Peptide signaling in Hydra

TOSHITAKA FUJISAWA* and EISUKE HAYAKAWA#

Department of Developmental Genetics, National Institute of Genetics, Mishima, Japan

ABSTRACT Peptides play a number of crucial roles as signaling molecules in metazoans. In order to elaborate a more complete picture of the roles played by peptides in a single organism, we launched the “Hydra Peptide Project”. For this project, we used Hydra magnipapillata, a species belonging to Cnidaria, one of the most basal metazoan phyla, and using a peptidomic approach, we systematically identified a number of peptide signaling molecules, their encoding genes and their functions. In this article, we report the peptides isolated from Hydra and other cnidarians, as well as their synthesis, processing and release from the cells to the target. Possible peptide signaling pathways are overviewed and finally we discuss the evolution of the peptide signaling system.

KEY WORDS: signaling peptides, Hydra, GPCR, signaling pathway, evolution

Introduction to the Hydra peptide project

Peptides play a number of crucial roles as signaling molecules in the cell activities of metazoans. For example, neuropeptides regulate a variety of physiological functions as neurotransmitters or hormones. Peptides of non-neuronal origin also mediate cell-to-cell communication as hormones and maintain homeostasis of the organism. Cnidaria, one of the most basal metazoan phyla possesses the most primitive nervous system. It is believed that cnidarian ancestors acquired the first nervous system. In this context it is important to investigate neurotransmission in cnidarians. Grimmelikhuizen and his coworkers (1992) have isolated a group of peptides related to molluscan FMRFamide (RFamide) from a variety of cnidarians and advocated that cnidarian neurotransmission is mediated exclusively by peptides. On the other hand, we launched a project in which peptide signaling molecules were systematically identified in Hydra, a cnidarian model organism with established infrastructures (Takahashi et al., 1997; see Fujisawa, 2008 for review). In this study peptides with less than 5 kDa in molecular weight were targeted. We identified a variety of peptides that are categorized into two groups. One group consists of neuropeptides and the other epitheliopeptides. In addition to neurotransmission, some neuropeptides trigger metamorphosis of planula larvae of a marine hydrozoan, Hydractinia echinata (Leitz et al., 1994; Leitz and Lay, 1994) and anthozoans, reef building corals (Iwao et al., 2004). As described later, a Hydra neuropeptide regulates neuron differentiation. Epitheliopeptides that are derived from epithelial cells most notably contribute to pattern formation and morphogenesis (Fujisawa, 2003). Antimicrobial peptides in Hydra are also produced from epithelial cells (Augustin and Bosch, 2010). In this article antimicrobial peptides and peptide toxins are not dealt with because they are somewhat out of scope of this review on signaling peptides.

In cell-to-cell communication, a peptide signal is commonly relayed via cell surface receptor. Receptors for peptide ligands are in most cases G-protein coupled 7 transmembrane receptors (GPCRs). Although GPCRs in cnidarians are poorly understood, a general scheme of signal transduction will be discussed. Peptide signaling is also discussed in the light of evolution.

Peptides identified in cnidarians

Grimmelikhuizen and his co-workers have isolated a number of neuropeptides from different kinds of cnidarians: from the anthozoans Anthopleura elegantisima and Renilla koellikeri; from the hydrozoans Polyorchis penicillatus and Hydra magnipapillata; from the scyphozoan Cyanea lamarckii (Table 1). Their neuropeptides include KAamide, Rlamides, RNamides, RWamides, RPamides and RFamides.

We had undertaken “Hydra peptide project” aiming at identifying all the signaling peptides in Hydra (see Fujisawa, 2008 for review). Neuropeptides we identified biochemically are also listed in Table 1. Most of the Hydra peptides are neurotransmitters and/or neuromodulators. They may act directly on epithelial muscle

Abbreviations used in this paper: GPCR, G-protein coupled receptor.
cells or indirectly via other neurons. The ectodermal epithelial cells have muscle processes running longitudinally, while endodermal epithelial cells contain circular muscle processes. Thus, in order to achieve body elongation endodermal muscles should contract and ectodermal muscles relax. To contract the body, ectodermal muscle processes contract while the endodermal ones relax. The availability of epithelial Hydra that is essentially made of epithelial cells (see in this issue the review by Shimizu, 2012) makes it easy to identify the target muscles of a neuropeptide. For example, if a peptide induces contraction of epithelial Hydra, it acts directly on the ectodermal muscle processes. If a peptide has no effect on epithelial Hydra but induces contraction of normal Hydra, the peptide very likely acts on other neurons to induce secretion of some peptide that in turn causes ectodermal muscle contraction.

