Gliomatosis peritonei as a natural experiment in tissue differentiation

FRANCISCO F. NOGALES*,1, OVIDIU PREDA2 and ISABEL DULCEY1

1Department of Pathology, San Cecilio University Hospital, Granada and 2Master Diagnostica, Granada, Spain

ABSTRACT Gliomatosis peritonei (GP) is an unusual condition in which nodules of mature astroglia, often miliary and microscopic in size, are widespread in the peritoneum and abdominal lymph nodes. Its behaviour is benign and it is usually found in association with ovarian teratoma and rarely with teratomas of other organs. Implants grow rapidly and can remain unchanged for life. Astroglia is the main component, but other neural lineage elements and many other tissues can be found. Cells are mature but not terminal, since they express SOX2. Secondary associated lesions include: a) degenerative astrocytic changes, b) granulomatous and follicular chronic inflammatory changes, c) association with hormonally related changes, such as decidual peritoneal metaplasia and endometriosis and d) endothelial and adventitial vascular hyperplasia leading to haemoperitoneum. Two pathogenetic mechanisms are considered: direct seeding of immature neural cells from a primary tumour with subsequent differentiation and metaplasia from peritoneal stem cells. The former proposal is supported by clinicopathologic data such as ample cellular heterogeneity, coexistence of mature astroglia with neural blastema, as well as the shed keratin and hairs from the ovarian neoplasm. However, metaplasia is sustained by a heterozygosity pattern of GP nodules, identical to the normal tissue and different from the coexistent ovarian teratoma. GP would constitute a response to growth factors from teratoma or macrophages. While an implantative origin from ovarian teratoma remains in most cases a more probable mechanism, metaplasia from peritoneal stem cells would explain cases of GP which present a monomorphic astrocytic cell population.

KEY WORDS: gliomatosis peritonei, ovary, teratoma, ectopic glia, SOX2

Introduction

Gliomatosis peritonei (GP) is an unusual condition consisting in the presence of multiple nodules of mature astrocytes in the serosal peritoneal surface of the abdominal cavity. Although its clinical picture of peritoneal spread is that of advanced stage neoplasia, its behaviour is almost invariably benign, since its differentiated cells lack proliferative activity (Fortt et al., 1969; Nogales et al., 1974; Robboy et al., 1970).

The majority of cases of GP are associated with an immature ovarian teratoma and only rarely with mature teratomas (Dhingra et al., 2007; Gocht et al., 1995); albeit a rare phenomenon, it can occur in up to a fourth of all cases of ovarian immature teratoma. Although GP has been reported in association with isolated cases of teratomas of the stomach, liver and bladder (Karlos et al., 2009; Torikai et al., 2007; Yeo et al., 2010), such exceptional cases do not really conform to the classic picture of miliary peritoneal spread of GP that occurs with ovarian teratoma; instead they are large, circumscribed masses more suggestive of usual-type metastases. Traditionally, the association with a concomitant neoplasm has favoured the hypothesis of GP as a phenomenon of implantation and subsequent maturation of neural precursor cells detached from the primary tumour. However, in the female peritoneum, the presence of ectopic benign tissues such as serous tubal epithelium is extremely frequent. Exceptionally, numerous nodules of highly differentiated thyroid tissue may be found in the peritoneum; the so called benign strumosis (Karseladze et al., 1994), which may occur in association with struma ovarii. Also, well differentiated Sertoli cell tumours can implant foci of benign immature Sertoli-cell tubules in the peritoneum (Onida et al., 2010). The pathogenesis of these mature ectopic tissues is not clear and both mechanisms of direct seeding/differentiation from a primary tumour (Robboy et al., 1970) and peritoneal metaplasia (Ferguson et al., 2001) from stem cells have been proposed.
In this review we will focus on the clinical and histological features of GP, with special consideration of its histogenesis, which may include two alternative mechanisms.

Clinical features

GP affects a broad age range, from childhood to postmenopausal patients, with a peak in the second and third decades of life and only few instances above the age of sixty. Often occurring as an incidental finding during surgery for ovarian tumour or in second look operations after a diagnosis of teratoma, it is consistently associated with a unilateral solid tumour. GP may occur after capsular rupture during surgery or spontaneously. When oophorectomy alone is performed without accompanying salpingectomy, there is a high chance of rupturing the capsule at the ovarian pedicle at hilar level.

