 OR4512 OR73 OR702 OR203 OR411 OR805 OR801 OR211 OR805 OR801 OR801 OR211 OR5801 OR801 OR803 OR211 OR5851 OR803 OR804 OR211 OR5851 OR804 OR804 OR211 OR5851 OR804 OR4045 OR415 OR501 OR804 OR4045 OR4045 OR804 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
OR1.12 OR4C15 OR724 OR666 OR4421 OR1.14 OR4C3 OR8A1 OR7237P OR4N2 OR2A1 OR4D11 OR8B2 OR4S1 OR2A2 OR4D1 OR8B2 OR4S1 OR2A20P OR4D9 ORC OR5W2 OR2A25 OR4K14 OR8C65 OR2A261 OR4K2 OR7C2 OR2C3 OR4K2 OR7C3 OR2C3 OR4K3 OR8G1 OR2C43 OR4K1 OR8G5 OR2W3 OR56A3 OR8K1 OR4C45 OR5K1 OR4K4 OR4C45 OR5K1 OR4K1 OR4C45 OR5K1 OR5K2 OR511 OR6K1 OR526 OR5226 OR526 OR52						
OR1J4 OR4C3 OR8A1 OR7E37P OR4N12 OR2A1 OR4D2 OR8B2 OR4S1 OR2A2 OR4D2 OR8B4 OR5112 OR2A20P OR4D9 ORC1 OR8C4 OR2A5 OR4K14 OR6C65 OR2A61 OR4K17 OR6C74 OR2263 OR4S2 OR7G3 OR2C3 OR4S1 OR8G1 OR2C43 OR4S1 OR8G1 OR2C3 OR4S1 OR8G1 OR2C3 OR4S2 OR7G3 OR2C3 OR4S1 OR8G1 OR2C43 OR4S1 OR8G1 OR2C3 OR4S1 OR8K1 OR2T33 OR56B1 OR8K3 OR2W5 OR5AS1 OR8K3 OR4415 OR5H2 OR451 OR445 OR5H1 OR451 OR451 OR601P OR454 OR451 OR601P OR454 OR451 OR601P OR454 OR451 OR601P OR454 OR5266 OR526 OR526 OR						
OR2A1 OR4D11 OR8B2 OR431 OR2A22 OR4D2 OR8B4 OR5112 OR2A20P OR4D9 ORC1 ORSW2 OR2A25 OR4K14 OR6C65 OR2A261 OR4K17 OR6C74 OR2C3 OR4K2 OR7C2 OR2C3 OR4X1 OR8G1 OR213 OR4X1 OR8G1 OR213 OR4X1 OR8G1 OR213 OR511 OR8G3 OR214 OR52N5 OR8K3 OR211 OR8K1 OR8K1 OR2W3 OR56A3 OR8K3 OR2W3 OR56A3 OR8K1 OR211 OR550 OR8K3 OR451 OR541 OR451 OR445 OR6K1 OR461 OR445 OR6K1 OR511 OR511 OR64 OR511 OR5286 OR5286 OR5286 OR5281 OR511 OR5281 OR5281 OR511 OR5281 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
OR2A20P OR4D9 ORC1 ORSW2 OR2A25 OR4K14 OR6C65 OR2A61 OR4K17 OR6C74 OR2B2 OR4K2 OR7C2 OR2G3 OR4X1 OR861 OR2L3 OR511 OR865 OR2M4 OR52L1 OR8K1 OR2T11 OR56A3 OR8U9 OR2W3 OR56B1 OR841 OR211 OR5AS1 OR415 OR211 OR5AS1 OR8U9 OR4415 OR5H1 OR4415 OR4415 OR5K1 OR4415 OR4415 OR6K1 OR445 OR445 OR6K1 OR445 OR4510 OR64 OR54 OR5111 OR64 OR54 OR5286 OR5286 OR5286 OR5286 OR54 OR54 OR541 OR54 OR54 OR5286 OR54 OR54 OR5286 OR54 OR54 OR541 OR54 OR54<	OR2A1	OR4D11				
OR2A25 OR4K14 OR6C65 OR2AG1 OR4K17 OR8C74 OR2C3 OR4S2 OR7G3 OR2G3 OR4X1 OR8G1 OR2L3 OR411 OR8G5 OR2M4 OR52L1 OR8K1 OR2T11 OR52N5 OR8K3 OR2W3 OR56B1 OR4415 OR2V5 OR5H2 OR843 OR4415 OR5H2 OR843 OR4415 OR5H2 OR441 OR445 OR5H2 OR441 OR441 OR5H2 OR441 OR4415 OR6K1 OR445 OR445 OR6K1 OR512 OR512 OR9G1 OR512 OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5281 OR51 OR5281 OR51 OR54 OR5281 OR54 OR54 OR5281 OR54 OR54 OR5281 OR54 OR54	OR2A2	OR4D2	OR8B4		OR5112	
OR2AG1 OR4K17 OR6C74 OR2B2 OR4K2 OR7C2 OR2G3 OR4K2 OR7C3 OR2G3 OR4X1 OR8G1 OR2L3 OR511 OR865 OR2M4 OR521 OR8K1 OR2T11 OR52N5 OR8K1 OR2V3 OR56B1 OR4415 OR21 OR5AS1 OR4415 OR4415 OR5H2 OR4415 OR445 OR5K1 OR445 OR446 OR6W1P OR445 OR511 OR8U8 OR511 OR512 OR541 OR542 OR445 OR6K1 OR445 OR445 OR6K1 OR54 OR511 OR64 OR54 OR5286 OR528 OR528 OR5286 OR528 OR54 OR5286 OR54 OR54 OR5286 OR54 OR54 OR541 OR54 OR54 OR541 OR54 OR54	OR2A20P	OR4D9	ORC1		OR5W2	
OR2B2 OR4K2 OR7C2 OR2C3 OR4X1 OR861 OR2L3 OR51L1 OR8G5 OR2M4 OR52L1 OR8K1 OR2T33 OR56A3 OR8U9 OR2W3 OR56A1 OR8U9 OR415 OR541 OR415 OR445 OR6X1 OR445 OR4453 OR6X1 OR511 OR511 OR62 OR528 OR528 OR528 OR528 OR5286 OR5286 OR5286 OR5286 OR5286 OR528 OR5286 OR5286 OR528 OR5286 OR528 OR54 OR529 OR54 OR54 OR520 OR54 OR54 <t< td=""><td>OR2A25</td><td>OR4K14</td><td></td><td></td><td>OR6C65</td><td></td></t<>	OR2A25	OR4K14			OR6C65	
OR2C3 OR4S2 OR7G3 OR2G3 OR4X1 OR8G1 OR2L3 OR51L1 OR8G5 OR2T11 OR52N5 OR8K3 OR2V3 OR56A3 OR8U9 OR2W3 OR56B1 OR8U9 OR2M4 OR5AR1 OR8U9 OR2W5 OR5AR1 OR8U9 OR445 OR5H2 OR4451 OR445 OR5H2 OR4451 OR445 OR5K1 OR5101 OR4473 OR6X1 OR5101 OR5111 OR8U8 OR5122 OR5111 OR8U8 OR52A5 OR52A5 OR52A5 OR52A5 OR52B6 OR52B6 OR52B6 OR52B6 OR52B6 OR52B1 OR52B1 OR52B1 OR52B1 OR52B1 OR52B6 OR52B1 OR52B6 OR52B6 OR52B1 OR52B6 OR52B1 OR52B1 OR52B1 OR52B1 <td>OR2AG1</td> <td>OR4K17</td> <td></td> <td></td> <td>OR6C74</td> <td></td>	OR2AG1	OR4K17			OR6C74	