Among neuropeptides, Hym-355 is unique in that it has no effect on muscle contraction but is rather positively involved in neuron differentiation (Takahashi et al., 2000; see below). In addition to the peptides listed in Table 1, several novel neuropeptides by using HPLC-tandem Mass-spectrometry (LC-MS/MS) have been identified (Takahashi et al., unpublished).

Peptides derived from epithelial cells are referred to as epitheliopeptides and they are primarily involved in pattern formation or morphogenesis in Hydra. Their list has been published elsewhere (Fujisawa, 2003, 2008). Some of the epitheliopeptides (Hym-323, Pedin/Hym-330 and Pedibin/Hym-346) are involved in foot formation (Hoffmeister, 1996; Grems et al., 1999; Harafuji et al.,

Table 1

<table>
<thead>
<tr>
<th>Species</th>
<th>Peptide</th>
<th>Structure</th>
<th>Function</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthopleura elegantissima (Anthozoa)</td>
<td>KAAamide</td>
<td>1-3-phenylalanyl FKAa</td>
<td>Inhibition of muscle contraction</td>
<td>a), b)</td>
</tr>
<tr>
<td></td>
<td>Ramide I</td>
<td>1-3-phenylalanyl YRia</td>
<td>Inhibition of muscle contraction</td>
<td>b), c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II YRia</td>
<td></td>
<td>c)</td>
</tr>
<tr>
<td></td>
<td>RNamide I</td>
<td>1-3-phenylalanyl LRNa</td>
<td>Induction/inhibition of muscle contraction</td>
<td>d), e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II LRNa</td>
<td></td>
<td>f)</td>
</tr>
<tr>
<td></td>
<td>RWamide I</td>
<td>≪GQLRWa</td>
<td>Muscle contraction</td>
<td>g), h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II ≪GQLRWa</td>
<td>Muscle contraction</td>
<td>h)</td>
</tr>
<tr>
<td></td>
<td>RPamide I</td>
<td>LPPGPLPRPa</td>
<td>Enhance bud detachment</td>
<td>j)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II ≪QNFHRPa</td>
<td></td>
<td>k)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III</td>
<td></td>
<td>f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV</td>
<td></td>
<td>f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td>f)</td>
</tr>
<tr>
<td>RFamide family</td>
<td></td>
<td></td>
<td>Induction/inhibition of muscle contraction</td>
<td>l, m)</td>
</tr>
<tr>
<td>Renilla koelikeri (Anthozoa)</td>
<td>RFamide</td>
<td>≪GGRFa</td>
<td></td>
<td>n)</td>
</tr>
<tr>
<td>Cyanea lamarckii (Scyphozoa)</td>
<td>RFamide I</td>
<td>≪QWLGRFa</td>
<td></td>
<td>o)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II ≪QPLWSGRFa</td>
<td></td>
<td>o)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III GRFa</td>
<td></td>
<td>o)</td>
</tr>
<tr>
<td>Polychaerus penicillitus (Hydroidae)</td>
<td>RFamide I</td>
<td>≪QLLGRFa</td>
<td></td>
<td>p)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II ≪QWLGRFa</td>
<td></td>
<td>q)</td>
</tr>
<tr>
<td>Hydra magnipapillata (Hydroidae)</td>
<td>RFamide I</td>
<td>≪QWLGRFa</td>
<td>Enhance body pumping</td>
<td>r)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II ≪QWFNGRFa</td>
<td></td>
<td>r)</td>
</tr>
<tr>
<td></td>
<td>RFamide III/IV</td>
<td>(KP)HYLGRFa</td>
<td>Enhance body pumping</td>
<td>r)</td>
</tr>
<tr>
<td>GLWamide family</td>
<td></td>
<td></td>
<td>Induction of metamorphosis of planula larvae</td>
<td>s), t, u)</td>
</tr>
<tr>
<td>Anthopleura elegantissim</td>
<td>Metamorphosis A</td>
<td>≪QQPGLWa</td>
<td></td>
<td>s)</td>
</tr>
<tr>
<td></td>
<td>Hym-53</td>
<td>NPYGLWa</td>
<td>Enhance bud detachment</td>
<td>t)</td>
</tr>
<tr>
<td></td>
<td>Hym-54</td>
<td>GPPMTGLWa</td>
<td>Enhance bud detachment</td>
<td>t)</td>
</tr>
<tr>
<td></td>
<td>Hym-248</td>
<td>EPLPGILWa</td>
<td>Enhance bud detachment; Body elongation</td>
<td>t)</td>
</tr>
<tr>
<td></td>
<td>Hym-249</td>
<td>KPIPGILWa</td>
<td>Enhance bud detachment</td>
<td>t)</td>
</tr>
<tr>
<td></td>
<td>Hym-331</td>
<td>GPPPGILWa</td>
<td>Enhance bud detachment</td>
<td>t)</td>
</tr>
<tr>
<td></td>
<td>Hym-338</td>
<td>GPP‘PGLWa<</td>
<td>Enhance bud detachment</td>
<td>t)</td>
</tr>
<tr>
<td></td>
<td>Hym-370</td>
<td>KPNAYKGLLPGILWa</td>
<td>Enhance bud detachment</td>
<td>u)</td>
</tr>
<tr>
<td></td>
<td>Hym-1071</td>
<td>KPPWRGMG(O)W</td>
<td></td>
<td>v)</td>
</tr>
<tr>
<td></td>
<td>Hym-176</td>
<td>APFFLPFPKVa</td>
<td>Contraction of peduncle</td>
<td>w)</td>
</tr>
<tr>
<td></td>
<td>Hym-357</td>
<td>KPAPFLFGYKPa</td>
<td>Contraction of whole body</td>
<td>w)</td>
</tr>
<tr>
<td></td>
<td>Hym-690</td>
<td>KPLYLFKYPa</td>
<td>Contraction of whole body</td>
<td>v)</td>
</tr>
<tr>
<td>Hym-355 family</td>
<td></td>
<td></td>
<td></td>
<td>x)</td>
</tr>
<tr>
<td>Hym-355</td>
<td>FPQSFPRPa</td>
<td>Contraction of whole body</td>
<td>w)</td>
<td></td>
</tr>
<tr>
<td>RFamide family</td>
<td></td>
<td></td>
<td></td>
<td>y)</td>
</tr>
<tr>
<td>Hym-65 (FRamide 1)</td>
<td>IPTGLFPFa</td>
<td>Body elongation</td>
<td>y)</td>
<td></td>
</tr>
<tr>
<td>Hym-153 (FRamide-2)</td>
<td>APGLLFPFa</td>
<td>Body contraction</td>
<td>y)</td>
<td></td>
</tr>
</tbody>
</table>

