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ABSTRACT  Macrophages display remarkable plasticity, allowing these cells to adapt to changing 
microenvironments and perform functions as diverse as tissue development and homeostasis, 
inflammation, pathogen clearance and wound healing. Macrophage activation can be triggered by 
Th1 cytokines and pathogen-associated or endogenous danger signals, leading to the formation of 
classically activated or M1 macrophages. On the other hand, anti-inflammatory mediators, including 
IL-4, IL-10, TGF-b and M-CSF, induce diverse anti-inflammatory types of macrophages, known under 
the generic term M2. In human breast carcinomas, tumor-associated macrophage (TAM) density 
correlates with poor prognosis. In mouse models of breast cancer, eliminating macrophages from 
the tumor site, either via genetic or therapeutic means, results in retarded tumor progression. Over 
the years, multiple signals from the mammary tumor microenvironment have been reported to 
influence the TAM phenotype and TAM have been propagated as anti-inflammatory M2-like cells. 
Recent developments point to the existence of at least two distinct TAM subpopulations in mam-
mary tumors, based on a differential expression of markers such as CD206 or MHC II and different 
in vivo behaviour: perivascular, migratory TAM which are less M2-like, and sessile TAM found at 
tumor-stroma borders and/or hypoxic regions that resemble more M2-like or “trophic” macrophages. 
Hence, a further refinement of the molecular and functional heterogeneity of TAM is an avenue for 
further research, with a potential impact on the usefulness of these cells as therapeutic targets.
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Introduction

For immunologists, macrophages are best known as central 
players in the innate immune system with an exceptional capacity 
to recognize, engulf and destroy pathogens. For developmental 
biologists however, macrophages are mainly seen as trophic cells 
that are instrumental for tissue remodelling during morphogenetic 
processes. Both functions represent different sides of the same 
coin, and illustrate the plasticity and polyvalency of this cell type. 
During postnatal mammary gland development, macrophages are 
recruited to the terminal end buds (TEBs) where they fulfil a non-
redundant role in mammary ductal outgrowth. Indeed, TEB forma-
tion, their outgrowth in the mammary fat pad and duct branching 
are all impaired in mice lacking functional macrophages (Gouon-
Evans et al., 2000). In recent years, it has become increasingly 
clear that the basic mechanisms behind breast tumor progression 
show similarities to the process of tissue reorganization in the 
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developing mammary gland (Pollard 2009). As a matter of fact, all 
solid tumors can be considered as organ-like structures in which a 
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complex bidirectional interplay exists between transformed and non-
transformed cells, the latter of which contain many macrophages. 
Originally strictly thought of as mediators of anti-tumor immunity, 
macrophages are now also known as potential contributors to 
tumor progression. As such, they can increase the survival and 
proliferative capacity of cancer cells, promote cancer cell motility, 
invasiveness and intravasation, drive angiogenesis, and mediate 
immunosuppression and extracellular matrix reorganization (Man-
tovani et al., 2002; Qian and Pollard 2010). This review mainly 
focuses on recent developments illustrating the heterogeneity of 
tumor-associated macrophages (TAM) at the primary tumor site, 
most studies of which were performed in mouse models of breast 
carcinoma formation and progression.

