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ABSTRACT Germ cells hold a unique place in the life cycle of animal species in that they are the
cells that will carry the genome on to the next generation. In order to do this they must retain their
DNA in a state in which it can be used to recapitulate embryonic development. In the normal life
cycle, the germ cells are the only cells that retain this ability to recapitulate development, referred
to as developmental totipotency. The molecular mechanisms regulating developmental potency
are poorly understood. Recently its has been shown that germ cells can be turned into pluripotent
stem cells when cultured in specific polypeptide growth factors that affect their survival and
proliferation. The ability to manipulate developmental potency in germ cells with growth factors
allows the underlying mechanisms to be dissected. Germ cells are also the only cells that undergo
the unique reductive division of meiosis. This too is essential for the ability of germ cells to form the
gametes that will carry the genome into the next generation. Arguably meiosis is the most
important division in the life of a nascent organism. Defects in meiosis can result in embryonic or
fetal loss or, if the animal survives, in the birth of an individual with chromosomal abnormalities.
Recent advances in our understanding of meiosis have come from knockout mice and studies on
genes identified through studies of human infertility. This review will focus on these two key
aspects of germ cell biology, developmental potency and meiosis.
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Introduction

In her classic treatise “Germ Cells and Soma: A New Look at an
Old Problem” published in 1981, Anne McLaren led the reader
through the entire life cycle of a germ cell in the mouse (McLaren
1981). Starting with the period of oocyte growth the story unfolds
through the fusion of the male and female germ cells at fertilization,
through early embryogenesis up to the period of gastrulation;
through the reappearance of definitive germ cells in the post-
implantation embryo; through their migration to, and colonization
of, the gonad anlagen; through sexual differentiation and back
again to the formation of the gametes. It is a remarkable book
because of the depth of knowledge displayed by a single individual
about a complex cell lineage. At the very end of the book Anne
restated some of the important, and then unanswered, questions
about germ cell development and homeostasis:

“We are still almost totally ignorant of most aspects of the
interactions between germ cells and soma. For example, we
have no idea of how primordial germ cells are guided to the
genital ridges; whether the somatic environment is necessary
for the survival of germ cells at this stage, or whether they could

be isolated and grown for an indefinite period in culture; how the
X chromosome is switched on; how the signal for meiosis is
transmitted and received; how meiotic arrest is achieved; what
determines whether and when germ cells undergo atresia and
degenerate; what determines when they leave the primordial
pool and start to grow; what degenerative processes occur
during the long period of arrest; what proteins are taken up from
the follicle; or how much of the protein either taken up or
synthesized is important for embryonic development.” (McLaren
1981)

While we now know much more about germ cell development
and homeostasis, many of those questions are just as pertinent
today as they were when the book was written some twenty years
ago. Over the years, Anne has tackled many of those questions
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and some of them have become the focus of our own research. For
many of us who begin to study one area of germ cell development,
other features of the lineage soon become fascinating and we
begin to investigate other questions about their development also.
Two aspects of germ cells make them unique. First, they are the
only cells in the normal life cycle of an organism that carry the
genome on to the next generation. Second they are the only cells
in an organism that are capable of undergoing the reductive meiotic
division that is such a fundamental part of gametogenesis. These
two subjects, developmental potency and meiotic regulation, have
become the two areas that we have focused on over the last few
years.

Germ cell survival and migration

Our own interest in PGC development began and was fostered
in the laboratories of Chris Wylie and Janet Heasman at St.
George’s Hospital Medical School in London who used PGCs as
a model with which to study cell migration. But how to study PGC
migration? In the Wylie/Heasman lab the clawed toad, Xenopus,
was the animal of choice and it indeed has many attractive features
- at least as an experimental organism! But through a collaborative
effort with Anne McLaren we realized that there were also many
advantages to the use of the mouse as an experimental organism.
Not least of these were the superior genetics of the laboratory
mouse and the wide variety of sophisticated cell culture systems.
With Anne’s help, and the characteristically-enthusiastic support of
Chris Wylie and Janet Heasman, we began to develop systems to
study PGC development in mice. It was typical of Anne that she
helped us even though she was working on the same question
herself and which she had posed earlier: “whether the somatic
environment is necessary for the survival of germ cells at this stage,
or whether they could be isolated and grown for an indefinite period
in culture”. With various colleagues she had published several
papers that formed the foundation for our own work. Importantly
these papers helped us decide what to do and also what not to do.
Studies carried out by Massimo de Felici with Anne at the Medical
Research Council Mammalian Development Unit in London showed
that mouse PGCs could be isolated from embryos and would
survive if cultured in outgrowths of the genital ridge (De Felici and
McLaren 1982); (De Felici and McLaren 1983). These cultures,
which at the time we called Massimo Cultures, led us to think that
PGCs needed something produced by somatic cells to survive and,
therefore, perhaps they could be cultured on feeder layers of
established cell lines. The use of STO cells (a generous gift of Dr.
B.L.M. Hogan, ICRF, London), a mouse embryo-derived fibroblast
cell line, led to the development of culture conditions in which PGCs
could be maintained for up to 10 days and in which they would
actively migrate (Donovan et al.,1986). These studies led in turn to
the development of feeder-dependent culture systems in which it
is possible to study many aspects of PGC behavior (Donovan et al.,
1987). We were able to study PGC behaviour before and after entry
into the genital ridge and found that PGCs behave in culture much
as they do in the embryo. In fact we also found that changes in the
expression of cell surface antigens on PGCs also mirror that seen
in the embryo. Together these data led us to suggest that PGCs
may have an intrinsic clock that times their development (Donovan
et al., 1986). This idea was not new and was based in part on
studies of oligodendrocyte and type II astrocyte progenitors carried