neuropeptides: RFamides, RWamides

Most of neuropeptides so far identified in cnidarians are short (around 10 amino acid-long). The precursor protein contains a signal peptide at its N-terminus. The protein is targeted to the endoplasmic reticulum (ER) and the signal peptide is cleaved off to enter the Golgi network. Modification like glycosylation or sulfation at a certain amino acid residue occurs during traversing the Golgi network. Peptides are then packed in secretory vesicles where processing of the protein into peptides and modification at the N-terminus (e.g. acetylation or pyro-glutamate formation) or at the C-terminus (amidation) takes place. Cnidarian neuropeptides have been localized by immunogold-electron microscopy. For example, *Hydra* RFamides are localized in the dense-core vesicles of peduncle neurons (Koizumi et al. 1989). Antho-RFamides and Antho-RWamides are also localized in excretory vesicles in neurons of anthozoans (Westfall and Grimmelkhuizen, 1993; Westfall et al., 1995).

These vesicles are directed mainly to the presynaptic membrane where contents of the vesicles are released upon stimulation to the synaptic cleft. The released peptide binds to its receptor on the postsynaptic cells so that the signal could be transmitted to the target cells. However, Antho-RFamides are also detected in non-synaptic vesicles (Westfall and Grimmelkhuizen, 1993). In the planula larva of the hydrozoan *Pennaria tiarella* the peptide packed-vesicles are found all along the neurite in close contact with the cell membrane (Brunwell and Martin, 1996). Since RFamides inhibit the action of GLWamides that induces metamorphosis of the planula larva of the hydrozoan *Hydractinia echinata* (Katsukura et al., 2003), release of these peptides may occur in the non-synaptic regions as a paracrine factor.