The overall prognosis of GP is excellent and chemotherapeutic treatment is unnecessary. Long follow-up studies have demonstrated its benign course (Fortt et al., 1969; Robboy et al., 1970). A recent study comparing ovarian immature teratomas with and without GP demonstrated a similar overall good survival but with a higher incidence of early recurrences in the cases associated with GP (Mann et al., 2008; Yoon et al., 2012). Occasionally, GP may precede highly malignant neuroectodermal tumours (Dadmanesh et al., 1997; Shefren et al., 1991; Trabelsi et al., 2002). Cases from the older literature reporting early malignant behaviour may correspond to recurrences of incompletely sampled peritoneal disease, with foci of immature tissue not identified at the time of surgery. Implants can grow rapidly. In one instance, they were detected in a second look operation performed only one month after oophorectomy for immature teratoma (Nogales et al., 1974). In rare instances, such as another of our cases, PG can be an incidental autopsy finding of asymptomatic residual disease in elderly patients who had had ovarian teratoma in their youth.

Among serum markers, CA125 levels are elevated in GP (Yoon et al., 2012) and some authors (Bahari et al., 1980; de Graaff et al., 1980; Hokama et al., 1991) have also reported elevated alpha-fetoprotein levels, possibly related to endodermal elements present in the immature teratoma deposits.

Pathology findings

Primary teratoma

GP occurs in association with a unilateral solid ovarian teratoma. Histologically the primary tumour shows tissues with a variable degree of immaturity. However, the predominant tissue is of neural type and comprises large amounts of well differentiated glial tissue with other neuroectodermal components. Other frequent non-neurological constituents are skin, developing teeth, gastrointestinal derivatives although, eventually, any imaginable tissue can be found (Nogales et al., 2003).

Histological tumour grading of teratomas is a valuable tool for predicting their behaviour (Nogales et al., 1976; Norris et al., 1976; Thuribeck et al., 1960). It is performed by a subjective, semiquantitative analysis of the relative number and atypicality of immature neural tissues present in the neoplasm such as neuroepithelial tubules and neural blastema. This is accomplished either by the traditional approach of assigning 4 grades ranging from fully mature (grade 0) to highly immature (grade 3) or by establishing a two tier system into low grade and high grade tumours (O’Connor et al., 1994). Ovarian neoplasms associated with GP are most frequently of grade 1 or 2 and only rarely may correspond to grades 0 (fully mature) or 3 (highly immature). When found in association with grade 0 solid teratomas, the tumour warrants a more extensive tissue sampling in order to exclude any immature foci. Evaluation of immaturity can be enhanced by the immunohistochemical analysis of pluripotency markers such as SALL4 and SOX2 which are highly sensitive in the identification of neural immature cells (Nogales et al., 2012).

An interesting aspect of ovarian immature teratoma is the concomitant vascular response present in association with neural tissues. There is an extensive endothelial proliferation of vessels, similar to that occurring in tumours of the central nervous system, originating as a response to angiogenic factors secreted by immature neural elements (Baker et al., 2002; Nogales et al., 2002; 2003). Fig. 1. Characteristic appearance of Gliomatosis peritonei (GP) at low power. Multiple astrocytic nodules (arrows) are scattered throughout the omental surface and underlying fatty tissue (A). Gial nodules are surrounded by haemorrhage (B). Higher magnification (C) reveals uniform, mature glial cells set in a fibrillary matrix.
Only on rare occasions a secondary, highly malignant neural tumour, such as primitive neuroectodermal tumour (PNET) may develop from the stem cells present in ovarian immature teratoma. In these cases, metastases are always of high grade (Morovic et al., 2008).

Gliomatosis peritonei

Appears as miliary deposits scattered throughout the peritoneum involving every serosal surface including recesses, cul-de-sac, intestinal surface, etc. In a few cases the coexistence of adhesions due to endometriosis may give it a more complex appearance. Haemorrhage can be present in the nodules. Surgical sampling should be as extensive as possible in order to evaluate fully the immaturity of the peritoneal deposits. Chemotherapy will depend on grading of GP, being indicated for high grades and not administered in grade 0 implants.

Macrosopically, GP appears as white or yellow nodules of variable size ranging from 1mm to 1cm and can be difficult to visualize. Indeed, they are often only microscopic and sometimes are an incidental finding in specimens from an omentectomy performed at the time of oophorectomy (Nogales et al., 1974). True GP should be differentiated from large, discrete nodules of peritoneal metastases.

Microscopically, nodules are scattered through the peritoneum (Figs 1A,B) and composed of a glial cell population with mature features, minimal atypia and only rare mitoses. The predominant cell types are fibrous astrocytes (Fig 1C) staining for glial fibrillary acidic protein (Fig 2A). Their nuclei do not express pluripotency gene SALL4 protein, which is present in immature neural tissue (Ma Y.2012, Nogales et al., 2012) but are positive for SOX2 (Fig 2B), a pluripotency transcription factor involved in neurogenesis (Noisa et al., 2012), indicating that cells are mature but not terminally differentiated cells. Ultrastructurally, presence of other neural lineages such as oligodendroglia, ependymal, melanocytic and even neurons is demonstrated (Gonzalez-Campora et al., 1979). Immunohistochemically, the NeuN neuronal nuclear antibody often shows scattered positive neuronal cells. Additionally, we have been able to detect the presence of CD68 positive microglia-like cells in the GP nodules (Fig 2C).