out by Martin Raff and his colleagues (Raff et al., 1985) (Temple
and Raff 1986) (Raff et al., 1988). At the time we believed that
PGCs behaved in vitro as they do in vivo and stop migration and
proliferation at about the same time as they would if they had been
left in the embryo (Donovan et al., 1986). If someone had asked us
Anne McLarens’ question “whether (PGCs) could be isolated and
grown for an indefinite period in culture” our answer at that time
would have been a resounding “No”!

But soon our attention shifted from studying cell migration to
understanding growth control in PGCs. A major breakthrough in
understanding PGC growth and survival came from the cloning of
the genes encoded at the W or Dominant White Spotting and the
Sl or Steel loci. Mice carrying mutations at either of these loci can
have severe defects in three lineages, germ cells, haemopoietic
stem cells and melanocytes. Importantly, mice carrying mutations
at the W or Sl loci can be completely sterile. Our first adventures
with these animals began with the help of Anne McLaren and her
colleague at the MRC MDU, Mia Buehr as well as Dot Bennett at
St. George’s Hospital Medical School in London. Histological
studies had demonstrated that the defect in germline development
in these animals occurred as early as 9.5 days post coitum (dpc)
(Mintz 1957) (Mintz and Russell 1957). With the demonstration that
W encodes the c-Kit receptor and Sl encodes its’ ligand Stem Cell
Factor, the stage was set for the characterization of the role of
these gene products in germline development. We have argued
that Stem Cell Factor (SCF), acting through the c-Kit receptor, is
required for PGC survival (Dolci et al., 1991). That conclusion is
based on studies showing that PGCs do not survive in culture on
cells that do not produce SCF and on studies showing that a
neutralizing c-Kit antibody has the same effect (Dolci et al., 1991)
(Godin et al., 1991) (Matsui et al., 1991). Moreover, long term
survival of PGCs seems to require a membrane-bound form of SCF
(Dolci et al., 1991). This requirement imposes certain constraints
on PGC growth and survival and in part helps answer the question:
“whether the somatic environment is necessary for the survival of
germ cells at this stage”. Our answer is “Yes”. PGCs require
production of membrane-bound SCF by somatic cells in order to be
able to survive. Without SCF they will die through programmed cell
death. This fact in turn places a constraint on where PGCs can
migrate in the embryo. It follows that if PGCs migrate away from
cells producing SCF they will die. Because PGCs expressing c-Kit
have a requirement for membrane-bound forms of SCF it also
seemed possible that the c-Kit/SCF interaction could form part of
an adhesion mechanism. In this way, SCF could act not only as a
survival factor but also be part of the pathway on which PGCs
migrate. Such a conclusion could be drawn from earlier studies on
PGC migration in Sl mutant mice that predated the molecular
cloning of the Sl locus (McCoshen and McCallion 1975). These
studies demonstrated that in mice expressing only soluble forms of
SCF, many PGCs get lost and fail to colonize the embryonic gonad
(McCoshen and McCallion 1975). Subsequent studies by Anne
and Mia Buehr and their colleagues demonstrated that in W mutant
mice PGCs clump together and fail to undergo the characteristic
changes in morphology that presage the onset of migration (Buehr
et al., 1993).