Epitheliopeptides

Precursors with a signal peptide

Hym-301 is so far the only epitheliopeptide with the C-terminal amidation in cnidarians. Since its precursor has a similar structure to the neuropeptide precursors, the peptides are expected to localize in secretory vesicles. Immuno-electron microscopy using an anti-Hym-301 antibody revealed that the peptide localize in secretory vesicles called electron-dense inclusions (West, 1978; Wood, 1979) that are located at the apical part of the ectodermal epithelial cells in the head region (Fig. 3; Takaku et al., unpublished results). These vesicles are almost 10 times larger in size (1–1.5 μm in a long axis) comparing to dense-cored vesicles in neurons. The Hym-301 peptide appears to be released outside of cells and also into the cytoplasm.

The precursor of PW peptides is also predicted to have a signal peptide and cleaved at dibasic amino acids at least at the C-terminus of each peptide (Takahashi et al., 2009). However, its subcellular localization is still unknown.

Precursors lacking a signal peptide

Hym-323, Pedin/Hym-330 and Pedibin/Hym346 are involved in foot formation (see Fujisawa, 2008 for review) and all of their precursors lack a signal peptide. Nevertheless, Pedin/Hym-346 is found secreted extracellularly when tested with the yeast invertase secretion assay (Böttger et al., 2006). Although the mechanism
of its secretion is unknown, some of the proteins without a signal peptide are secreted extracellularly via a chaperon-like protein (Piotrowicz et al., 1997; Suzuki et al., 2010). Also, a large number of peptides secreted independent of the classical ER-Golgi vesicular pathway have been reported in a large scale peptidomic analysis of mouse brain (Fricker, 2010).

Signal transduction

G-protein coupled receptor (GPCR) signaling

G Protein-coupled receptors (GPCRs) have seven transmembrane domains; the N-terminal region is extracellular, three loops extend each outside and inside the membrane and the C-terminal region is cytoplasmic. There are seven GPCR families that are classified by their structures and functions. The family 1 is rhodopsin-like and the largest group whose ligands are biogenic amines, peptides, glycoprotein hormones, odorants, purines, eicosanoids etc. Signaling peptides generally bind to family 1 GPCRs. Family 2 is secretin-like whose ligands are mostly polypeptide hormones like glucagon, pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP) etc. Family 3 includes metabotropic glutamate receptors. Other four families form minor groups. We found 663 family 1 GPCR genes in the Hydra genome (Hayakawa and Fujisawa, unpublished). Majority of these GPCR genes appear to be intact. Among the GPCRs, 63 are opsins in Hydra (Suga et al., 2008).

In Hydra there is no known GPCR whose ligand is a peptide, although several GPCRs show significant structural similarities to neuropeptide GPCRs in higher organisms. General scheme for signal transduction of Family 1 GPCR is shown in Fig. 1 (taken from GnRH signaling in KEGG pathway maps, KEGG (http://www.genome.jp/kegg/) and modified). Heterotrimeric G proteins (α, β, γ subunits) are coupled with a GPCR. Once a ligand binds to the receptor, GTP replaces GDP that binds to G protein α subunit Gα and the Gα is dissociated from βγ dimer (Gβγ) to activate enzymes in the signal transduction cascade. There are four subtypes of Gα (Gs, Gq/11, Gi/o and G12/13) classified by their amino acid sequences. Fig. 1 shows three representative pathways that are activated by Gs and Gq/11. Gs activates adenylate cyclase (AC) that produces cAMP as a second messenger, which in turn activates protein kinase A (PKA). PKA is involved in numerous reactions including activation of a transcription factor CREB. Gq/11 activates phospholipase C (PLCβ) which hydrolyses the membrane phospholipid, phosphatidylinositol (4,5)-bisphosphate (PIP2) into two second messengers inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 binds to IP3 receptor on the ER inducing Ca2+ release. Released Ca2+ may bind to many Ca2+ binding proteins that mediate variety of biological effects of Ca2+. One of them, calmodulin (CaM) activates calcium-calmodulin-dependent protein kinases (CaMKs) that also exert various effects. On the other hand DAG activates protein kinase C (PKC), which activates many cytosolic proteins. The genes encoding all of the proteins described here have their homologues in Hydra genome (Chapman et al. 2010).