OR2G3 OR4X1 OR8G1 OR2L3 OR51L1 OR8G5 OR2M4 OR52L1 OR8K1 OR2T33 OR56A3 OR8U9 OR2W3 OR56A1 OR8U9 OR2V5 OR5AR1 OR415 OR415 OR5H6 OR4415 OR445 OR5H6 OR445 OR445 OR5H6 OR4473 OR4473 OR611 OR512 OR512 OR9G1 OR512 OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5281 OR5281 OR5281 OR5281 OR5281 OR5286 OR5281 OR5281 OR5281 OR5281 OR5281 OR5281 OR5281 OR5411 OR541 OR541 OR5281 OR5281 OR541 OR5411 OR541 OR541 OR541 OR541 OR541 </td <td>OR2B2</td> <td>OR4K2</td> <td></td> <td></td> <td>OR7C2</td> <td></td>	OR2B2	OR4K2			OR7C2	
OR2L3 OR51L1 OR8G5 OR2M4 OR52L1 OR8K1 OR2T11 OR52N5 OR8K3 OR2W3 OR56B1 OR2V3 OR2W3 OR5AR1 OR4415 OR241 OR5AS1 OR4415 OR441 OR5H6 OR441 OR445 OR5H6 OR445 OR445 OR5H6 OR5101 OR4473 OR6X1 OR5101 OR5101 OR8U8 OR5101 OR511 OR520 OR5286 OR5226 OR5226 OR5226 OR5286 OR5286 OR5286 OR5286 OR5286 OR5281 OR5281 OR5281 OR5281 OR5281 OR5281 OR5281 OR5281 OR5281 OR541 OR541 OR541 OR541 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
OR2M4 OR52L1 OR8K1 OR2T11 OR52N5 OR8K3 OR2T33 OR56A3 OR8U9 OR2W5 OR5AR1 OR2W5 OR2M5 OR5AR1 OR411 OR211 OR5AS1 OR411 OR4415 OR5H2 OR411 OR445 OR5K1 OR446 OR446 OR601P OR51D1 OR51D1 OR8U8 OR511 OR5111 OR8U8 OR512 OR522 OR9G1 OR522 OR5286 OR5286 OR5286 OR5286 OR5281 OR5281 OR5281 OR5281 OR5281 OR5281 OR5281 OR5281 OR5286 OR5281 OR5401 OR5401 OR5401 OR5401 OR541 OR5401 OR5401 OR541 OR5401 OR5401 OR541 OR5401 OR5401 OR542 OR541 OR541 OR541 OR541 OR54						
OR2T11 OR52N5 OR8K3 OR2T33 OR56A3 OR8U9 OR2W3 OR56B1 OR401 OR2V1 OR56R1 OR54X1 OR221 OR5AS1 OR415 OR4B1 OR5H6 OR4645 OR4646 OR6W1P OR473 OR473 OR6X1 OR51D1 OR473 OR6X1 OR51D1 OR51D1 OR8U8 OR5111 OR51D1 OR8U8 OR5111 OR52A5 OR52B6 OR52B6 OR52B6 OR52B1 OR52B1 OR52B6 OR52B1 OR52B3 OR52B1 OR52B1 OR52B1 OR52B6 OR52B1 OR52B1 OR52B1 OR52B1 OR54 OR52B1 OR54 OR54 OR52B1 OR54 OR54 OR52B1 OR54 OR54 OR54 OR54 OR54 OR54 OR54 OR54 OR54 OR54 OR54						
OR2T33 OR56A3 OR8U9 OR2W3 OR56B1 OR2W5 OR56B1 OR2W5 OR56A1 OR2U5 OR5A21 OR415 OR5H2 OR4415 OR5H2 OR441 OR5H6 OR465 OR5K1 OR466 OR6W1P OR4F3 OR6X1 OR51D1 OR8U8 OR5111 OR6U8 OR522 OR9G1 OR5286 OR5286 OR5286 OR5286 OR5281 OR5281 OR5281 OR5282 OR5282 OR5283 OR5281 OR5284 OR5281 OR5285 OR5281 OR5281 OR5281 OR5281 OR58281 OR58281 OR58291 OR581 OR58201 OR59281 OR58210 OR59281 OR58211 OR59281 OR5821 OR59281 OR5821 OR59281 OR5821 OR59281 OR58281 OR5931						
OR2W3 OR56B1 OR2W5 OR5AR1 OR2Z1 OR5AS1 OR4A15 OR5H2 OR4B1 OR5H6 OR4C45 OR6K1 OR4C45 OR6K1 OR4F3 OR6X1 OR51D1 OR808 OR511 OR64 OR511 OR64 OR512 OR9G1 OR5111 OR64 OR5285 OR5286 OR5286 OR5286 OR5281 OR5286 OR5281 OR5684 OR5684 OR541 OR5511 OR5684 OR5681 OR5684 OR571 OR571 OR571 OR571 OR571 OR571 OR571 OR571 OR571 OR571 OR6683 OR6683 OR6683 OR671						
OR2W5 OR5AF1 OR221 OR5AS1 OR4A15 OR5H2 OR4B1 OR5H6 OR4C45 OR5K1 OR4C46 OR6W1P OR453 OR5K1 OR51D1 OR8U8 OR51E2 OR9G1 OR52A5 OR52B2 OR52B6 OR52B6 OR52B6 OR52B1 OR52B6 OR52B1 OR52B1 OR52B2 OR52B6 OR52B1 OR52B6 OR52B1 OR52B1 OR52B1 OR52B1 OR52B1 OR52B6 OR52B1 OR52B1 OR52B1 OR52B1 OR52B1 OR52B1 OR54D1 OR54D1 OR54D1 OR54D1 <td< td=""><td></td><td></td><td></td><td></td><td>OR809</td><td></td></td<>					OR809	
OR221 OR5AS1 OR4A15 OR5H2 OR4B1 OR5H6 OR4C45 OR5H6 OR4C46 OR6W1P OR4F3 OR6X1 OR51D1 OR8U8 OR5111 OR64 OR512 OR901 OR513 OR64 OR514 OR5245 OR5286 OR5286 OR5286 OR5286 OR5286 OR5281 OR5281 OR5283 OR5284 OR5284 OR5285 OR5286 OR5286 OR5286 OR5281 OR5283 OR5284 OR5284 OR5285 OR5286 OR5286 OR5286 OR5281 OR5283 OR5281 OR54 OR58241 OR54 OR581 OR54 OR581 OR54 OR581 OR54 OR583 OR66 OR661 OR671						
OR4A15 OR5H2 OR4B1 OR5H6 OR4C45 OR5K1 OR4C45 OR6K1 OR4F3 OR6X1 OR51D1 OR8U8 OR51E2 OR9G1 OR51T1 OR6246 OR52A5 OR5286 OR5286 OR5286 OR5281 OR5283 OR5282 OR5284 OR5284 OR5285 OR5285 OR5286 OR5286 OR5286 OR5281 OR5283 OR5282 OR5286 OR5284 OR5286 OR5285 OR5286 OR5286 OR5286 OR5281 OR5281 OR5281 OR541 OR5684 OR541 OR581 OR541 OR582 OR581 OR571 OR571 OR583 OR666 OR661 OR671						
