The Nematocyst: a molecular map of the Cnidarian stinging organelle

ANNA BECKMANN and SUAT ÖZBEK*
Department for Molecular Evolution and Genomics, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany

ABSTRACT Nematocysts or cnidocysts represent the common feature of all cnidarians. They are large organelles produced from the Golgi apparatus as a secretory product within a specialized cell, the nematocyte or cnidocyte. Nematocysts are predominantly used for prey capture and defense, but also for locomotion. In spite of large variations in size and morphology, nematocysts share a common build comprising a cylindrical capsule to which a long hollow thread is attached. The thread is inverted and coiled within the capsule and may be armed with spines in some nematocyst types. During the discharge of nematocysts following a chemical or mechanical stimulus, the thread is expelled from within the capsule matrix in a harpoon-like fashion. This process constitutes one of the fastest in biology and is accompanied by a release of toxins that are potentially harmful also for humans. The long history of research on Hydra as a model organism has been accompanied by the cellular, mechanistic and morphological analysis of its nematocyst repertoire. Although representing one of the most complex organelles of the animal kingdom, the evolutionary origin and molecular map of the nematocyst has remained largely unknown. Recent efforts in unraveling the molecular content of this fascinating organelle have revealed intriguing parallels to the extracellular matrix.

KEY WORDS: cnidocyst, hydra, morphogenesis, basal metazoa, matrix

Introduction

Nematocytes or cnidocytes (Fig. 1A) are highly specialized cells that represent a taxonomically restricted feature of the cnidarian clade. They synthesize in their cytoplasm a unique organelle called nematocyst or cnidocyst/cnida (Fig. 1 A-C). Nematocysts are used for predation, as well as for locomotion and defense and, due to their role in predation, are mainly localized in the tentacles, allowing animals of this phylum an efficient prey capture, although they lack a sophisticated central nervous system. While Abraham Trembley in his description of Hydra in 1744 described nematocysts as little light-breaking structures on the tentacles of the animal (Trembley, 1744), the morphology and function of the nematocyst was discovered not until the mid 19th century, after adequate microscopic and histological techniques were developed (Lenhoff and Lenhoff, 1988). A first comprehensive report on nematocyst morphology and species-specific distribution of capsule types was published by Weill in 1934 (Weill, 1934a, Weill, 1934b). The organelle itself can differ in size (5-100 μm) and shape (round to cylindrical) but always shows a common built being composed of a wall and an attached tubule, which might be adorned with spines and appendices (Fig. 1 D-E) (Teragawa and Bode, 1995). At the apical end of the cell, a mechanosensory apparatus called cnidocil, a central cilium surrounded by shorter stereocilia, points towards the outside (Fig. 1B) (Hausmann and Holstein, 1985). The nematocyst body is anchored tightly in the cytoplasm of the nematocyte by a microtubule basket surrounding the capsule (Engel et al., 2002).

According to their morphological properties nematocysts can be divided into 25-30 types and thus represent an important feature for taxonomic grouping within the cnidarians (Mariscal, 1974, Weill, 1934a, Weill, 1934b), as the different types of nematocysts are not equally distributed among different species (Fautin, 1988). Within the cnidarian clade, hydrozoans display the highest structural complexity of nematocysts (David et al., 2008). Hydra possesses four different types of capsules (Holstein, 1981): the large stenoteles that exhibit prominent spines at the base of their tubules, the atrichous and holotrichous isorhizas that are used for attachment to surfaces and prey organisms, and the small desmonemes, which coil tightly around appendices of the prey after discharge (Fig. 1C).

In Hydra, nematocytes originate from the neuronal stem cell population and after specification produce the nematocyst (Tardent,
The nematocyst is a product of a complex secretion process and forms within a large post-Golgi vesicle in the cytoplasm of the nematocyte (Slautterback and Fawcett, 1959, Fawcett et al., 1959, Skaer, 1973, Holstein, 1981) (Fig. 1A). Hydra possesses about 100,000 cells, 25,000 of which are nematocytes and 40,000 are in the process of differentiation (David and Challoner, 1974, David and Gierer, 1974). Thus, cnidarians invest a large fraction of their energy into the maintenance of their nematocyst repertoire, which has to be constantly renewed. Nematocytes derive from interstitial stem cells (i-cells) (Bode and David, 1978, see in this issue David, 2012) that undergo up to 5 steps of mitosis, resulting in nests of developing nematocytes called nematoblasts (David and Challoner, 1974). The development of nematocytes takes place in the body column of Hydra. When nematocytes mature they migrate to their destination, mainly into the tentacles, where they are incorporated in battery cells. Upon maturation poly-gamma-glutamate and associated cations are incorporated into the capsule, leading to an extreme osmotic pressure of 150 bar (Weber, 1989, Weber, 1990). Battery cells contain one to two stenoteles and several isorhizas, surrounded by desmonemes (Fig. 1B). The nematocytes contact sensory neurons, which results in a coordinated discharge of this functional unit. The process of discharge is one of the fastest events known in animal kingdom and generates an acceleration of more than 5 million g (Holstein and Tardent, 1984, Nuchter et al., 2006). During discharge, the spines thrust through the opened operculum and the inverted coiled tubule is everted to the outside (Fig. 1 D-E). This process is accompanied by the release of soluble neurotoxins into the tissue of a prey organism (Özbek et al., 2009). The secretion of molecules with toxic function might therefore have been at the base of nematocyst evolution (see in this issue Rachamim and Sher, 2012).