Insulin signaling

The insulin signaling pathway has been characterized in detail in bilateral animals and is responsible for regulations of metabolism, longevity and growth (Taguchi and White, 2008). In Hydra, one of the receptor tyrosine kinase genes, HTK7 encodes a member of insulin receptor family (Steele et al., 1996). HTK7 is suggested to regulate growth and patterning. However, its ligand is not known. The search in the Hydra ESTs has yielded three genes encoding insulin-like peptides (Nishimiya-Fujisawa and Fujisawa, unpublished; Steele unpublished). One of them is roughly the same size as mammalian insulins, while other two are larger with extended N-terminal regions. Two of the genes can rescue the growth defects of Hydra (Steele et al., 1997; Suzuki et al., 2008). Also, a large number of insulin receptor family (Steele et al., 1996). HTK7 is suggested to regulate growth and patterning. Thus, the functions of the peptides are conserved from Cnidaria to Arthropoda, although in vivo functions in Hydra remain to be discovered. The insulin signaling pathway obtained from higher metazoans is shown in Fig. 2 (taken from insulin signaling in KEGG pathway maps, KEGG (http://www.genome.jp/kegg/) and modified).

Insulin binds to an insulin receptor which is composed of two α subunits and two β subunits. The insulin receptor phosphorylates insulin receptor substrates (IRs). In the phosphatidylinositol signaling pathway, the IRS binds to PI3K, which phosphorylates phosphatidylinositol (4,5)-bisphosphate (PIP2) to produce a second messenger, phosphatidylinositol (3,4,5)-trisphosphate (PIP3). PIP3 is negatively regulated by phosphatase and tensin homolog (PTEN). PIP3 activates 3-phosphoinositide-dependent kinase, PDK1/2 that in turn phosphorylates serine/threonine kinase, Akt. Activated Akt phosphorylates, thus inhibits a fork-head transcription factor, FOXO by promoting its nuclear export and glycogen synthase kinase (GSK).
3β. In the MAPK signaling pathway, IRS associates with growth factor receptor-bound protein, GRB-2. The complex activates Son of Sevenless (SOS) by removing GDP from and adding GTP to Ras, which then pushes the MAPK cascade down with sequential phosphorylation. Elk1 is a transcription factor that activates genes involved in cell proliferation and differentiation. The MAPK cascade and CREB signaling in regeneration have been reported in *Hydra* (Galliot et al., 1995; Kaloulis et al., 2004; Chera et al., 2007; Chera et al., 2011). All of the genes encoding the proteins described here except for Elk1 have their homologues in *Hydra* genome (Galliot et al., 1995; Fujisawa, unpublished). ERK 1/2 might activate other transcription factors like c-myc or other ETS domain containing transcription factors.

Evolutionary considerations concerning peptides, receptors and channels

Peptides

Peptides described in this review are rather short and the motif essential for the function is even shorter (two or three amino acid-long). Thus, it is generally difficult to discuss the evolutionary conservation of peptides. Only short peptides conserved among cnidarians are RFamides and GLWamides families. When many peptides with the same motif are encoded in a precursor protein, it is relatively easy to find homologs based on the conserved motif among other animals even in different phyla. RFamides are such an example. RFamides appear to be conserved from cnidarians to mammals and some of the functions like cardiac muscle contraction (or pumping) can be seen from *Hydra* to man (Shimizu and Fujisawa, 2003).

GLWamides are easily found among cnidarians with the same approach as for RFamides. But, when it comes to other phyla, it becomes difficult to find homologs by conventional searches such as BLAST. Instead one has to search by considering the conserved structural hallmarks, e.g. presence of a signal peptide, dibasic cleavage sites, amidation motifs and conserved motifs in mature peptide sequences. By doing so, we identified a GLWamide precursor protein in *C. elegans* (Ishihara et al., unpublished data, 1998; Fujisawa, 2008) and later this was confirmed biochemically (Husson et al., 2005). Homologs of GLWamide genes have not been detected in other metazoans. Thus, it is apparent that RFamides and GLWamides were acquired in the first nervous system of cnidarian ancestors and not only the amino acid motifs but also their basic functions appear to be maintained in extant metazoans.