One of the challenges for the future will be to understand the role
of the c-Kit signaling pathway in regulating both PGC survival and
to dissect its’ possible role in cell migration. Some of these
questions can be addressed by site-directed mutagenesis of the c-
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Kit receptor by homologous recombination in embryonic stem
(ES). Our own approach to dissecting the role of the c-Kit pathway
has been to develop systems to manipulate gene expression in
PGCs using retroviral-mediated gene delivery. This system, pio-
neered by Harold Varmus and his colleagues for use in glial cells,
allows for delivery of multiple genes in a directed fashion to a
specific cell lineage or tissue (Holland et al., 1998a; Holland and
Varmus 1998a). We have adapted this system to deliver genes in
a combinatorial way to PGCs and to begin to determine which
molecules act downstream of the activated c-Kit receptor. In other
cell types SCF-induced dimerization of the c-Kit receptor leads to
activation of a variety of signaling molecules, including JAK2, Src,
Shc, Grb2, PLCγ, Ras and PI3K (for review, see Blume-Jensen et
al., 1998). The PI3K pathway has been demonstrated to be of
special importance in male spermatogonial stem cells (Blume-
Jensen et al., 2000) (Kissel et al., 2000) (Feng et al., 2000). Once
activated, PI3K produces phosphatidylinositol 3,4 phosphates
(PtdIns3,4Ps), which lead to activation of different signaling mol-
ecules, including PDK1, PKCδ, PLCγ, Ras and AKT (for review,
see (Fruman et al., 1999) (Chan et al., 1999) (Rameh and Cantley
1999). PI3K activation is sufficient to stimulate AKT (Franke et al.,
1997). In addition, other molecules that are distinct from PI3K have
been demonstrated to activate AKT, such as PDK 1, PKCδ, Src and
G-protein-coupled receptors (Downward 1998). In turn, AKT acti-
vation by phosphorylation and translocation to the plasma mem-
brane promotes a variety of events, including cell survival, prolif-
eration, differentiation (for review see (Downward 1998) (Chan et
al., 1999)) and oncogenic transformation (Aoki et al., 1998) (Hol-
land and Varmus 1998b). Using retroviral-mediated gene delivery
we have discovered an important role for AKT in regulating PGC
survival downstream of the c-Kit receptor. Such an approach is
widely applicable for dissecting any signaling pathway known to act
in PGCs. Moreover, this system can also be used for functional
studies in PGCs on many of the new genes that have been
discovered as a result of the human and mouse genome projects.
In this way the function of multiple genes can be examined rapidly
and without the need for transgenesis. This gene transfer system
can be used to study many aspects of gene regulation of germ cell
behaviour and growth. Germ cell migration is a complex problem
and understanding how germ cells get to the gonad will likely
require the use of a variety of techniques including gene transfer,
targeted gene modification and cell marking. Perhaps SCF is part
of the migratory pathway but other molecules, such as laminin and
fibronectin are likely to be required also (Anderson et al., 1999).
Then there is the possibility that PGC migration is guided by
chemotaxis. In fact, as Anne says in Germ Cells and Soma “Route
finding - how the germ cells find their way - remains deeply
mysterious” (McLaren, 1981).

Germ cells, stem cells and developmental potency

Determining that SCF is a survival factor for PGCs was an
important observation because it led to the realization that it is not
a powerful mitogen. By observing PGC proliferation on different
feeder layers we noticed that PGC proliferation was not closely
related to the level of SCF produced (Dolci et al., 1991). In fact
conditioned medium from STO cells stimulated proliferation of
PGCs which were cultured on NIH-3T3 cells. Since in our assays
NIH-3T3 cells produced more SCF than STO cells, these data