There are instances where the coexistence of foci of immature neuroepithelium with a mature glia is indicative of its differentiation from immature precursors (Fig 3A). Other non-neural tissue

Fig. 2. Immunohistochemistry of Gliomatosis peritonei (GP). Nodules are intensely positive for glial fibrillary acidic protein (A). Nuclei, despite a mature appearance, express SOX2 (B). CD68 stains macrophages and intranodular stellate cells identical to microglia (C).

Fig. 3. Mature glial nodules (gliomatosis peritonei) may coexist with foci of immature neuroepithelial tissue exhibiting neuroepithelial tubules (arrows) (A). Gliomatosis peritonei (GP) (arrow) is present in the marginal sinus of an abdominal lymph node (B).
components such as epidermis, cartilage, respiratory and digestive tract epithelia may also be present in the nodules.

GP involvement of lymph nodes (Heifetz et al., 1998; Mann et al., 2008; Muller et al., 2002) is often an incidental finding in abdominal lymphadenectomy specimens, occurring in the marginal sinus (Fig 3B).

Secondary associated lesions in GP may include the following:

1. Degenerative changes in the GP astrocytes such as Rosenthal fibres, granular gemistocytes (Fig 4A), corpora amylacea etc.
2. Inflammatory changes: Chronic inflammation, frequently with follicular formation, is a common phenomenon around GP nodules (Fig 4B). Granulomatous reaction of foreign-body type occurs in relationship with keratin-rich desquamated epidermis or hairs (Fig 4C,D). In cases of long standing GP, a chronic macrophagic reaction can practically overgrow and erase the glial component.
3. Hormonal changes such as decidual transformation of mesothelium can also arise in the neighbouring peritoneum in cases of GP occurring during pregnancy (Fig 4E).
4. Vascular hyperplasia occurs in the vicinity of the nodules exhibiting a complex glomeruloid appearance due to the proliferation of endothelial and adventitial vascular cells (Nogales et al., 2002) (Fig 4F). These fragile, irregular vessels can be the source of hemoperitoneum.
5. Post-chemotherapy changes reveal degenerative nuclei in astrocytic cells (Fig 4G).
6. Endometriosis. Foci of endometrial tissue displaying both glands and stroma can coexist in the ovarian surface and peritoneum, where isolated glands are surrounded by GP. However, no cases of coexistence of leiomyomatosis peritonealis disseminata or endosalpingiosis/endocervicosis have been reported in GP (Fig 4H).

Pathogenesis

It is by no means clear. Two alternative mechanisms of differentiation have been proposed:

Peritoneal implantation

The aetiology of GP has been related, since its initial description (Robboy et al., 1970), to implantation of immature neural tissue into the peritoneum subsequent to capsular rupture, either spontaneous or surgical. Thus there would be seeding of immature precursors that eventually differentiate into benign, terminally differentiated cells, including glia.

Data supporting this possibility include the following:

a) GP nodules do not only contain glia, but several other neurogenic lines (Gonzalez-Campora, 1979) and other tissues such as skin, gut, cartilage etc. This ample range of differentiation is characteristic of teratoma. Furthermore, immature neuroepithelial tubules may coexist with other neural cell lines

Fig. 4. Secondary changes in Gliomatosis peritonei (GP). Presence of granular gemistocytes (A). Chronic lymphocytic, follicular (F) infiltration around a GP nodule (arrow) (B). Coexistence of GP with keratin peritoneal deposits (arrow) (C). A GP nodule coexists with teratomatous hairs from ovarian primary (arrows) (D). Decidual peritoneal change (DEC) in a pregnant patient coexists with GP (E). Florid vascular hyperplasia in a case associated with haemoperitoneum (F). Postchemotherapy glial atypia (G). Coexistence of GP with numerous embedded foci of ectopic endometrium (arrows) (H).
(Fig. 3A). All those features would indicate a teratoid matura-
tion from embryonal, immature precursors from the ovarian
tumour. Local differentiation would occur either spontaneously
or induced by platin-based chemotherapy (Gibas et al., 1993;
Kane et al., 2009; Yoon et al., 2012). Although most cases of
implanted glial tissue mature spontaneously, chemotherapeutic
conversion of neural immature cells into benign ones is the
proposed mechanism for cases of growing teratoma syndrome
associated with GP (Hsieh et al., 2009; Umekawa et al., 2005).