It is conceivable that orthologs of other peptide families may be found in animals in different phyla. However other peptide genes such as Hym-176 and Hym-301 or their related genes are not found outside of *Hydra*. These paralogs, although related, have rather diverse sequences. Thus, an ancestral gene was presumably acquired after *Hydra* branched from other hydrozoans and later diverged to perform related but different functions. These genes are referred to as taxonomically restricted genes that play a role in the creation of phylum (or even family)-specific novelties (Milde et al., 2009).

G-protein coupled receptors

As mentioned above the signaling pathway of GPCR appears to be well conserved from *Hydra* to mammals indicating that the whole pathway is important for animal survival. The number of GPCRs per genome generally increases as the phylogenetic order goes up and this increase is mainly attributed to the expansion of odorant or chemosensory receptors (Table 2). A unicellular eukaryote, *Tetrahymena* has only several GPCRs (Lampert et al., 2011) while slime mold, *Dictyostelium discoideum* has 55 genes for GPCR (Prabhut et al., 2007). One of the most primitive metazoan, sponge has more than 200 GPCRs. The sudden increase in the number of GPCRs appears to occur to attain multicellularity of animals. *C. elegans* has 1006 odorant/chemosensory receptors among 1149 GPCRs (Table 2; see Frederiksson et al., 2005).

Unexpectedly *Hydra* genome contains 822 GPCRs, 663 related to family-1, 41 to family-2 and 118 to family-3 (Hayakawa and Fujisawa, unpublished observation), *Nematostella* about 500. As in case of vertebrates but not of *C. elegans* and *Drosophila*, most of the *Hydra* GPCR genes are single exon genes. They are arrayed in tandem along the contigs. Also, most of them appear to

Table 2

<table>
<thead>
<tr>
<th>Organism(s)</th>
<th>Number</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeasts</td>
<td>3-9</td>
<td>Frederiksson and Schio, 2005 (^1)</td>
</tr>
<tr>
<td>Plants</td>
<td>1-6</td>
<td>Frederiksson and Schio, 2005 (^1)</td>
</tr>
<tr>
<td>Slime mold</td>
<td>55</td>
<td>Prabhut et al., 2007</td>
</tr>
<tr>
<td>Tetrahymena</td>
<td>Several</td>
<td>Lampert et al., 2011</td>
</tr>
<tr>
<td>Sponge (Amphimedon)</td>
<td>>200</td>
<td>Srivastava, et al., 2010</td>
</tr>
<tr>
<td>Hydra magnipapillata</td>
<td>822</td>
<td>Hayakawa et al., unpublished</td>
</tr>
<tr>
<td>Sea anemone (Nematostella)</td>
<td>-500</td>
<td>Hayakawa et al., unpublished</td>
</tr>
<tr>
<td>Nematodiscus (C. elegans)</td>
<td>1149</td>
<td>Frederiksson and Schio, 2005 (^1)</td>
</tr>
<tr>
<td>Odorant receptors</td>
<td>1006/1149</td>
<td>Frederiksson and Schio, 2005 (^1)</td>
</tr>
<tr>
<td>Fruit fly (D. melanogaster)</td>
<td>210</td>
<td>Frederiksson and Schio, 2005 (^1)</td>
</tr>
<tr>
<td>Turricate (Ciona)</td>
<td>208</td>
<td>Frederiksson and Schio, 2005 (^1)</td>
</tr>
<tr>
<td>Zebrafish (Danio)</td>
<td>1318</td>
<td>Frederiksson and Schio, 2005 (^1)</td>
</tr>
<tr>
<td>Mouse (Mus)</td>
<td>737</td>
<td>Frederiksson and Schio, 2005 (^1)</td>
</tr>
<tr>
<td>Human (Homo)</td>
<td>865</td>
<td>Frederiksson and Schio, 2005 (^1)</td>
</tr>
</tbody>
</table>

\(^1\) Review article
be intact. The reason for this abundance of GPCRs in cnidarians is not known. One explanation might be that at least Hydra uses a few hundreds of peptides as signaling molecules and thus the receptors for these ligands are numerous. The other possibility is that cnidarians uses many chemosensory receptors to monitor environmental cues although there are no good reasons that cnidarians should have so many chemosensory receptors. In any case, the genes with a single exon suggest that the burst of GPCR gene expansion presumably occurred recently in the lineage of Hydra evolution since Hydra diverged from anthozoans at least 500 millions year ago (Chapman et al., 2010).