suggested that STO cells produce a soluble factor (distinct from
SCF) that was a PGC mitogen (Dolci et al., 1991). They also
suggested that SCF acted in concert with other factors to stimu-
late PGC proliferation. Much of this work was carried out in our lab
by Susanna Dolci, a student of Massimo de Felici and one of
Anne’s scientific grandchildren so to speak! Rapidly some of the
PGC mitogenic factors were identified. One such factor was
Leukemia Inhibitory Factor (LIF) (Matsui et al., 1991) (Dolci et al.,
1993). In our lab, Linzhao Cheng found that LIF and a related
cytokine, Oncostatin M, act directly on PGCs to promote their
growth (Cheng et al., 1994). LIF also seems to play some role in
effecting PGC survival and together with SCF can stimulate PGC
proliferation. The importance of the LIF pathway in regulating
PGC survival is demonstrated by the finding that mice lacking the
signaling component of the LIF receptor, gp130, are severely
deficient in PGCs ((Yoshida et al., 1996) and Tetsuya Taga,
personal communication). That fact was also nicely demon-
strated by another of Anne’s one-time colleagues at the MRC
MDU, Norio Nakatsuji who showed that antibodies to gp130 could
block PGC survival in culture (Koshimizu et al., 1996). Another
PGC mitogen that was identified by Jim Resnick in our lab and by
Yasuhisa Matsui in Brigid Hogan’s lab was basic Fibroblast
Growth Factor (bFGF) (Matsui et al., 1992) (Resnick et al., 1992).
Together SCF, LIF and bFGF have a remarkable effect on PGC
proliferation in culture. Instead of ceasing proliferation in culture,
as described earlier, we found that PGCs would form large
colonies of cells that could be passaged indefinitely (Matsui et al.,
1992) (Resnick et al., 1992). These cells, which we termed
embryonic germ or EG cells, continued to express markers of
germ cells such as tissue non-specific alkaline phosphatase
(TNAP) and the stage-specific embryonic antigen-1 (SSEA-1).
Both these markers are also shared with embryonic stem (ES)
cells and embryonal carcinoma (EC) cells. EC cells are the stem
cells of testicular tumors and are thought to arise from PGCs that
fail to undergo mitotic arrest in the embryonic gonad (Stevens
1967a). Thus, somehow we had created conditions in vitro that
mirrored those that occur during the formation of testicular tumors
(Matsui et al., 1992) (Resnick et al., 1992). During embryogenesis
PGCs enter the genital ridge and proliferate to establish the
population of cells that will form the gametes. In the normal course
of events, male PGCs will enter mitotic arrest in the genital ridge.
This process is disrupted somehow during the formation of
testicular tumors (Stevens 1967a). Curiously, EC cells not only
continue to proliferate but they also have the ability to differentiate
into a wide variety of cell types including representatives of the
three primary germ layers (Stevens 1967b). We now know that
EG cells, like ES and EC cells, are plutipotent stem cells and can
give rise to cells derived from all the three primary germ layers. EG
cells also share with ES cells the ability to give rise to germline
chimeras when introduced into a host blastocyst. It was not long
before such pluripotent stem cell lines were derived from human
PGCs, work that we carried out in collaboration with Mike Shamblott
in John Gearhart ‘s lab at John’s Hopkins Medical School
(Shamblott et al., 1998). The development of pluripotent human
stem cells could have a major impact on the treatment of human
disease and Anne has been a champion of pluripotent stem cells,
both in terms of stimulating the science and in terms of explaining
the science and the ethics to the lay community - including
politicians!
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The finding that PGCs can give rise to pluripotent stem cells was
fascinating because we and many others (including Anne) had
previously found that when PGCs are transferred into a host
blastocyst they do not give rise to somatic or germline chimeras.
Some of this work we carried out with Anne and Mia Buehr at the
MRC, MDU and some in collaboration with Martin Evans and Liz
Robertson at Cambridge University. The fact that PGCs never
gave rise to even somatic chimeras explains why our work, like that
of all the others who tried the same experiment, remains unpub-
lished. These data suggested (to those of us that knew about them)
that PGCs themselves are restricted in developmental potency,
perhaps even nullipotent. Therefore, in culture, as in the develop-
ment of testicular tumors, a PGC gives rise to a pluripotent stem
cell. Understanding how and why this transition occurs could tell us
a lot about the molecular mechanisms regulating developmental
potency in mammals. More eloquently put: “ It seems that some
restrictions of developmental potential must have occurred in the
ancestry of the germ cells. …..it is hard to see how a truly totipotent
cell line could be maintained throughout embryogenesis, except
that any cell line that contributes to a germ cell population is
ultimately totipotent. Changes in the pattern of transcription occur
during differentiation; these may be irreversible, but subsequent
differentiation may bring about a series of further changes that
eventually recreate the original pattern. In the carrot, every somatic
cell is capable of giving rise to an entire new carrot plant, including
germ cells. We do not think that is true for a mouse, but perhaps we
are merely ignorant of the right environmental cues to bring about
the requisite changes.” Although we are still largely “ignorant of the
right environmental cues (to manipulate developmental potency)”,
the ability to manipulate developmental potency in PGCs with
defined growth factors has provided important clues as to the
“environmental cues” and signals involved. The development of
animal cloning by nuclear transplantation and the development of
pluripotent stem cells from PGCs have at least provided the
experimental scalpels with which to dissect the problem.