Clinical relevance of tumor-associated macrophages 
in breast cancer

Studying mechanisms of TAM-mediated tumor promotion in 
mouse models of breast carcinoma should be backed-up by clinical 
data illustrating the importance of this cell type in breast cancer 
patients. Several studies, mainly focussing on large groups of 
invasive ductal breast carcinomas, revealed a significant positive 
correlation between an increased level of macrophage infiltration 
and expression of typical monocyte/macrophage chemoattractants, 
such as CCL2 (also known as MCP-1), CCL5 (also known as RAN-
TES) and CSF-1 (also known as M-CSF), in the tumor (Goede et 
al., 1999; Ueno et al., 2000; Lin et al., 2002). Both cancer cells and 
tumor-infiltrating cells are potential producers of these chemokines 
(Goede et al., 1999). A higher TAM density is typically associated 
with a high vascular density, suggesting an angiogenic activity 
of TAM in human tumors (Leek et al., 1996; Tsutsui et al., 2005). 
VEGF could be a potential mediator of TAM-driven angiogenesis 
as its expression is positively correlated with TAM levels (Tsutsui 
et al., 2005). Of importance, intensive macrophage infiltration is 
associated with known poor prognostic signs such as high tumor 
grade, low estrogen and progesterone receptor status and high 
tumor mitotic activity (Volodko et al., 1998). A similar link between 
the presence of a CSF-1 gene signature in the tumor, CCL2, 
CCL5 or VEGF levels, and other bad prognosticators reinforces 
the conception of TAM as contributors to breast tumor malignancy 
(Beck et al., 2009; Ueno et al., 2000). This is ultimately illustrated 
by a strong relationship between increased macrophage counts 
and reduced relapse-free and overall survival as an independent 
prognostic variable in invasive breast carcinoma patients (Leek et 
al., 1996). Corroborating these data, a recently developed stroma-
derived prognostic predictor - encompassing 163 stroma-expressed 
genes in human breast cancer - positions macrophage-associated 
genes in the poor outcome sample cluster (Finak et al., 2008). 
Overall, these studies provide statistically sound data linking the 
presence of TAM with bad prognosis in breast cancer patients, 
but provide little insight in the molecular mechanisms accounting 
for this phenomenon. 

These significant, but still only correlative data in patients have 
now been supported by experimental evidence using mouse mod-
els. In M-CSF-deficient mice (Csf1op/Csf1op), which lack mature 
macrophages, growth of transplantable tumors is markedly impaired 
(Nowicki et al., 1996). In addition, blocking M-CSF function via an-
tisense oligonucleotides and siRNA, or inhibiting M-CSF receptor 
signaling, significantly suppresses tumor growth (Aharinejad et al., 

2004, Priceman et al., 2010). These studies were performed with 
transplantable tumors, and are hence relatively far from the human 
situation. However, transgenic mouse models such as MMTV-PyMT, 
expressing the polyoma middle T oncogene under control of the 
mouse mammary tumor virus promoter, spontaneously develop 
mammary tumors in stages comparable to the human situation. 
Mammary tumor progression in this MMTV-PyMT model is altered 
in a M-CSF null background, with no effect on tumor growth but 
a delay in the development to invasive, metastatic carcinomas 
(Lin et al., 2001). Of note, transgenic VEGF-A expression in the 
mammary gland restores tumor progression in M-CSF-deficient 
MMTV-PyMT mice, through stimulating tumor angiogenesis, 
leukocyte infiltration and cancer cell invasion (Lin et al., 2007). It 
should be noted however, that the levels of VEGF produced by 
TAM determine whether this protein has pro- or antitumoral activ-
ity. Indeed, TAM might produce very high VEGF levels leading to 
a very dense, but also dysfunctional vessel network. Deletion of 
VEGF specifically in TAM might cause vascular normalization and 
actually accelerate tumor progression (Stockmann et al., 2008). 
Irrespective of the mechanism, these data, obtained in genetically 
modified mice, clearly illustrate a non-redundant role for mono-
cytes/macrophages in tumor progression. Finally, this conclusion 
is reinforced by experiments aimed at depleting TAM from mouse 
mammary tumors. DNA vaccination against legumain, a member 
of the asparaginyl endopeptidase family overexpressed by TAM, 
results in immune elimination of TAM and strongly reduced breast 
tumor growth and metastasis (Luo et al., 2006). Similarly, deple-
tion of TAM in transgenic MMTV-HER-2 mice by an attenuated 
strain of Shigella flexneri, which induces apoptosis specifically in 
macrophages, resulted in a block of tumor growth and even tumor 
regression (Galmbacher et al., 2010).