RFamide-gated ion channels (FaNaCs)

As mentioned above, receptors for peptides are in most cases GPCRs. To date, only exception to this rule is the FMRFamide-gated Na+ channel first identified in snail *Helix asperosa* (Cotrell et al., 1990; Lingueglia et al., 1995). FaNaC is a member of the degenerin/epithelial Na+ channel (DEG/ENaC) family that also includes acid-sensing ion channels (ASICs) (Lingueglia, 2007) (see also in this issue the review on ligand-gated ion channels by Pierobon). The channels in this family are activated by ligands (ASICs) and mechanical forces (degenerins) or opened constitutively (ENaCs) but are blocked by a diuretic drug amiloride. The channel has two transmembrane domains with a long extracellular loop with a cysteine-rich region and N-terminal and C-terminal cytoplasmic domains (Kellenberger and Schild, 2002). *Hydra* contains 4 subunits for FaNaCs designated to as HyNaC 2, 3, 4 and 5. HyNaC2, 3 and 5 form an ion channel gated by Hydra RFamide I and II (Golubovic et al., 2007; Dürmagel et al., 2010). HyNaC 4 might form the channel with yet un-identified subunits.

Whole mount in situ hybridization shows that the genes encoding these subunits are all expressed in most likely epitheliomuscular cells at the base of the tentacles with a subtle but interesting difference (Dürmagel et al., 2010). The precise in vivo function of this channel in *Hydra* is unknown. However, since the regions expressing these genes and the gene encoding RFAmides I and II roughly coincide, the channel may mediate fast axonal transmission to muscle cells at the base of the tentacles to regulate tentacle movement. Recent finding also suggest its involvement in feeding response because amiloride delayed feeding response evoked by glutathione (Dürmagel et al., 2010). This type of channel has been found only in Cnidaria and Mollusca and therefore its evolutionary pathway is unclear. The absence of the channel in other phyla may be a gene loss or due to a technical problem to detect it. Independent incidence to acquire the channels in different phyla is highly unlikely because the same type of neuropeptide gates the channels.

Acknowledgement

Most of the work described here was done at the National Institute of Genetics (Mishima, Japan) supported by grants from Ministry of Education, Culture, Sports, Science and Technology, Japan (to T.F.). T.F. also thanks the Deutsche Forschungsgemeinschaft and Thomas Holstein, University of Heidelberg for support and hospitality.

References

GRIMMELKIHJUZEN, C.J.P., DARMER, D., SCHMUZLER, C., CARSTENSEN, K., MOOSLER, A., NOTTHACKER, H.P., REINSCHIED, R.K., VOLLERT, H., RINE-
HART, K.K., and MCFARLANE, I.D. (1992). The peptidogenic nervous system of

GRIMMELKIHJUZEN, C.J.P., WILLIAMSON, M. and HANSEN, G.N. (2002). Neu-

HARAFUJI, N., TAKAHASHI, T., HATTA, M., TEZUKA, H., MORISHITA, F., MATSU-

HAYAKAWA, E., TAKAHASHI, T., NISHIMIYA-FUJISAWA, C. and FUJISAWA, T.
(2007). A novel neuropetide (FRamide) family identified by a peptidomic ap-

HUSSON, S.J., CLYNEN, E., BAGGERMAN, G., DE LOOF, A. and SCHOOLS, L.
(2005). Discovering neuropetides in Caenorhabditis elegans by two dimensional
liquid chromatography and mass spectrometry. Biochem Biophys Res Comm
335: 78-86.

HOFFMEISTER, S.A.H. (1996). Isolation and characterization of two new morp-

GLWamide family induces metamorphosis of reef-building corals in the genus

Reactivation of developmental programs: the cAMP-response element-binding
protein pathway is involved in hydra head regeneration. Proc Natl Acad Sci USA 101:
2363-2368.

KATSUKURA, Y., DAVID, C.N., GRIMMELKIHJUZEN, C.J. and SUGIYAMA T.
(2003). Inhibition of metamorphosis by RFamide neuropetides in planula larvae of

KELLENBERGER, S. and SCHILD, L. (2002). Epithelial sodium channel/degenerin
family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:
735-773.