Oocyte maturation and meiotic chromosome
segregation

Germ cells have a second attribute (other than developmental
totipotency) that sets them apart from the somatic cells. That is the
ability to undergo the unique meiotic division process. Arguably,
meiosis is one of the most crucial events in the life of a nascent
individual. The first meiotic division in the oocyte is an especially
important step. If that division occurs correctly, then a normal egg
is produced that can be fertilized and go on to complete normal
development. If that division goes awry the usual result is the
production of an aneuploid embryo that is unable to complete
development. Occasionally, such aneuploid embryos will com-
plete fetal development and give rise to an individual with chromo-
somal alterations. Why the incidence of fetal aneuploidy rises with
advancing maternal age in human populations remains a mystery
and a continuing human health risk.

In female mammals, germ cells enter meiosis in the embryo and
then arrest at the prophase of meiosis I (see (Clarke 1998) for
review). Oocytes can remain arrested in prophase for the entire
reproductive lifespan of the animal. In mice groups of prophase-
arrested oocytes are periodically recruited to resume meiosis.
Oocytes undergo maturation into a fully formed egg arrested at

metaphase of the second meiotic division (MII) and are ovulated.
Resumption of meiosis involves a dramatic process of nuclear and
cytoplasmic reorganization. Classically, resumption of meiosis is
detected by nuclear envelope or germinal vesicle (GV) breakdown
(GVBD) and chromosome condensation (reviewed in (Clarke
1998)). Concomitant with these events the microtubule cytoskel-
eton is transformed from a long interphase network running through-
out the oocyte cytoplasm into short M-phase arrays or asters
nucleated from microtubule organizing centers (MTOCs) (Clarke
1998). Co-ordinated regulation of these events is crucial for estab-
lishing the first meiotic spindle and ordered chromosome segrega-
tion.

Surprisingly, very little is known about the molecular mecha-
nisms that regulate the first meiotic division in mammals. Indeed,
many other aspects of meiotic regulation in mammals remain to
be fully characterized. Twenty years ago Anne McLaren posed
these questions: “how the signal for meiosis is transmitted and
received; how meiotic arrest is achieved...”. Since Germ Cells and
Soma was written, some of the genes involved in regulating
meiosis in males and females have been identified. Some of these
genes have been identified by cloning genetic loci associated with
infertility in humans and mice. Others have been identified fortu-
itously through creation of knockout mice that resulted in animals
that are infertile. Our own approach to identifying genes involved
in regulating meiosis has been to look for homologies between
meiotic regulation in lower eukaryotes such as yeast, flies and
worms and that which occurs in mammals. The control of meiosis
has been extensively studied in these organisms and many sterile
mutants have been identified. The mechanisms that regulate
resumption of meiosis have been at the center of the cell cycle
field for several decades. GVBD is regulated by maturation or M-
phase promoting factor or MPF, the complex of the cyclin-
dependent kinase-1 (CDK1 or p34cdc2) and cyclin B that together
form an active histone H1 kinase (Gautier et al., 1988). In mitosis,
the kinase activity of p34cdc2 is regulated by a variety of factors
including: association with homologs of the yeast suc1/Cks1
proteins, association with different cyclin partners, reversible
phosphorylation and by regulated destruction of its’ cyclin partner.
Like mitosis, meiosis is regulated in part by reversible phospho-
rylation. Although association of p34cdc2 with cyclin partners
controls the localization of the protein, the kinase activity of
p34cdc2 is also tightly regulated by phosphorylation. Phosphory-
lation of the p34cdc2 subunit regulates (in part) the H1 kinase
activity of MPF that in turn regulates cell cycle transition from
prophase to M-phase and M-phase to anaphase (Gould and
Nurse 1989). The phosphorylation state of p34cdc2 is controlled
by kinases (including the Wee1 and Mik1 kinases) (Gould and
Nurse 1989) (Lundgren et al., 1991) and the cdc25 dual-specific-
ity phosphatase (Russell and Nurse 1986) (Millar et al., 1991)
(Strausfeld et al., 1991) (Lee et al., 1992).

Since Cdc25 proteins are mitotic inducers they represent impor-
tant candidates for regulating MPF activation at GVBD in meiosis.
In fact studies in Drosophila demonstrated a key role for one of the
two fly cdc25 homologs in regulating meiosis.