Macrophage activation states

An important concept in the study of macrophages, including 
TAM, is the remarkable plasticity of these cells. Macrophages 
are implicated in functions as diverse as tissue development and 
homeostasis, wound-healing, inflammation and immunity. To ac-
commodate for this, these cells are able to adopt diverse activation 
states depending on the stimuli they receive. A popular classification 
system for macrophage activation, that has gained considerable 
success over the past years, is the M1/M2 dichotomy. Classically 
activated (or M1) macrophages are induced by Th1 cytokines, such 
as IFN-g and TNF-a, and/or by recognition of pathogen–associ-
ated molecular patterns or endogenous danger signals. This type 
of macrophage is extensively studied and plays a pivotal role in 
propagating inflammation and pathogen clearance. More recently, 
it became clear that macrophage physiology is also significantly 
altered by the prototypical Th2 cytokines IL-4 and IL-13, inducing 
so-called bona fide alternatively activated macrophages or M2 
(Martinez et al., 2009). Hence, the M1/M2 nomenclature reflects 
the status of macrophages functioning during ongoing polarized 
T helper (Th1 versus Th2) responses. In addition, a wide array 
of anti-inflammatory cues, such as IL-10, TGF-b, glucocorticoids, 
immune complexes and apoptotic cells, are known to influence 
the macrophage phenotype leading to different macrophage clas-
sification systems by different authors (Mantovani et al., 2004; 
Mosser et al., 2008; Martinez et al., 2009). A common denominator 
of all these non-M1 macrophages is their ability to dampen Th1 
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cytokine-driven inflammation, to coordinate adaptive immune re-
sponses and to contribute to wound healing. On the other hand, 
IL-4/IL-13-induced M2 are implicated in Th2-driven pathologies, 
such as helminth infections and asthma (Martinez et al., 2009). 
Though the M1/M2 concept provides a useful working scheme, it 
should be realized that any form of classification underscores the 
complexity of the in vivo situation, where macrophages are exposed 
to a mixture of stimuli and will adopt mixed functional profiles. This 
is illustrated by the consensus gene signature for in vivo induced 
M2 in different pathologies, which not only contains genes that are 
strictly IL-4/IL-13-inducible such as E-cadherin (Van den Bossche 
et al., 2009), but equally so genes that are not inducible in vitro by 
any of the known M2 inducing stimuli (Hassanzadeh Ghassabeh 
et al., 2006).

Remarkably, in the human system, M-CSF and GM-CSF are 
used to differentiate more M2-like or M1-like macrophages from 
peripheral blood monocytes, respectively (Puig-Kröger et al., 
2009). M-CSF-generated macrophages do not secrete the pro-
inflammatory cytokines IL-12 and IL-23, but instead produce high 
levels of IL-10. Of note, this type of macrophage might resemble most 
the ‘trophic’, developmental type of macrophage (Pollard 2009). 
Considering the association of a M-CSF response signature with 
worse prognosis in breast carcinoma patients (Beck et al., 2009), 
trophic macrophages might also be present in the breast tumor 
microenvironment and function as important promotors of tumor 
progression. Exemplifying this, the surface markers folate receptor 
b and DC-SIGN are found to be expressed on CD14+CD68+ TAM 
from human breast adenocarcinomas, and are mainly regulated by 
cancer cell-derived M-CSF (Puig-Kröger et al., 2009; Dominguez-
Soto et al., 2011). Cross-linking DC-SIGN on these TAM by cancer 
cells results in increased expression of IL-10, further amplifying the 
anti-inflammatory phenotype of the TAM (Dominguez-Soto et al., 
2011). Interestingly, while M-CSF-stimulated macrophages might 
help cancer growth, GM-CSF treatment of mouse mammary tumors 
inhibits tumor growth and metastasis by invoking an antitumoral 
program in TAM (Eubank et al., 2009). Hence, a picture emerges 
whereby M2-like macrophages are protumoral, and M1-like cells 
exert antitumoral activity.

Tumor-associated macrophage activation states in 
breast cancer

The concept that TAM are mainly M2 activated, or even M2 
‘polarized’, has been around for almost a decade (Mantovani et 
al., 2002), and is corroborated by the expression pattern of at least 
some of the TAM markers. For example, high production of IL-10 
and low production of IL-12 is seen as a hallmark of all non-M1 
macrophages, and is also applicable to most TAM populations in 
different cancer types. Also in breast cancer, high in vivo IL-10 
production has been reported and is linked to reduced immune 
responsiveness (Guiducci et al., 2005; Weigert et al., 2009; Puig-
Kröger et al., 2009). A skewing of the L-arginine metabolism towards 
higher arginase-1-mediated and lower iNOS-mediated L-arginine 
consumption is another typical feature of anti-inflammatory macro-
phages, at least in mice. High arginase enzyme activity has been 
reported in TAM from mouse breast cancer models (Movahedi 
et al., 2010). In addition, TAM from breast tumor-bearing mice 
showed a reduced tumoricidal capacity due to deficient expres-
sion and function of the transcription factors NF-kB and C/EBP, 