OR4B1 OR5H6 OR4C45 OR5K1 OR4C46 OR6W1P OR4F3 OR6K1 OR51D1 OR8U8 OR51E2 OR9G1 OR51T1 OR52A5 OR5286 OR5286 OR5286 OR5281 OR5281 OR5286 OR5286 OR5286 OR5286 OR5281 OR5286 OR5280 OR5286 OR5281 OR5281 OR5684 OR5684 OR5684 OR5511 OR5684 OR5511 OR5681 OR5511 OR5681 OR571 OR571 OR571 OR571 OR571 OR571 OR663 OR664 OR671 OR674						
OR4C45 OR5K1 OR4C46 OR6W1P OR4F3 OR6X1 OR51D1 OR8U8 OR51E2 OR9G1 OR51T1 ORC4 OR52A5 OR52B6 OR52B6 OR52B6 OR52B1 OR52B6 OR52B6 OR52B6 OR52B7 OR52B6 OR52B6 OR52B6 OR52B7 OR52B6 OR52B6 OR52B7 OR52B7 OR52B7 OR52B8 OR52B8 OR52D1 OR54D1 OR55C1 OR55C1 OR55C1						
OR4C46 OR6W1P OR4F3 OR6X1 OR51D1 OR8U8 OR51D1 OR8U6 OR5111 OR6X OR5171 OR6X OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5286 OR5281 OR5280 OR5281 OR5280 OR5281 OR5280 OR5684 OR54N1 OR571 OR571 OR571 OR571 OR571 OR571 OR663 OR666 OR671 OR671						
OR4F3 OR6X1 OR51D1 OR8U8 OR51E2 OR9G1 OR51H1 ORC4 OR51T1 OR5285 OR5286 OR5286 OR5281 OR5281 OR5684 OR5401 OR5401 OR5401 OR541 OR541 OR541 OR541 OR541 OR541 OR541 OR541						
OR51E2 OR9G1 OR51M1 ORC4 OR51T1 OR52B2 OR52B2 OR52B6 OR52E6 OR52E6 OR52B1 OR52B1 OR52B2 OR52B1 OR52B3 OR52B1 OR52B4 OR52B3 OR52B5 OR52B1 OR52B6 OR52B1 OR52B1 OR52B3 OR52N2 OR56B4 OR5C1 OR5C1 OR5K2 OR5K1 OR5K2 OR5K1 OR5K1 OR5K1 OR5K2 OR5K1 OR5K1 OR5K1 OR5K1 OR5K1 OR5K1 OR5K1 OR5K1 OR5K1 OR6K3 OR6K6 OR6K4 OR6K6 OR6K2 OR6K2 OR6K2 OR6K2 OR6K3 OR6K2 OR6K4 OR6K4 OR6K5 OR6K5 OR6K6 OR6K5 OR6K1 OR6K5						
OR51M1 ORC4 OR51T1 OR52A5 OR52B2 OR52B6 OR52B6 OR52B6 OR52B6 OR52B6 OR52B7 OR52B6 OR52B6 OR52B6 OR52B7 OR52B6 OR52B6 OR52B6 OR52B7 OR52B7 OR52B1 OR52B1 OR52K1 OR56B4 OR5AN1 OR56B4 OR5AU1 OR56B1 OR5K2 OR56B1 OR5K1 OR5K1 OR5K1 OR5K1 OR5K1 OR5K1 OR661 OR5K1 OR664 OR664 OR665 OR661 OR661 OR661 OR661 OR661 OR671 OR671	OR51D1	OR8U8				
OR51T1 OR52A5 OR52B6 OR52E6 OR52E6 OR52E6 OR52J3 OR52X1 OR56B4 OR5AN1 OR5C1 OR5K2 OR5K1 OR5K1 OR5C1 OR5K2 OR56B1 OR5C1 OR5F1 OR6B3 OR6C6 OR6V1	OR51E2	OR9G1				
OR52A5 OR52B6 OR52B6 OR52B6 OR52B6 OR52B1 OR52B1 OR52J3 OR52N2 OR56B4 OR56N1 OR55C1 OR5K2 OR511 OR5511 OR56B3 OR66B3 OR66C6 OR6V1	OR51M1	ORC4				
OR52B2 OR52B6 OR52E6 OR52E6 OR52H1 OR52J3 OR52N2 OR56B4 OR5C1 OR5K2 OR5K1 OR5K2 OR5K1 OR5K2 OR5K1 OR5K1 OR5K1 OR5K1 OR5K1 OR5K1 OR5K1 OR5K1 OR6K3 OR6K6 OR6K6 OR6K1 OR6K1						
OR52B6 OR52E6 OR52B6 OR52H1 OR52J3 OR52K1 OR56B4 OR5AN1 OR5AU1 OR5C1 OR5K2 OR5K1 OR5K2 OR5K1 OR5K2 OR561 OR5F1 OR663 OR664 OR661 OR661 OR661 OR661 OR661 OR661 OR661						
OR52E6 OR52B6 OR52E6 OR52H1 OR52J3 OR52K1 OR56B4 OR5AN1 OR5AU1 OR5K2 OR5K1 OR5K2 OR5K1 OR551 OR6B3 OR666 OR667 OR6683 OR664						
OR52B6 OR52E6 OR52H1 OR52J3 OR52N2 OR56B4 OR5AN1 OR5C1 OR5K2 OR5K2 OR5K2 OR5K2 OR5K2 OR5K1 OR5V1 OR6B3 OR6C6 OR6V1						
OR52E6 OR52H1 OR52J3 OR52K1 OR56B4 OR56B4 OR5AN1 OR5C1 OR5C1 OR5C1 OR5F1 OR5T1 OR5V1 OR6B3 OR6C6 OR6F1 OR6F1 OR6V1						
OR52H1 OR52J3 OR52K1 OR56B4 OR5AN1 OR5C1 OR5K2 OR5K1 OR5T1 OR6B3 OR6C6 OR6F1 OR6V1						
OR52J3 OR52K1 OR56K2 OR56B4 OR5AN1 OR5AU1 OR5C1 OR5K2 OR5F1 OR5T1 OR5V1 OR6B3 OR66B3 OR6C6 OR6F1 OR6V1						
OR52K1 OR52N2 OR56B4 OR5AN1 OR5AU1 OR5C1 OR5C1 OR5K2 OR5T1 OR5V1 OR6B3 OR6C6 OR6C6 OR6C6 OR6C1						
OR52N2 OR56B4 OR5AN1 OR5C1 OR5C1 OR5K2 OR5T1 OR5V1 OR6B3 OR6C6 OR6F1 OR6V1						
OR56B4 OR5AN1 OR5AU1 OR5C1 OR5K2 OR5R1 OR5T1 OR5V1 OR6B3 OR6C6 OR6F1 OR6V1						
OR5AN1 OR5AU1 OR5C1 OR5C1 OR5K2 OR5T1 OR5V1 OR6B3 OR6C6 OR6C6 OR6F1 OR6V1						
OR5AU1 OR5C1 OR5K2 OR5T1 OR5T1 OR5V1 OR683 OR6C6 OR6C6 OR6F1 OR6V1						
OR5C1 OR5K2 OR5T1 OR5T1 OR5V1 OR6B3 OR6C6 OR6C6 OR6C1 OR6V1						
OR5K2 OR5R1 OR5T1 OR5V1 OR6B3 OR6C6 OR6F1 OR6V1						
OR5T1 OR5V1 OR6B3 OR6C6 OR6F1 OR6V1	OR5K2					
OR5V1 OR683 OR6C6 OR6F1 OR6V1	OR5R1					
OR6B3 OR6C6 OR6F1 OR6V1	OR5T1					
OR6C6 OR6F1 OR6V1						
OR6F1 OR6V1						
OR6V1						
UK/ATU						
OR7A17 OR7E156P						
OR761						
OR/G1 OR8D1						
OR801 OR8G2						
OR8H3						
OR8J3						
ORAOV1						
ORC3						
	ORC5					
	ORC6					
	ORM1					
ORC6						
ORC6						