Based on these observations, Dineli Wickramsinghe in our lab
began to identify Cdc25 homologs in mammals and to study their
function. In mammals, three cdc25 homologs, Cdc25A, Cdc25B
and Cdc25C, have been identified to date and their roles are still
being elucidated. Cdc25A likely regulates G1/S phase of the cell
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cycle by its action on complexes of CDK4 and cyclin E (Sebastian
et al., 1993) (Hoffmann et al., 1994). In contrast, Cdc25C is thought
to regulate G2/M phase progression through its activity on com-
plexes of p34cdc2/cyclin B (Strausfeld et al., 1991) (Lee et al.,
1992). The role of the Cdc25B phosphatase remains unclear as it
has been suggested to act both at G1/S and at G2/M (Sebastian et
al., 1993) (Galaktionov et al., 1995a) (Galaktionov et al., 1995b)
(Nishijima et al., 1997). The three genes are widely expressed in
distinct but partially overlapping patterns during development,
gametogenesis and in the adult animal. In the adult ovary Cdc25A
is primarily expressed in oocytes, Cdc25C in somatic cells and
Cdc25B in both cell types (Wickramasinghe et al., 1995) (Wu and
Wolgemuth 1995). These studies suggest that the Cdc25 genes
have both overlapping and unique functions in mammals
(Wickramasinghe et al., 1995) (Wu and Wolgemuth 1995) (Kakizuka
et al., 1992). Previous studies have suggested that one physiologi-
cal function of Cdc25C in vertebrates is to activate MPF at
resumption of meiosis (Dunphy and Kumagai 1991) (Gautier et al.,
1991) (Kumagai and Dunphy 1991). To determine the role of the
Cdc25 genes in mammalian gametogenesis we carried out tar-
geted disruption of the genes in mice. Mice lacking Cdc25B are
viable and males are fully fertile. However, we found that females
were completely sterile even though the ovary contained normal
oocytes enclosed in follicles. Ovulated oocytes from Cdc25B
knockout mice remain arrested at prophase of meiosis. Isolated
GV-stage oocytes from Cdc25B -/- animals never resume meiosis
in culture. Our observations on mice lacking Cdc25B suggest that
it is absolutely required for GVBD. Thus mice lacking Cdc25B
provide a unique resource for the study of meiotic maturation in
mammals.

Important clues to mechanisms for controlling the activity of
p34cdc2 and Cdc25 have recently come from groundbreaking
studies on the DNA damage response. When DNA damage
occurs, DNA damage-response pathways are activated and trans-
duce signals through the Ataxia Telengectasia Mutated (ATM)
Kinase that result in cell cycle arrest (reviewed in Nurse, 1997;
Weinert 1997). This allows for the repair of damaged DNA and,
therefore, for the maintenance of genome integrity. Cell cycle
arrest following DNA damage is regulated by phosphorylation of
inhibitory sites on p34cdc2 (Y15) causing cell cycle arrest at the
G2/M phase checkpoint (see for example, (Furnari et al., 1997)).
Recent data suggests that an important mechanism for inducing
cell cycle arrest following DNA damage is through regulated
inhibitory phosphorylation of Cdc25 by the Chk1 kinase and the
related Chk2 Kinase also known as Cds1 (Furnari et al., 1997)
(Peng et al., 1997) (Sanchez et al., 1997) (Chaturvedi et al., 1999).

The mechanism for inhibition of p34cdc2 activity in the DNA
damage response provides an important model for how MPF
activity may be regulated in mammalian meiosis.

Phosphorylation of Cdc25 leading to its’ inactivation may be
through regulation of its interaction with the 14-3-3 proteins, a class
of ubiquitously-expressed proteins that bind to many components
of signaling pathways, including phosphatases such as Cdc25
(Conklin et al., 1995) (Peng et al., 1997). It has been proposed that
14-3-3 protein binds specifically to and sequesters Cdc25 phos-
phorylated on Ser216 (mouse Cdc25B; S321) thereby preventing
it activating p34cdc2 (Draetta and Eckstein 1997) (Jessus and
Ozon 1995). Because the upstream regulatory elements of the14-
3-3 gene contain p53-binding sites, upregulation of p53 following

DNA damage has been speculated to cause transcriptional activa-
tion of the 14-3-3 gene. 14-3-3 protein would then be available to
sequester Cdc25, thereby preventing Cdc25 entering the nucleus
to activate p34Cdc2. These studies suggest that Cdc25 proteins
are key components in the pathway that links the DNA damage-
response to cell cycle arrest (see (Nurse 1997) (Weinert 1997), for
reviews).