resulting in impaired iNOS gene expression and NO production 
(Torroella-Kouri et al., 2005). The predominant M2-like nature of 
breast tumor TAM has recently been supported by gene profiling 
data illustrating an immunoregulatory phenotype for these cells in 
different models (Ojalvo et al., 2009; Pucci et al., 2009; Movahedi 
et al., 2010). However, the picture of TAM being more M2-like is 
definitely not black and white, and TAM have been reported to ex-
press more M1-associated marker genes as well (Van Ginderachter 
et al., 2006a, Movahedi et al., 2010). This is probably linked to the 
existence of distinct TAM subpopulations with specialized functions, 
as will be discussed in the next chapter of this review, cautioning 
against overinterpretation of data based on total TAM populations. 

Several microenvironmental stimuli were shown to influence 
the TAM phenotype in mammary tumors. In MMTV-PyMT tumors, 
IL-4 produced by tumor-infiltrating CD4+ Th2 cells skews the TAM 
into a metastasis-promoting population producing high levels of 
Epidermal Growth Factor (EGF). Consequently, the absence of 
CD4+ T cells or IL-4Ra signalling in PyMT mice results in reduced 
pulmonary metastasis, without any effects on tumor latency, primary 
tumor growth and tumor angiogenesis (DeNardo et al., 2009). Also 
cathepsins, induced by IL-4 in the local tumor microenvironment, 
appear to contribute to the metastasis-promoting phenotype of 
PyMT TAM (Gocheva et al., 2010). The importance of a more M2-
like TAM polarization for tumor growth and metastasis is recently 
further highlighted by the effects of the serum protein histidine-rich 
glycoprotein (HRG). Under normal circumstances, HRG is rapidly 
degraded in the tumor microenvironment, but its forced expression 
switches M2 to M1 through downregulation of placental growth fac-
tor (PlGF). This event promotes antitumor immune responses and 
vessel normalization, thereby preventing metastasis and enhancing 
the effect of chemotherapy (Rolny et al., 2011).

Besides an interaction with tumor-infiltrating lymphocytes, TAM 
are expected to crosstalk with cancer cells. M-CSF is often produced 
by breast cancer cells and, as mentioned earlier, is able to regulate 
the expression of functionally important TAM markers such as folate 
receptor b, DC-SIGN and EGF (Goswami et al., 2005; Puig-Kröger 
et al., 2009; Dominguez-Soto et al., 2011). In accordance with a role 
for M-CSF, the Ets2 transcription factor, which is a direct effector 
of M-CSF signalling pathways, drives a transcriptional program in 
PyMT breast tumor TAM that promotes lung metastases formation 
(Zabuawala et al., 2010). Mechanistically, Ets2 represses a gene 
program that includes several inhibitors of angiogenesis, thus its 
ablation leads to decreased angiogenesis and decreased tumor 
growth. Besides M-CSF, human breast cancer cells secrete high 
amounts of Heat shock protein 27 (Hsp27), which accumulates to 
extremely elevated levels in the tumor interstitial fluid (Banerjee 
et al., 2011). Hsp27 causes the differentiation of monocytes to 
macrophages with an immune-tolerizing phenotype in vitro, and 
this type of macrophage is also found in human breast tumors. 
Hsp27-differentiated macrophages induce unresponsiveness in T 
cells and are strongly proangiogenic (Banerjee et al., 2011). In ad-
dition, dying cancer cells secrete sphingosine-1-phosphate (S1P) 
and TGF-b that polarize macrophages towards an anti-inflammatory 
phenotype (Herr et al., 2009; Weigert et al., 2009). A knockdown 
of sphingosine kinase 2, the enzyme responsible for S1P produc-
tion, in human MCF-7 breast cancer cells strongly impairs tumor 
xenograft growth associated with a deficiency in anti-inflammatory 
TAM generation (Weigert et al., 2009). Interestingly, S1P and 
TGF-b induce HIF-1 activity, which has been shown to contribute 
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to protumoral TAM functions (Herr et al., 2009). Indeed, myeloid 
cell-specific HIF-1a deletion in the MMTV-PyMT background does 
not affect VEGF levels or vascularization, but reduces iNOS and 
arginase-1 expression in TAM, resulting in the loss of T-cell sup-
pressive capacity (Doedens et al., 2010). Fra-1, a member of the 
AP-1 family of transcription factors, is also overexpressed in TAM 
from mouse breast tumors and appears to be important for the 
release of proangiogenic factors and the induction of 4T1 migration 
and invasion (Luo et al., 2009). As a matter of fact, Fra-1 functions 
upstream of the well-known protumoral transcription factor STAT3 
by stimulating IL-6 production, which in turn activates STAT3 (Luo 
et al., 2009). Hence, an entire transcriptional network governed 
by several transcription factors seems to be at work to skew mac-
rophages at the tumor site into a protumoral phenotype. It should 
be realized however that the early skewing towards typical TAM 
functions, such as proangiogenic activity, already takes place at 
the earlier stages of myelomonocytic differentiation in the blood 
and bone marrow of tumor bearers, under the influence of cancer 
cell secreted factors such as VEGF, CXCL12 and PlGF (Hiratsuka 
et al., 2011; Laurent et al., 2011). 