Genes highlighted in red are those with orthologs in mouse PGCs. Also refer to Supplementary Table 5.

the columns in Fig. 3. For 1242 of the fPGCs genes, we found a possible orthologous gene by nucleotide BLASTN and as such 1242 is the maximum number possible for the numbers in the upper parts of the columns in Fig. 3. Novel orthologous genes either human or mouse are highlighted in blue in Supplementary Table 5.

As a result there are 1242 fPGCs genes remaining which are not comparable to any of the mouse genes detectable using the mouse Illumina BeadChip neither by official gene symbol nor our BLASTN result. We identified 4904 genes for the fPGCs-14.5F rep2 overlap and 4482 for the 13.5F rep1/rep2-intersection – fPGCs overlap of a maximum of 6746 + 1222 = 7968 genes.

Distinct and overlapping expression of members of the olfactory receptor gene family

Olfactory receptor (OR) proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single exon-coding genes and are the largest in the genome (Feldmesser *et al.*, 2006). In an earlier study, we identified expression of OR-encoding genes expressed in mPGCs (Goto *et al.*, 1999), to further validate this finding, we interrogated our current dataset for the presence of these genes. In total, we detected expression of 164 OR-encoding genes. Of these 72 are common between fPGCs, mPGCs and oocytes, 36 in fPGCs, 16 in oocytes, 13 in mPGCs, 25 in both fPGCs and oocytes and finally 2 in common between fPGCs and mPGCs. Of these human OR-encoding genes, we identified 33 mouse orthologs highlighted in red (Table 4).

Discussion

To date the in vivo derived transcriptomes of both male and female PGCs have been restricted to the mouse, where the identification and isolation of such cells is feasible using the promoter sequences of PGCs-lineage markers such as Oct4, Blimp1 and Prdm14 serving as reporters (Sabour et al., 2011; Saitou, 2009). To circumvent this drawback, in vitro differentiation models both human and mouse (Hubner et al., 2003; Toyooka et al., 2003; Geijsen et al., 2004; Kee et al., 2006; Nagano, 2007; Qing et al., 2007; Wei et al., 2008; Hayashi et al., 2011; Panula et al., 2011) have been established using pluripotent stem cells based on embryonic and induced pluripotent stem cells. Although differentiation of human ESCs and iPSCs into PGCs-like cells have been performed in mouse (Geijsen et al., 2004; Kee et al., 2006; Panula et al., 2011) transcriptome analysis of the derived PGCs have been restricted to known PGCs-specific genes such as BLIMP1/PRDM1, c-KITSTELLA/DPPA3, VASA/DDX4, and FRAGILIS/IFITM5. The lack of genome-wide transcriptome analyses of these human ESCs- and iPSCs-derived PGCs further precludes in-depth knowledge and analyses of key mechanisms underlying the complex and intricate biological processes of human germ cell development and subsequent gametogenesis.

In an attempt to overcome some of the afore-mentioned shortfalls associated with current *in vitro* models of human PGCs, we have carried out in this study extensive transcriptome-based comparative analyses of the molecular portraits of SMART-generated T7 promoter-linked double-stranded cDNA samples derived from 4 unfertilized oocytes, 200 mPGCs and 500 fPGCs previously generated as described in (Adjaye *et al.*, 1999; Goto *et al.*, 1999). To enrich for transcripts expressed in female germ cells, we included mPGCs as a means of excluding Y-linked genes. Confirmation of the success of this subtraction approach is the detected expression of *ZFY* solely in mPGCs and the Zona Pellucida genes *ZP4* in both fPGCs and oocytes, whilst *ZP1* and *ZP3* were detected in oocytes only (Supplementary Table 1).