Further support for the idea that DNA damage response ele-
ments function in meiosis comes from studies in a variety of animal
species. First, mice lacking the ATM kinase, a key component of
the DNA damage response, have defects in meiotic chromosome
synapsis (Barlow et al., 1996) (Elson et al., 1996) (Xu et al., 1996)
(Plug et al., 1997) (Barlow et al., 1997b) (Barlow et al., 1997a).
Second, the Chk1 protein is expressed on meiotic chromosomes
in male mice in a manner dependent on the ATM kinase (Flaggs et
al., 1997). Third, disruption of a Chk1 homolog, Chk2, in worms by
RNA-mediated interference demonstrates that Chk2 is essential
for meiosis (Higashitani et al., 2000). Fourth, in prophase-arrested
Xenopus oocytes, a dominant-negative Chk1 protein facilitates
GVBD induced by progesterone (Nakajo et al., 1999). Taken
together these data suggest that components of the DNA damage
response pathway are involved in regulating meiosis in a variety of
animals species. Although studies in the Xenopus oocytes point to
the role of the Chk1 protein in regulating prophase arrest and
GVBD in vertebrates these studies have not been extended to
mammalian oocytes. Such studies could point to evolutionary
conservation of mechanisms or, alternatively, to divergent mecha-
nisms of controlling meiotic maturation. In either case, the results
of such studies in mammalian oocytes will yield important new
information about meiotic maturation. The hypothesis that such a
pathway regulates the activity of Cdc25B at GVBD of female
meiosis in mice will be tested in our future experiments. These
studies together with those from a variety of other labs go some
way to answering the question that Anne posed twenty years ago
“ how (is) meiotic arrest achieved?”

One of the critical events following GVBD is the restructuring
of the microtubule cytoskeleton to form the MI spindle, which in
turn has a critical role in orchestrating the events of chromosome
segregation. Compelling evidence suggests that many of the
events of meiosis, like mitosis, are regulated by reversible phos-
phorylation. Ganesan Gopalan in our lab began a screen for
kinases that might regulate meiosis and identified a new family of
mammalian kinases some of which are highly expressed during
meiosis (Gopalan et al., 1997) (Gopalan et al., 1998) (Gopalan et
al., 1999). These kinases are related to the yeast increase in
ploidy (Ipl1) and fly aurora (aur) genes that are involved in
regulation of chromosome segregation. Temperature-sensitive
(ts) ipl1 mutant yeast cells missegregate chromosomes severely
and die at elevated temperatures. Ipl1 encodes a serine/threo-
nine kinase and abolition of Ipl1 gene function results in severe
non-disjunction (Francisco et al., 1994). Loss of function of the
kinase encoded by the fly aurora gene results in failure of
centrosome separation leading to the formation of monopolar
spindles (Glover et al., 1995). We have termed these proteins the
Ipl1- and aurora-related kinases (IAKs), and they play important
roles in regulating spindle architecture, chromosome segregation
and cytokinesis. The first mammalian member of this family, IAK1,
is a new component of the mitotic centrosomes and spindle of
mammalian cells (Gopalan et al., 1997) (Kimura et al., 1997).
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Expression of IAK1 in ipl1 mutant, but not wildtype, yeast cells
causes defects in chromosome segregation and spindle architec-
ture suggesting that it can interfere with components of the yeast
chromosome segregation pathway (Gopalan et al., 1997). Con-
sistent with these observations, overexpression of IAK1 in fibro-
blasts is transforming and results in multiple asters and the
generation of aneuploid cells (Zhou et al., 1998) (Bischoff et al.,
1998). These data demonstrate that IAK1 is an important regula-
tor of centrosome function, spindle formation and chromosome
segregation in mitosis. The important role that this kinase family
also plays in meiosis was first described by Jill Schumacher in our
lab studying IAK homologs in C. elegans (Schumacher et al.,
1998a) (Schumacher et al., 1998b). We disrupted the function of
the two C. elegans IAK1 homologs, AIR-1 and AIR-2, by RNA-
mediated interference. AIR-1 is localized to mitotic centrosomes
of developing C.elegans embryos similar to the localization of
IAK1 in mammalian cells. Disruption of AIR-1 function in oocytes
led to the development of severely aneuploid embryonic cells and
embryonic lethality (Schumacher et al., 1998a). These data
demonstrate that disruption of AIR-1 function causes chromo-
some segregation defects in meiosis that lead to embryonic
lethality. The second C. elegans IAK1 homolog, AIR-2 is local-
ized, not to centrosomes and the mitotic spindle, but rather to
meiotic chromosomes and midbody microtubules (Schumacher
et al., 1998b). Disruption of AIR-2 function results in defects in
polar body extrusion, continued polar body replication and embry-
onic lethality at the one cell stage (Schumacher et al., 1998b).
These data suggest an important role for these kinases in meio-
sis. Compelling evidence from a variety of organisms supports
that idea. First, temperature-sensitive (ts) ipl1 mutants in yeast
are defective in sporulation, suggesting that the Ipl1 protein is
required for meiosis or spore formation in yeast (Clarence Chan,
personal communication). Second, in Xenopus, an Ipl1 and
aurora-related protein, pEg2, is present in oocytes and egg
extracts (Roghi et al., 1998) (Andresson and Ruderman 1998). In
mitotic cells, pEg2, like its mammalian relative IAK1, is localized
to the centrosomal region of the cell and the centrosome-proximal
region of the mitotic spindle. Immunoelectron microscopy shows
that pEg2 is localized around the pericentriolar material at prophase
and on the spindle microtubules in anaphase (Giet and Prigent
1998). Injection of the wildtype kinase accelerates appearance of
new MOS protein, activation of Mitogen-Activated Protein Kinase
(MAPK) and meiotic maturation (Andresson and Ruderman 1998).
Overexpression of pEg2 dramatically reduces the concentration
of progesterone required to trigger oocyte maturation (Andresson
and Ruderman 1998). These data suggest that pEg2 may func-
tion minimally in the MOS/MAPK signaling pathway required for
resumption of meiosis in Xenopus (Andresson and Ruderman
1998) (Roghi et al., 1998). Taken together these data suggest that
the IAK kinases likely play an important role in regulating meiotic
chromosome segregation. The identification of new components
of the meiotic spindle such as IAK1 should allow for a better
understanding of how the spindle is organized and regulated to
orderly segregate chromosomes. Understanding IAK1 function in
mammalian meiosis and its relationship to known meiotic regula-
tors such as MPF and MAPK should both improve our under-
standing of how these kinases function to orderly segregate
chromosomes and ultimately to understand how this process
goes wrong.