In the present review we focus on the molecular aspects of nematocyst morphogenesis in Hydra that has served as a model for nematocyst research for decades. A recent proteome analysis of the Hydra cnidom performed in our laboratory has confirmed the notion of a specialized ECM with both, stress-resistant and elastic properties, as a basis of the nematocyst capsule structure (Özbek, 2010) (Balasubramanian et al., 2012). Nematocyst evolution might therefore have been tightly linked to ECM evolution in Hydra and other cnidarians (see in this issue Sarras, 2012).

Nematocyst morphogenesis in Hydra

In Hydra, nematocyst-synthesizing cells are produced continuously from the multipotent interstitial stem cell lineage (named i-cells), which in addition gives rise to neurons, gland cells, and germ cells (Bosch and David, 1991, Fujisawa et al., 1986, Shimiizu and Bode, 1995, Teragawa and Bode, 1995). Nematocyst specification and morphogenesis takes place in the body column of Hydra, where i-cells committed to the nematoblast pathway undergo 3-5 divisions resulting in clusters or nests of 8-32 cells (Fig. 3C) that are connected to each other by cytoplasmic bridges (Slautterback and Fawcett, 1959). Nematocyst synthesis during this phase starts by the formation of a vesicle primordium, which then grows by continuous feeding with further secretory vesicles from the Golgi apparatus (Holstein, 1981) (Fig. 1A). The vesicles contain secreted proteins that are assembled within the growing nematocyst vesicle to form a lattice or matrix-like structure, which will constitute the capsule wall.

Capsule wall formation precedes tubule morphogenesis, which is initiated by membrane tubulation at the apical site of the nematocyst vesicle (Fig. 1A) (Adamczyk et al., 2010). As outlined below...
Molecular components of the nematocyst capsule body

The first structural nematocyst molecules identified in isolated capsules from Hydra were of collagenous nature and termed minicollagens due to the unique shortness of their collagen triple helices (Lenhoff et al., 1957, Kurz et al., 1991, Holstein et al., 1994). Minicollagens are expressed from the early stages of nematocyst morphogenesis until capsule maturation and thus allow a detailed monitoring of capsule development (Engel et al., 2001). Hydra minicollagen-1 (NCol-1), which is the most conserved member of the family, possessing close homologs in all other cnidarians analyzed so far, is exclusively restricted to the capsule wall of the organelle and does not contribute to tubule structures (Engel et al., 2001). This is not only evident from antibody stainings, but also from transgenic animals expressing minicollagen-1-GFP fusion molecules under the control of a nematocyst-specific promoter (Fig. 3A). As different minicollagens show a restricted distribution to wall or tubule structures (Adamczyk et al., 2008) domain duplication and variation processes predominantly in non-collagen domains appear to have resulted in functional differentiation in minicollagens (David et al., 2008).

Minicollagens are unique and ancient trademarks of cnidarians and comprise common domain architectures (Fig. 2): the central collagen repeat extends into polyproline stretches of variable length and is terminated at both ends by short cysteine-rich domains (CRD) with a conserved cysteine pattern of 6 cysteines in a total number of 18 amino acids (Özbek et al., 2002a). The CRDs represent a rare case of structural variation in closely related protein sequences with the N-terminal CRDs exhibiting a dramatically different three-dimensional structure compared to the C-terminal CRDs (Meier et al., 2007). Most minicollagens thus exhibit a polarized molecular architecture, which probably is a prerequisite for correct macromolecular assembly (Fig. 2).