Amongst the well characterised PGCs-specific genes, we detected for example, expression of *BLIMP1/PRDM1* and *PIWIL2* solely in the fPGCs and mPGCs cells, *VASA/DDX4* in fPGCs and oocytes, *DAZL* and *STELLA/DPPA3* in the oocytes only (Supplementary Table 1). Interestingly, *LIN28A* is expressed in all cell types and it has been shown in the mouse that *Lin28*, a negative regulator of Let-7, is essential for PGCs development and also associated with germ cell malignancy (Rybak *et al.*, 2008; West *et al.*, 2009).

BMP signaling has been shown to be essential for PGCs specification (Ying *et al.*, 2000; Ying and Zhao, 2001; Pesce *et al.*, 2002) and in line with this we detected expression of *BMP2*, *3*, *4*, *6*, *7* and *GDF1*, *2*, *3*, *9* and *15* and the receptors *BMPR1A* and *BMPR2* (Supplementary Table 1).

The observed variable expression patterns, for example, *VASA/DDX4* in fPGCs and oocytes, *DAZL* and *STELLA/DPPA3* in the oocytes can be attributed to the PCR-based SMART-generated T7 promoter-linked double-stranded cDNA from the reduced cell numbers (4 unfertilized oocytes, 200 mPGCs and 500 fPGCs). Nonetheless, our approach has provided for the first time a snapshot of the transcriptomes of these rare human cells.

The comparison of the human fPGCs transcriptomes with the transcriptomes of PGCs isolated from mouse embryos at distinct stages (E11.5–E18.5) of development (Sabour *et al.*, 2011) resulted in the identification of 1632 mouse orthologous genes with nucleotide identities within the coding regions ranging from 100 - 22%. The highest number of overlapping genes was with the transcriptomes derived from E14.5 mice (Fig. 3), the significance of this is at present unknown. Furthermore, of the 11 genes identified by Sabour *et al.*, as expressed exclusively in male and female PGCs both *in vitro* and *in vivo* but not in ESCs, we identified 4 of these (4930432K21Rik, Mov1011, Tex13, Hba-a1) as expressed in human fPGCs, thus further confirming the quality of our dataset which highlights the conservation of key PGCs-associated genes potentially involved in the development and specification of PGCs in both species.

With the transcriptome data at hand we could associate expressed genes to signaling pathways. For example, we identified key signaling pathways such as mTOR, WNT/ β -catenin, ERK/MAPK, PI3K/AKT, estrogen receptor and androgen receptor, cell cycle regulation by BTG family proteins, Rac, CDK5, Actin cytoskeleton, Ephrin B and germ cell-Sertoli cell junction signaling as active in fPGCs and oocytes.

Cytological analysis in mice and human suggests that both female and male PGCs are equally capable of entering meiosis (12 dpc in mice and 10 weeks in humans) and that the decision of cell fate of germ cells, either meiosis or mitosis takes place in the gonad (McLaren and Southee, 1997; Suzuki and Saga, 2008; Bowles and Koopman, 2010). It is still unknown and controversial whether entry into meiosis is induced in the female gonad or whether it is intrinsically programmed in both male and female PGCs and inhibited in the male gonad and permissive in the female gonad, or whether it is due to a combination of regulatory factors. Indeed, we do see differential expression of a host of transcription factors (for example, zinc finger containing transcription factors-ZNFs) in fPGCs and mPGCs, as potential regulators of this decision making process (Supplementary Table 1).

Furthermore, expression of several genes associated with components of the meiotic machinery was observed, for example, the synaptonemal complex (*SYCP2, SYCP3, TEX11, TEX13B, TEX15*), meiosis-specific cohesins (*SMC1B, STAG3*), meiotic recombination machinery (*DMC1, MSH4, TRIP13*), piRNA pathway (*PIWIL2, TDRD1, MAEL*) and other meiosis-associated genes (*HSPA4L, HSF2BP, HORMAD2, INTS6, CREBL2, ATF7IP2, MTL5, ZFP473*) (Su *et al.,* 2011). In contrast, in mPGCs we detected expression of *NODAL*, which has been shown in the mouse to have an autocrine signaling role during the specification of male PGCs (Souquet *et al.,* 2012).

An unexpected observation in our study is the expression of a plethora of olfactory receptor-encoding genes in fPGCs, mPGCs and unfertilized oocytes (Table 4). Olfactory receptors (ORs) which are G-protein-coupled receptors (GPCR) share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. In an earlier study using the same fPGCs and mPGCs mRNAs (differential display based-analyses) as employed in this study, we identified OR-encoding genes expressed in mPGCs cells (Goto et al., 1999). Although OR-encoding genes have so far been detected in mPGCs, the detected expression in fPGCs and oocytes in the current study is not an artefact as it has recently been shown that there is widespread expression of olfactoryrelated genes in tissues as diverse as testis, muscle, liver and skin, although some of these might be pseudogenes (Feldmesser et al., 2006). Of the 164 expressed OR-encoding genes, OR10J1, OR11A1, OR1D2, OR52K1 and OR7A17 have been detected as expressed in human testis (Feldmesser et al., 2006) and of these only OR10J1 has so far been detected as expressed in mPGCs (Parmentier et al., 1992). Additionally, of the 164 human OR-encoding genes differentially expressed between mPGCs, fPGCs and oocytes, we have identified 33 mouse orthologs (for example, OR51M1/Olfr78, OR4D11/Olfr1423 and OR1B1/Olfr362) highlighted in red (Table 4). Though unexpected, this is the first description of a plethora of OR-encoding genes showing overlapping and distinct expression patterns in human unfertilized oocytes, male and female PGCs at 10 weeks of gestation. Based on our findings, the current hypothesis that OR-encoding genes are involved in sperm chemotaxis should be extended to include the development of female germ cells and oocytes.

In summary, we anticipate that our current dataset will provide insights into the design of more extensive functional studies that might increase our meagre knowledge of the genes and associated signaling pathways operative during germ cell development and hence in turn lead to the development of strategies enabling better differentiation and molecular characterisation of germ cells derived from either ESCs or iPSCs. Ultimately, this would have a profound relevance to reproductive as well as regenerative medicine.

Materials and Methods

The isolation of the human germ cells and also failed fertilised oocytes are as described in detail in Goto *et al.*, 1999 and Adjaye *et al.*, 1999 respectively.