Defective cell cycle control in the oocyte can have a drastic
effect on oogenesis and ovarian physiology. The ordered segre-
gation of chromosomes during female meiosis is critical for the
development of the fetus and for the health of the offspring
(Hassold et al., 1996). Defects in meiotic chromosome segrega-
tion, most usually caused by defective MI spindle formation, can
cause infertility, early fetal loss, birth defects and the transmission
of chromosomal abnormalities conferring disease susceptibility
to the next generation (Bishop et al., 1996) (Hassold et al., 1996).
Chromosomal abnormalities are thought to be the leading cause
of mental retardation (Hassold et al., 1996). The incidence of
aneuploidy in embryos and fetuses increases dramatically with
advancing maternal age and may also be associated with envi-
ronmental factors (Hassold et al., 1996). In addition, defects in
meiotic cell cycle control can cause parthenogenetic activation of
oocytes leading to the development of ovarian teratoma (Eppig et
al., 1996) (Hirao and Eppig 1997). Further studies on the molecu-
lar mechanisms regulating meiosis in mammals will provide
important information for the diagnosis and treatment of a variety
of human conditions, including infertility, persistent fetal-loss,
ovarian teratocarcinogenesis and birth defects including cancer
susceptibility and mental retardation.

Conclusion

The germ cells have a special place in the life cycle of animals
because they must be able to retain the ability to re-create the
organism, the property known as developmental totipotency, but
at the same time be able to differentiate into the highly specialized
gametes. Indeed the male and female gametes in mice couldn’t
be much more different from one another. Historically, the analy-
sis of germ cell development and homeostasis is one of the oldest
disciplines in biology. It seems obvious why. Germ cells are set
aside from the soma during development and then undergo a
dramatic period of migration in order to reach the place in which
they finally reside for the rest of their life. Tied to the events of
somatic sexual differentiation, the differentiation of an indistinct
looking primordial germ cell into a highly specialized egg or sperm
is a complex biological problem. And then there is meiosis, a
unique form of cell division that has served animal species so well
and yet its’ successful completion is so critical for the survival of
the embryo to come. The germline is indeed a unique lineage with
many unusual features. Not least of these is the fact that germ
cells pass information from generation to generation. So too with
the scientists studying them. Many of us studying these cells have
been fortunate over the years to have received encouragement
and help from Anne McLaren even though at times we were in
essence her competitors. It is not uncommon to see her at a
meeting engaged in a spirited discussion with young students and
postdocs (or more senior scientists!) with a twinkle in her eye
making a forceful point. But also she will be encouraging and
suggesting experiments, all with an eye on publication and the
extension of our understanding of these incredible cells. An
insight into her philosophy of the conduct of science is seen in
Germ Cells and Soma where, at the end of the book, she
proposed three conjectures about germ cell development “with
the aim of stimulating research designed to prove me wrong”
(McLaren 1981). She hasn’t often been wrong in our experience
but it’s not a bad philosophy to follow!
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