Finally, TAM from mouse breast tumors employ different mecha-
nisms to alter the behaviour of cancer cells. Through the secretion 
of TNF-a, TAM induce NF-kB and JNK activity in breast cancer cells 
resulting in enhanced invasiveness (Hagemann et al., 2005). The 
mitogen Gas6 on the other hand increases cancer cell proliferation, 
and is strongly induced in tumor-conditioned macrophages (Loges et 
al., 2010). In addition, the interaction between invasive cancer cells 
and the extracellular matrix is facilitated by macrophage-derived 
SPARC, also known as osteonectin (Sangaletti et al., 2008). An 
overview of the mechanisms involved in the bidirectional interac-

tion between breast tumor TAM and their environment, including 
cancer cells and T cells, is represented in Fig. 1.

Heterogeneity of tumor-associated macrophages in 
established breast tumors

Breast tumors are not only populated by tumor-associated mac-
rophages, but also by other members of the mononuclear phago-
cyte system, including dendritric cells (TADC), Tie-2-expressing 
monocytes (TEM) and Myeloid-derived suppressor cells (MDSC). 
TEM elimination in vivo results in severely reduced tumor neo-
vascularization, suggesting that these cells play a non-redundant 
proangiogenic role in tumors (De Palma et al., 2005). MDSC is a 
definition describing a function rather than a lineage of myeloid 
cells, and encompasses immature CD11b+Ly6ChiLy6Gneg monocytic 
(MO-MDSC) and CD11b+Ly6CintLy6Ghi granulocytic (PMN-MDSC) 
cells with a common immunosuppressive capacity, albeit through 
different mechanisms (Van Ginderachter et al., 2006b, Movahedi 
et al., 2008). Distinguishing these different myeloid cell types 
in tumors is not always trivial, as they are highly related, often 
express similar markers and are in some cases able to perform 
similar functions. Even within the TAM compartment, the existence 
of different TAM populations with different functions according to 
their presence in different regions of the tumor – areas of inva-
sion, the stroma, perivascular areas, avascular and perinecrotic 
areas – has been predicted. In recent years, real-life images of 
different tumor microenvironments were produced and cancer cell/
stromal cell dynamics were visualized in real-time (Wyckoff et al., 
2007, Egeblad et al., 2008, Kedrin et al., 2008). In mouse mam-
mary tumors, macrophages are present in large numbers at the 
margins of the tumor and then decreasingly deeper in the tumors, 
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Fig. 1. Bidirectional interaction between tumor-associated macrophages from breast carcinomas and cells in their environment, including 
cancer cells and T cells. Distinct mediators secreted by breast cancer cells and tumor-infiltrating lymphocytes instruct a tumor-promoting phenotype 
on the resident macrophages, including metastasis-promoting, angiogenic, anti-inflammatory and immune suppressive functions. Several signalling 
pathways and transcription factors are implicated in this phenomenon. Vice versa, tumor associated macrophages (TAM) secrete a number of factors 
with a direct impact on cancer cell proliferation and invasiveness.
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where many were found in association with blood vessels either 
as single cells or in clusters (Wyckoff et al., 2007). The presence 
of TAM near blood vessels is of great importance for the course 
of the disease, as these TAM attract cancer cells and move with 
them in a directed fashion, resulting in the extravasation of cancer 
cells only in the neighbourhood of such macrophages. As a matter 
of fact, the density of such tripartite interactions between invasive 
cancer cells, macrophages and endothelial cells (also called the 
tumor microenvironment of metastasis or TMEM) is able to predict 
the presence of distant metastases in breast cancer patients (Rob-
inson et al., 2009). Mechanistically, the coordinated movement of 
cancer cells and perivascular macrophages can be explained by 
a paracrine positive feedback loop, whereby M-CSF produced by 
cancer cells and EGF produced by perivascular TAM are instrumen-
tal for cell migration and invasion (Wyckoff et al., 2007, Goswami 
et al., 2005). Triggering of this loop can occur under the influence 
of growth factors such as heregulin-b1 and CXCL12 (Hernandez 
et al., 2009). Movement of cancer cells in the neighbourhood of 
blood vessels has also been observed in a study using cancer 
cells that express the photoswitchable protein Dendra2 (Kedrin 
et al., 2008). Regions in different tumor microenvironments of the 
same orthotopically grown tumor were photoswitched and cancer 
cell motility was followed using intravital microscopy through a 
mammary imaging window. While there was little migration in 
avascular regions, photoswitched cells were more mobile in a 
vascular microenvironment containing perivascular macrophages. 
In the latter regions, cancer cells infiltrated larger areas and lined 
up along blood vessels, illustrating the existence of at least two 
distinct microenvironments within the same tumor. Along the same 
line, Egeblad et al., (2008) showed migratory behaviour of M-CSFR+ 
myeloid cells at the tumor-stroma borders, but not within the tumor 
mass, using spinning disk confocal microscopy on mouse mam-
mary tumors. These authors also identified other markers with 
the ability to discriminate between migratory and sessile cells. 
Non-migratory cells present within the tumor mass were mostly 
CD68+ CD206neg and did not ingest intravenously injected dextran 
(dextranneg). Cells at the tumor-stroma border could be distinguished 