Fetal samples

The human fetal samples were obtained from the Human Embryonic Tissue Bank maintained at the Institute of Child Health (ICH) in collaboration with the Department of Obstetrics and Gynaecology, University College London (UCL), UK, and funded by the Medical Research Council. The collection, deposition and use of human fetal samples were approved by the Joint UCL/UCLH Committees on the Ethics of Human Research and the Ethical Committee of the ICH, and were carried out in accordance with the Polkinghorne report. Gonads were obtained from a male and a female fetus, at 10 weeks gestation, for isolation of PGCs. The age of the fetus was the anatomical (embryonic) age, as determined by limb development, and not the age from the last menstrual period (LMP). The fetal samples were kept on ice in Leibovitz's L15 medium (Gibco BRL, UK) and the gonads were dissected from the fetuses within 2–3 h after the surgical termination of pregnancy.

Isolation of germ cells from the gonad

Germ cells were isolated from the gonad following the protocols described by Buehr and McLaren, 1993. The gonads, dissected from the fetus, were freed from the attached mesonephric tissue under the dissecting microscope. They were then incubated in 1 mmol/l EDTA in Ca²⁺ and Mg²⁺-free phosphate-buffered saline (PBS) for 5 min at room temperature to loosen the germ cells from somatic cells. The gonads were washed briefly in PBS, transferred to fresh PBS and gently squeezed by watchmaker's forceps to release the germ cells. The germ cells could be distinguished from somatic cells by their size, round shape and bright appearance. The germ cells were manually collected by a finely-drawn Pasteur pipette, and 200 (male) and 500 (female) germ cells placed in 30 μ l of ice-cold lysis buffer [0.8% IGEPAL (Sigma, UK), 1 U of RNase inhibitor (Gibco BRL, UK), 5 mM dithiothreitol (DTT; Gibco BRL)], snap-frozen in liquid nitrogen and stored at -70°C until RNA extraction.

Oocyte samples

Human oocytes derived by in vitro fertilization (IVF), and forming part of a research project on embryo culture conducted by V. Bolton, were donated for research with consent by patients attending the Assisted Conception Unit, King's College Hospital (KCH) London. Pituitary suppression, ovarian stimulation and oocyte retrievals were carried out as described previously (Waterstone and Parsons, 1992). IVF was performed as described previously (Bolton et al., 1989) except that the culture medium used was a commercial preparation of Earle's balanced salt solution (Medi-Cult, Imperial Laboratories, Hampshire, UK). The four unfertilized oocytes collected on day 1, were failed-fertilization oocytes selected from cohorts placed with poor quality sperm such that none of the oocytes developed a second pronucleus. Great care was taken to remove contaminating cumulus cells surrounding the oocytes. The oocytes were anonymized and lysed at KCH before transfer to the Institute of Child Health. Oocytes in 0.5 μ l of PBS were added to 1.5 µl of lysis buffer [0.8% IGEPAL (Sigma), 1 U/µl of RNAsin (Gibco BRL), 5 mM DTT (Gibco BRL)], centrifuged briefly at 12 000×g and overlayed with one drop of mineral oil (Sigma) and stored at -70°C.

mRNA extraction and cDNA amplification

T7 promoter–linked double-stranded cDNA samples derived from 4 unfertilized oocytes, 200 mPGCs and 500 fPGCs were previously generated as described (Adjaye *et al.*, 1999; Goto *et al.*, 1999; Adjaye *et al.*, 2005). Briefly, mRNA was extracted from thawed lysed cells using Oligo-dT magnetic beads (Dynabeads). cDNA was generated using T7 promoter-linked oligodT primers for the reverse transcription (RT) step, and whole-transcriptome amplification was executed using a modified SMART amplification protocol (BD Biosciences, San Jose, CA, http://www.bdbiosciences. com). Finally, concentrations were evaluated on the Agilent 2100 Bioanalyzer.

Illumina bead chip hybridization and data analyses

Global gene expression analysis was carried out employing the Illumina microarray platform. SMART generated T7 promoter-linked cDNA were used as input for the T7 polymerase-mediated *in vitro* transcription to produce biotin-labeled cRNA (Illumina TotalPrep RNA Amplification Kit, Ambion, Austin, TX, USA). 500 ng of purified cRNA was hybridized onto Illumina HumanRef-8 v3 Expression BeadChips (Illumina, San Diego, CA, USA) on the Illumina Beadstation 500 platform followed by washing and blocking of the samples, staining with streptavidin-Cy3 and quantitative detection of the resulting fluorescent array image.

Raw data were obtained using the manufacturer's software GenomeStudio V2010.2 (Gene Expression module v.1.7.0). Subsequently, raw data were imported into the Bioconductor environment (Gentleman et al., 2004) and quantile normalized using the beadarray package (Dunning et al., 2007). In order to test for global gene expression similarities, pairwise Pearson correlation coefficients were calculated for all samples. Pearson correlation co-efficients, scatter- and boxplots, and hierarchical clustering were calculated using the R environment (http://www.r-project.org). We examined the distribution of normalized gene expression signals in each sample separately. Due to the low overall signal intensities we defined the guantile of 0.5 (arbitrary selection) as a threshold for identifying genes showing elevated expression levels in order to define these as "expressed" (Supplementary Fig. 1 for the distribution of raw and normalized gene expression signals). To identify overlapping and distinct genes expressed within oocytes, male and female PGCs we generated Venn Diagrams using the 'VENNY' online tool (http://bioinfoap.cnb.csic.es/tools/vennv/ index.html). Functional annotation and enrichment analyses of particular gene sets resulting from the Venn Diagram analysis were performed using the DAVID platform version 6.7 (http://david.abcc.ncifcrf.gov/home.jsp) (Dennis et al., 2003; Huang da et al., 2009). Human official gene symbols were used as input against DAVID's 'homo sapiens' background; analyses were executed based on DAVID default parameter settings unless stated otherwise. We further analysed the data employing IPA (Ingenuity Systems, www.ingenuity.com) to gain further information on potential important transcription factors and alternative surveys on enriched biological functions and canonical pathways. For each sample of interest we used official gene symbols of the total number of expressed genes to do the IPA analysis based on the entire active cellular transcriptome.

Finally, we performed a nucleotide blast (Perl version 5.12.4-4, 2011-09-06, www.perl.org; Bioperl version 1.6.901-1, 2011-06-17, www.bioperl. org; BLAST (Altschul et al., 1990)) between genes we found expressed in human fPGCs and within one of several datasets of mouse fPGCs derived from mouse embryos at distinct stages of gestation (Sabour et al., 2011). We compared the non-redundant union of all human genes expressed in either fPGCs, mPGCs and oocytes, amounting to 12165 genes, to the non-redundant list of all mouse genes detectable as expressed by the Illumina MouseRef-8 v2.0 expression BeadChip used by Sabour D. et al., which is a total of 17957 genes. This analysis led to the identification of 8876 known orthologous genes bearing the same official gene symbols. The remaining (12165 - 8876 =) 3289 human genes were used to perform a nucleotide blast search against the remaining (17957 - 8876 =) 9081 mouse genes to identify additional matching genes. Applying an arbitrary expectation value threshold of 1E-10 resulted in the identification of 1632 pairs of human and mouse genes showing significant sequence overlap and are thus also declared as orthologous genes (see Supplementary Table 5).