In immature nematocysts within developing nematocyte nests minicollagens are still in a soluble state and can be extracted as monomers (Engel et al., 2001). After maturation they are integrated into the highly compacted supra-structure of the capsule wall by a disulfide-dependent process (Özbek et al., 2002b). It is assumed that a disulfide reshuffling process generates multiple intermolecular cysteine links between different minicollagens. Zenkert et al., have recently demonstrated that in nematocysts of the starlet sea anemone Nematostella vectensis minicollagens are stabilized by further covalent cross-links, which are absent in Hydra (Zenkert et al., 2011). Such intermolecular crosslinks are characteristic for fibrillar collagens in vertebrates and might therefore indicate a common evolutionary origin between minicollagens and ECM collagens.

Tubule morphogenesis is dependent on protein-carbohydrate interactions

Tubule morphogenesis can be divided into four different stages: protrusion, outgrowth, invagination and compaction (Fig. 1A). The first steps of tubule development involve a membrane protrusion of the growing nematocyst vesicle at the apical end surrounded by the trans-Golgi-network. This tubulation process is connected to rearrangements of the actin and tubulin cytoskeleton and probably membrane-associated cytoplasmic factors.

The tubule represents the most elaborate and innovative structure of the nematocyst. Capsule type classification often depends exclusively on the phenotypes of the respective tubules, which can be adorned with spines in varying arrays and dimensions and reach lengths of up to several hundred µm. Tubule spines serve for different functions, depending on the capsule type, and are of high mechanical stability. The large stylet at the tubule base of stenoteles (Fig. 1 D-E) are used to puncture protective cuticles and shells of prey organisms, while the smaller spines of desmonemes and isorhizas help in attaching Hydra to the prey or substrate. Several exclusive tubule components have already been identified demonstrating that the morphological distinction from the capsule body is also reflected by a specialized composition on the molecular level.
Spinalin, a glycine- and histidine-rich protein, has been characterized as a spine component that is added to tubules after invagination (Hellstern et al., 2006, Koch et al., 1998). During early morphogenesis spinalin accumulates as large protein bodies in the capsule matrix forming a depot for later tubule maturation (Adamczyk et al., 2008). Spinalin is related to loricrins and cytokeratins and therefore believed to form similar insoluble and resistant structures (Koch et al., 1998).

Minicollagen-15 (NCol-15) is the first member of the minicollagen family showing an exclusive localization to the tubule structure (Adamczyk et al., 2008). Similar to spinalin NCol-15 is stored in the capsule matrix until tubule invagination (Adamczyk et al., 2008). Spinalin is related to loricrins and cytokeratins and therefore believed to form similar insoluble and resistant structures (Koch et al., 1998).

Minicollagen-15 (NCol-15) is the first member of the minicollagen family showing an exclusive localization to the tubule structure (Adamczyk et al., 2008). Similar to spinalin NCol-15 is stored in the capsule matrix until tubule invagination and then incorporated during further maturation. On the sequence level, a duplicated C-terminal CRD with a deviated cysteine pattern distinguishes NCol-15 from NCol-1. As a consequence of this sequence deviation the C-terminal NCol-15 CRD adopts a different three-dimensional fold, which probably precludes incorporation into the capsule wall matrix.

Recently, two novel molecular tubule components have been described that appear to have a complementary pattern and accompany tubule morphogenesis as is added to tubules after invagination (Hellstern et al., 2006, Koch et al., 1998). During early morphogenesis spinalin accumulates as large protein bodies in the capsule matrix forming a depot for later tubule maturation (Adamczyk et al., 2008). Spinalin is related to loricrins and cytokeratins and therefore believed to form similar insoluble and resistant structures (Koch et al., 1998).

Minicollagen-15 (NCol-15) is the first member of the minicollagen family showing an exclusive localization to the tubule structure (Adamczyk et al., 2008). Similar to spinalin NCol-15 is stored in the capsule matrix until tubule invagination and then incorporated during further maturation. On the sequence level, a duplicated C-terminal CRD with a deviated cysteine pattern distinguishes NCol-15 from NCol-1. As a consequence of this sequence deviation the C-terminal NCol-15 CRD adopts a different three-dimensional fold, which probably precludes incorporation into the capsule wall matrix.

Recently, two novel molecular tubule components have been described that appear to have a complementary pattern and accompany tubule morphogenesis as is added to tubules after invagination (Hellstern et al., 2006, Koch et al., 1998). During early morphogenesis spinalin accumulates as large protein bodies in the capsule matrix forming a depot for later tubule maturation (Adamczyk et al., 2008). Spinalin is related to loricrins and cytokeratins and therefore believed to form similar insoluble and resistant structures (Koch et al., 1998).