KOIZUMI, O., WILSON, J.D., GRIMMELKIHJUZEN, C.J. and WESTFALL, J.A.
(2004). Hym-355, a novel neuropeptide, positively regulates neuron differentia-

to lysophosphatic acid does not require a change in membrane potential in

etide controlling development of the lower metazoan Hydrozoa. J Biol Chem 263:
440-444.

LEITZ, T. and LAY, M. (1994). Metamorphosin A is a neuropetide. Dev Gene Evol 204:
276-279.

Chem 282: 17325-17329.

of the aminolide-sensitive FMRFamide peptide-gated sodium channel.

of four novel neuropeptides, the Hydra-RFamides I-IV, from Hydra magnipapillata.

of three novel neuropetides, the Cyanea-RFamides I-III, from Scyphomedusae.
Biochem Biophys Res Commun 236: 743-749.

POTROWICZ, R.S., MARTIN, J.L., DILLMAN, W.H. and LEVIN, E.G. (1997). The
27-kDa heat shock protein facilitates basic fibrilastin growth factor release from

PRABHU, Y., MONDAL, S., EICHINGER, L. and NOEGEL, A.A. (2007). A GPCR in

SUEZUKI, Y., KOYAYASHI, M., MIYASHITA, H., OHTA, H., SONODA, H. and SATO,

STEELE, R.E. (2012). The Hydra genome: insights, puzzles, and opportunities for

Response to insulin and the expression pattern of a gene encoding an insulin-like
receptor homologue suggest a role for an insulin-like molecule in regulating growth

TAKAHASHI, T., MUNEOKA, Y., LOHMANN, J., DE HARO, L.M., SOLLEDER, G.,
BOSCH, T.C.G., DAVID, C.N., BODE, H.R., KOIZUMI, O., SHIMIZU, H., HATTA,
signal molecules regulating development in Hydra: LWamide and PW families.

TAKAHASHI, T., KOIZUMI, O., ARIURA, Y., ROMANOVITCH, A., BOSCH, T.C.G.,
KOBAYAKAWA, Y., MOHR, S., BODE, H.R., YUM, S., HATTA, M. and FUJISAWA,

TAKAHASHI, T., HATTA, M., YUM, S., KOIZUMI, O., KOBAYAKAWA, Y., GEE, L.,
regulates the number of tentacles formed in Hydra. Development 132: 2225-2234.

TAKAHASHI, T., KOIZUMI, O., HAYAKAWA, E., MINOBE, S., SUETSUGU, R., KO-
characterization of the PW peptide family that inhibits neuron differentiation

WEST, D.L. (1978). The epithelio muscular cell of Hydra: its fine structure, three-

Further Related Reading, published previously in the *Int. J. Dev. Biol.*

An organizing region in metamorphosing hydrozoan planula larvae - stimulation of axis formation in both larval and in adult tissue
Melanie Stumpf, Britta Will, Karola Wittig, Jennifer Kasper, Benjamin Fischer, Jürgen Schmich, Stefanie Seipp and Thomas Leitz
Int. J. Dev. Biol. (2010) 54: 795-802

Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility
Alberto Darszon, Adán Guerrero, Blanca E. Galindo, Takuya Nishigaki and Christopher D. Wood
Int. J. Dev. Biol. (2008) 52: 595-606

The role of alpha-amidated neuropeptides in hydroid development–LWamides and metamorphosis in *Hydractinia echinata*
Günter Plickert, Eva Schetter, Nicole Verhey-Van-Wijk, Jörg Schlossherr, Marlis Steinbüchel and Martin Gajewski
Int. J. Dev. Biol. (2003) 47: 439-450

Distribution and possible function of an adrenomedullin-like peptide in the developing chick limb bud
M Reza Seghatoleslami, Alfredo Martinez, Frank Cuttitta and Robert A Kosher
Int. J. Dev. Biol. (2002) 46: 957-961

Snail is an immediate early target gene of parathyroid hormone related peptide signaling in parietal endoderm formation
J M Veltmaat, C C Orelio, D Ward-Van Oostwaard, M A Van Rooijen, C L Mummery and L H Defize
Int. J. Dev. Biol. (2000) 44: 297-307

5 yr ISI Impact Factor (2010) = 2.961