b) Shed keratin scales and hairs from the primary ovarian tera-
toma (Figs 3B) by foci mature glial, even in the absence of a peritoneal lesion (El Shafie et al., 1984; Heifetz et al., 1998; Perrone et al., 1986),
would indicate a lymphatic transport of neural immature pre-
cursors that would eventually undergo full differentiation in the
lymph nodes.

c) Cases showing lymph node involvement (Figs 3B) by foci mature glial, even in the absence of a peritoneal lesion (El Shafie et al., 1984; Heifetz et al., 1998; Perrone et al., 1986),
would indicate a lymphatic transport of neural immature pre-
cursors that would eventually undergo full differentiation in the
lymph nodes.

d) There are rare cases of GP associated with ventriculo-peritoneal shunts which would constitute a natural experiment of the implanta-
tive capacity into the peritoneum of glial cells present in the cerebrospinal fluid (Hill et al., 2000; Lobotesis et al., 2009; Lovell et al., 1989).

e) Some ovarian tumours such as struma ovari (Karseladze et al., 1994) and well differentiated Sertoli cell neoplasms (Onida et al., 2010), are capable of producing highly differentiated nodular and miliary implanations in the peritoneum after tumour rupture or manipulation.

Multifocal peritoneal metaplasia induced by growth factors

In the last decade, genetic studies analysing multiple microsat-
ellite markers in microdissected GP implants (Best et al., 2004; Ferguson et al., 2001; Kwan et al., 2004) have demonstrated that they have a heterozygosity pattern identical to the normal tis-

due and different from the coexistent ovarian teratoma, which is

This would parallel a mechanism analogous to that giving rise to
monocloneal peritoneal proliferations of such diverse tissues as
smooth muscle (Guarch et al., 2001; Nogales et al., 1978) and epithelia such as endometrial (Clement et al., 2007), tubal- (Dallenbach-Hellweg et al., 1995; Donne et al., 1998) and endocervi-
cal (Liu et al., 2009), which would originate in stem cells with a

capacity to develop into Mullerian cell lines under the influence of

(c) The proposed local metastatic peritoneal origin of GP would imply that stem cells would also be endowed with a further capacity
to develop into non Mullerian lineages such as astroglia. The oc-
casional association of PG and endometriosis (Fig. 4H) (Albukerk
et al., 1979; Alexander et al., 2011; Bassler et al., 1982; Calder
et al., 1994; Dworak et al., 1988; Killeen et al., 1997) would give
partial support to this assumption. Endometriosis is a common
condition currently considered to be of metaplastic origin in most
cases (Clement et al., 2007). However, since pathogenetically
related leiomyomatosis peritonealis disseminata, endosalpingiosis
or endocerviosis have not been reported in association with GP,
the association of endometriosis with GP may be coincidental, as
endometriosis is a very common condition.

Taking into account both possibilities it would seem that an
implantative origin from ovarian teratoma pluripotent precursors
remains in most cases the more probable mechanism, although
a metaplastic transformation from peritoneal stem cells under ade-
quate growth factor stimulation is conceivable. We believe that
this latter pathway would be restricted, however, to cases of GP that have a monotonous, monomorphic astroglial cell population,
which would represent a selective cell lineage differentiation.

Author's roles

Francisco F. Nogales designed the study and participated in the
analysis, execution and manuscript drafting and critical discussion. Isabel
Dulcey retrieved archival material, performed the immunohistochemical
and bibliographical analysis and participated in the manuscript drafting
and critical discussion. Ovidiu Preda was responsible for the illustrations
and immunohistochemistry.

References

ALBUKERK JN, BERLIN M, PALLADINO VC, SILVERMAN J (1979). Endometriosis

ALEXANDER M, COPE N, RENNINSON J, HONGA, SIMPSON RH, HIRSCHWITZ
L (2011). Relationship between endometriosis, endometrioid adenoscarcoma, gi-

References
Further Related Reading, published previously in the *Int. J. Dev. Biol.*

Foetal germ cells: striking the balance between pluripotency and differentiation
Patrick Western

The distribution and behavior of extragonadal primordial germ cells in Bax mutant mice suggest a novel origin for sacrococcygeal germ cell tumors
Christopher Runyan, Ying Gu, Amanda Shoemaker, Leendert Looijenga and Christopher Wylie

The germ cell - the mother of all stem cells.
P J Donovan

Effects of growth factors on the differentiation of neural crest cells and neural crest cell-derivatives.
B K Hall and S Ekanayake

Stimulation of tenascin expression in mesenchyme by epithelial-mesenchymal interactions.
P Ekblom and E Aufderheide