Acknowledgements

We thank A. Sabah at the microarray facility for her excellent support. This work was in part funded by the BMBF (Grant numbers FKZ0315398G and 01GN1005) and the ERASysBio+ initiative [BMBF; grant number 0315717A], supported under the EU ERA-NET Plus scheme in FP7.

References

- ADJAYE J., BOLTON V. and MONK M. (1999). Developmental expression of specific genes detected in high-quality cdna libraries from single human preimplantation embryos. *Gene*, 237: 373-383.
- ADJAYE J., HUNTRISS J., HERWIG R., BENKAHLA A., BRINK T. C., WIERLING C., HULTSCHIG C., GROTH D., YASPO M. L., PICTON H. M., GOSDEN R. G. and LEHRACH H. (2005). Primary differentiation in the human blastocyst: Comparative molecular portraits of inner cell mass and trophectoderm cells. *Stem cells*, 23: 1514-1525.
- ADJAYE J. and MONK M. (2000). Transcription of homeobox-containing genes detected in cdna libraries derived from human unfertilized oocytes and preimplantation embryos. *Molecular Hum Reprod* 6: 707-711.

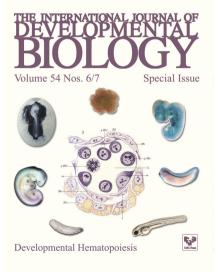
- ALTSCHUL S. F., GISH W., MILLER W., MYERS E. W. and LIPMAN D. J. (1990). Basic local alignment search tool. *J. Molec. Biol.* 215: 403-410.
- ANDERSON R., COPELAND T. K., SCHOLER H., HEASMAN J. and WYLIE C. (2000). The onset of germ cell migration in the mouse embryo. *Mech. Dev.* 91: 61-68.
- BOLTON V. N., HAWES S. M., TAYLOR C. T. and PARSONS J. H. (1989). Development of spare human preimplantation embryos in vitro: An analysis of the correlations among gross morphology, cleavage rates, and development to the blastocyst. J In vitro Fert Embryo Transf, 6: 30-35.
- BOWLES J. and KOOPMAN P. (2010). Sex determination in mammalian germ cells: Extrinsic versus intrinsic factors. *Reproduction*, 139: 943-958.
- BUEHR M. and MCLAREN A. (1993). Isolation and culture of primordial germ cells. *Methods Enzymol*, 225: 58-77.
- DENNIS G., JR., SHERMAN B. T., HOSACK D. A., YANG J., GAO W., LANE H. C. and LEMPICKI R. A. (2003). David: Database for annotation, visualization, and integrated discovery. *Genome Biol*, 4: P3.
- DONOVAN P. J. and DE MIGUEL M. P. (2003). Turning germ cells into stem cells. *Curr. Opin. Genet. Dev.* 13: 463-471.
- DUNNING M. J., SMITH M. L., RITCHIE M. E. and TAVARE S. (2007). Beadarray: R classes and methods for illumina bead-based data. *Bioinformatics*, 23: 2183-2184.
- EWING M. W., LIU S. C., GNARRA J. R., WALTHER M. M., MEYERS C. E. and LINEHAN W. M. (1993). Effect of suramin on the mitogenic response of the human prostate carcinoma cell line pc-3. *Cancer*, 71(3 Suppl): 1151-1158.
- FELDMESSER E., OLENDER T., KHEN M., YANAI I., OPHIR R. and LANCET D. (2006). Widespread ectopic expression of olfactory receptor genes. *BMC Genomics*, 7: 121.
- GEIJSEN N., HOROSCHAK M., KIM K., GRIBNAU J., EGGAN K. and DALEY G. Q. (2004). Derivation of embryonic germ cells and male gametes from embryonic stem cells. *Nature*, 427: 148-154.
- GENTLEMAN R. C., CAREY V. J., BATES D. M., BOLSTAD B., DETTLING M., DU-DOIT S., ELLIS B., GAUTIER L., GE Y., GENTRY J., HORNIK K., HOTHORN T., HUBER W., IACUS S., IRIZARRY R., LEISCH F., LI C., MAECHLER M., ROSSINI A. J., SAWITZKI G., SMITH C., SMYTH G., TIERNEY L., YANG J. Y. and ZHANG J. (2004). Bioconductor: Open software development for computational biology and bioinformatics. *Genome Biol*, 5: R80.
- GINSBURG M., SNOW M. H. and MCLAREN A. (1990). Primordial germ cells in the mouse embryo during gastrulation. *Development*, 110: 521-528.
- GONDOS B. and HOBEL C. J. (1971). Ultrastructure of germ cell development in the human fetal testis. Z Zellforsch Mikrosk Anat, 119: 1-20.
- GOTO T., ADJAYE J., RODECK C. H. and MONK M. (1999). Identification of genes expressed in human primordial germ cells at the time of entry of the female germ line into meiosis. *Molecular Hum. Reprod.* 5: 851-860.
- HAYASHI K., OHTA H., KURIMOTO K., ARAMAKI S. and SAITOU M. (2011). Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. *Cell*, 146: 519-532.
- HUANG DA W., SHERMAN B. T. and LEMPICKI R. A. (2009). Systematic and integrative analysis of large gene lists using david bioinformatics resources. *Nat Protoc*, 4: 44-57.
- HUBNER K., FUHRMANN G., CHRISTENSON L. K., KEHLER J., REINBOLD R., DE LA FUENTE R., WOOD J., STRAUSS J. F., 3RD, BOIANI M. and SCHOLER H. R. (2003). Derivation of oocytes from mouse embryonic stem cells. *Science*, 300: 1251-1256.
- KEE K., GONSALVES J. M., CLARK A. T. and PERA R. A. (2006). Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. *Stem Cell Dev.* 15: 831-837.
- LOOIJENGAL. H. (2009). [advances in basic research on testicular germ cell tumors: Clinical implications]. *Urologe A*, 48: 350-358.
- MCLAREN A. and SOUTHEE D. (1997). Entry of mouse embryonic germ cells into meiosis. Dev. Biol. 187: 107-113.
- MOLYNEAUX K. A., STALLOCK J., SCHAIBLE K. and WYLIE C. (2001). Time-lapse analysis of living mouse germ cell migration. *Dev. Biol.* 240: 488-498.