Minicollagen-15 (NCol-15) is the first member of the minicollagen family showing an exclusive localization to the tubule structure (Adamczyk et al., 2008). Similar to spinalin NCol-15 is stored in the capsule matrix until tubule invagination and then incorporated during further maturation. On the sequence level, a duplicated C-terminal CRD with a deviated cysteine pattern distinguishes NCol-15 from NCol-1. As a consequence of this sequence deviation the C-terminal NCol-15 CRD adopts a different three-dimensional fold, which probably precludes incorporation into the capsule wall matrix.

The chondroitin-based matrix is closely associated with a nematocyst-specific lectin that comprises a conserved N-terminal domain, followed by GlyXY repeats that form a collagen triple helix, a C-terminal galactose binding lectin and a basic domain (Fig. 3 C-D) (Hwang et al., 2010). Alternative splicing yields two variants of nematogalectin, which are differentially expressed: while nematogalectin A is located at tubules of stenoteles and isorhizas, nematogalectin B occurs predominantly in tubules of desmonemes. Nematogalectin is closely associated with chondroitin and lines the inner surface of the growing tubule that gets exposed to the surface after invagination (Fig. 3C). The fact that its expression pattern is matched with that of chondroitin suggests a close molecular interaction between these molecules. It has been speculated therefore that nematogalectins might play a role in the assembly of minicollagens during later maturation and form a linker molecule between the GAG and the collagen matrices (Adamczyk et al., 2010, Hwang et al., 2010). Thus, the tubule might be synthesized as a lectin-glycosaminoglycan-based scaffold, which is stabilized by minicollagens after invagination. Our proteome
analysis has yielded a high number of further lectin-type proteins as components of the capsule (Balasubramanian et al., 2012). We therefore assume that protein-carbohydrate interactions play a major role in the capsule assembly.

Conclusion

The structural composition of the cnidarian nematocyst shows clear similarities to the extracellular matrix of metazoans. Minicollagens, lectins and glycosaminoglycans are prominent examples and have an essential role in nematocyst morphogenesis. We therefore postulate an evolutionary scenario in which cells secreting soluble toxins acquired ECM components for more efficient delivery and probably storage of toxins. In addition, many protein toxins, like toxic lectins, are related to ECM molecules (Eble, 2010) and might have contributed to the structural part of the nematocyst proteome. A detailed comparison between the nematocyst proteomes of different cnidian species will help in defining the evolutionary history of this organelle. Our proteome data clearly point toward a conserved set of the soluble, toxin-related genes to which structural proteins were added in species-specific variations (Balasubramanian et al., in revision).

Acknowledgements

We thank Brigitte Galliot for many helpful suggestions and critical reading. Our work is supported by DFG grants to S.Ö.

References

SARRAS, M. P. J. (2012). Components, structure, biogenesis and function of the

The Hydra nematocyst 581

Further Related Reading, published previously in the Int. J. Dev. Biol.

A polymorphic, thrombospondin domain-containing lectin is an oocyte marker in Hydractinia: implications for germ cell specification and sex determination
Brahim Mali, R. Cathriona Millane, Günter Plickert, Marcus Frohme and Uri Frank

An organizing region in metamorphosing hydrozoan planula larvae - stimulation of axis formation in both larval and in adult tissue
Melanie Stumpf, Britta Will, Karola Wittig, Jennifer Kasper, Benjamin Fischer, Jürgen Schmich, Stefanie Seipp and Thomas Leitz

Wnt signaling in hydroid development: ectopic heads and giant buds induced by GSK-3beta inhibitors
Werner Müller, Uri Frank, Regina Teo, Ofer Mokady, Christina Guette and Günter Plickert

Metamorphosis of Hydractinia echinata (Cnidaria) is caspase-dependent
Stefanie Seipp, Karola Wittig, Beate Stiening, Angelika Böttger and Thomas Leitz

The role of alpha-amidated neuropeptides in hydroid development--LWamides and metamorphosis in Hydractinia echinata
Günter Plickert, Eva Schetter, Nicole Verhey-Van-Wijk, Jörg Schlossherr, Marlis Steinbüchel and Martin Gajewski

Ca2+-ions and pattern control in Hydra
Stefanie Zeretzke, Fernando Pérez, Kirsten Velden and Stefan Berking

Autoaggressive, multi-headed and other mutant phenotypes in Hydractinia echinata (Cnidaria: Hydrozoa)
Werner A Müller

Pattern regulation properties of a Hydra strain which produces additional heads along the body axis
S Zeretzke and S Berking