MOTTA P. M. and MAKABE S. (1986). Germ cells in the ovarian surface during fetal

development in humans. A three-dimensional microanatomical study by scanning and transmission electron microscopy. J. Submicros. Cytol. 18: 271-290.

- NAGANO M. C. (2007). In vitro gamete derivation from pluripotent stem cells: Progress and perspective. Biol Reprod, 76: 546-551.
- OOSTERHUIS J. W. and LOOIJENGA L. H. (2005). Testicular germ-cell tumours in a broader perspective. *Nature Rev. Cancer*, 5: 210-222.
- PANULA S., MEDRANO J. V., KEE K., BERGSTROM R., NGUYEN H. N., BYERS B., WILSON K. D., WU J. C., SIMON C., HOVATTA O. and REIJO PERA R. A. (2011). Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. *Human Molec. Genet.* 20: 752-762.
- PARMENTIER M., LIBERT F., SCHURMANS S., SCHIFFMANN S., LEFORT A., EGGERICKX D., LEDENT C., MOLLEREAU C., GERARD C., PERRET J. and *et al.*, (1992). Expression of members of the putative olfactory receptor gene family in mammalian germ cells. *Nature*, 355: 453-455.
- PESCE M., GIOIA KLINGER F. and DE FELICI M. (2002). Derivation in culture of primordial germ cells from cells of the mouse epiblast: Phenotypic induction and growth control by bmp4 signalling. *Mech. Dev.* 112: 15-24.
- QING T., SHI Y., QIN H., YE X., WEI W., LIU H., DING M. and DENG H. (2007). Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulosa cells. *Differentiation*, 75: 902-911.
- RYBAK A., FUCHS H., SMIRNOVA L., BRANDT C., POHL E. E., NITSCH R. and WULCZYN F. G. (2008). A feedback loop comprising lin-28 and let-7 controls prelet-7 maturation during neural stem-cell commitment. *Nat Cell Biol*, 10: 987-993.
- SABOUR D., ARAUZO-BRAVO M. J., HUBNER K., KO K., GREBER B., GENTILE L., STEHLING M. and SCHOLER H. R. (2011). Identification of genes specific to mouse primordial germ cells through dynamic global gene expression. *Human Molec. Genet.* 20: 115-125.
- SAITOU M. (2009). Specification of the germ cell lineage in mice. *Front Biosci*, 14: 1068-1087.
- SAITOU M., BARTON S. C. and SURANI M. A. (2002). A molecular programme for the specification of germ cell fate in mice. *Nature* 418: 293-300.
- SOUQUET B., TOURPIN S., MESSIAEN S., MOISON D., HABERT R. and LIVERA G. (2012). Nodal signaling regulates the entry into meiosis in fetal germ cells. *Endocrinology*, 153: 2466-2473.
- SU Y., LI Y. and YE P. (2011). Mammalian meiosis is more conserved by sex than by species: Conserved co-expression networks of meiotic prophase. *Reproduction*, 142: 675-687.
- SUZUKI A. and SAGA Y. (2008). Nanos2 suppresses meiosis and promotes male germ cell differentiation. *Genes Dev*, 22: 430-435.
- TOYOOKA Y., TSUNEKAWA N., AKASU R. and NOCE T. (2003). Embryonic stem cells can form germ cells in vitro. *Proc. Natl. Acad. Sci. USA* 100: 11457-11462.
- WATERSTONE J. J. and PARSONS J. H. (1992). A prospective study to investigate the value of flushing follicles during transvaginal ultrasound-directed follicle aspiration. *Fertil Steril*, 57: 221-223.
- WEI W., QING T., YE X., LIU H., ZHANG D., YANG W. and DENG H. (2008). Primordial germ cell specification from embryonic stem cells. *PLoS One*, 3: e4013.
- WEST J. A., VISWANATHAN S. R., YABUUCHIA., CUNNIFF K., TAKEUCHIA., PARK I. H., SERO J. E., ZHU H., PEREZ-ATAYDE A., FRAZIER A. L., SURANI M. A. and DALEY G. Q. (2009). A role for lin28 in primordial germ-cell development and germ-cell malignancy. *Nature*, 460: 909-913.
- WESTERN P., MALDONADO-SALDIVIA J., VAN DEN BERGEN J., HAJKOVA P., SAITOU M., BARTON S. and SURANI M. A. (2005). Analysis of esg1 expression in pluripotent cells and the germline reveals similarities with oct4 and sox2 and differences between human pluripotent cell lines. *Stem cells*, 23: 1436-1442.
- WITSCHI E. (1946). Early history of the human germ cells. Anatomical Rec. 94: 506.
- YING Y., LIU X. M., MARBLE A., LAWSON K. A. and ZHAO G. Q. (2000). Requirement of bmp8b for the generation of primordial germ cells in the mouse. *Mol Endocrinol*, 14: 1053-1063.
- YING Y. and ZHAO G. Q. (2001). Cooperation of endoderm-derived bmp2 and extraembryonic ectoderm-derived bmp4 in primordial germ cell generation in the mouse. *Dev. Biol.* 232: 484-492.

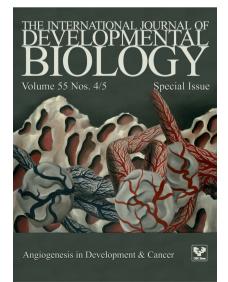
Further Related Reading, published previously in the Int. J. Dev. Biol.


The Dr-nanos gene is essential for germ cell specification in the planarian Dugesia ryukyuensis Haruka Nakagawa, Hirotsugu Ishizu, Ayako Chinone, Kazuya Kobayashi and Midori Matsumoto Int. J. Dev. Biol. (2012) 56: 165-171

A polymorphic, thrombospondin domain-containing lectin is an oocyte marker in Hydractinia: implications for germ cell specification and sex determination Brahim Mali, R. Cathriona Millane, Günter Plickert, Marcus Frohme and Uri Frank Int. J. Dev. Biol. (2011) 55: 103-108

In vitro germ cell differentiation during sex differentiation in a teleost fish Tohru Kobayashi Int. J. Dev. Biol. (2010) 54: 105-111

Differentiation of mouse primordial germ cells into female or male germ cells N Nakatsuji and S Chuma Int. J. Dev. Biol. (2001) 45: 541-548


The meiotic specific synaptonemal complex protein SCP3 is expressed by female and male primordial germ cells of the mouse embryo A D Di Carlo, G Travia and M De Felici Int. J. Dev. Biol. (2000) 44: 241-244