as migratory CD68+ MMR/CD206neg dextranneg myeloid 
cells and sessile CD68+ CD206+ dextran+ M2-type 
TAM, altogether clearly illustrating the existence of 
distinct macrophage types in breast tumors. In agree-
ment with these data, a recent study employed CD206 
and MHC II expression to discriminate between two 
TAM subpopulations in orthotopically grown mouse 
breast tumors (Movahedi et al., 2010). Interestingly, 
MHC IIhigh TAM are excluded from hypoxic avascular 
areas (hence more perivascular), are CD206neg and 
in general more M1-oriented, while hypoxic MHC IIlow 
TAM express higher levels of CD206 and other M2-
associated markers. At the functional level, the MHC 
IIlow CD206+ hypoxic TAM were more proangiogenic. 
Though clinical data on TAM heterogeneity in human 
breast tumors are almost non-existing, one study hints 
to this possibility. In breast carcinoma patients, expres-
sion of thymidine phosphorylase (TP) in TAM provided 
an independent prognostic value, with macrophage 
TP+ tumors having a significantly worse prognosis (Toi 
et al., 1999). Even patients having an extensive ac-
cumulation of CD68+ TAM could be categorized in two 
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Fig. 2. Tumor-associated macrophage (TAM) heterogeneity in breast carcinoma 
tumors. Scheme summarizing observations by several independent research groups, 
hinting to the existence of distinct TAM subsets, which are localized in different tumor 
compartments, exhibit a different molecular profile and exert specialized functions.

subgroups with strikingly different diagnoses: a good prognostic 
macrophage TPneg group and a poor prognostic macrophage TPpos 
group. These data suggest the existence of both antitumor and 
protumor TAM types in human breast carcinomas, whereby their 
balance possibly influences outcome of the disease. 

The existence of TAM subpopulations has obvious conse-
quences for the interpretation of existing gene expression data 
sets of these cells. For example, a high-density gene expres-
sion analysis of TAM from PyMT tumors was performed on the 
M-CSFR+F4/80+Gr-1negdextran+ TAM population, but not on M-
CSFR+F4/80+Gr-1negdextranneg tumor-associated cells, though these 
cells are most likely also TAM (Ojalvo et al., 2009). Hence, the 
conclusion that PyMT TAM express higher levels of genes related 
to immune suppression, development and angiogenesis is only 
true for the TAM subpopulation studied. The fact that conclusions 
for one TAM population can not be extrapolated to another one is 
exemplified by follow-up work from the same lab, comparing the 
dextran+ TAM to the TAM population comigrating with cancer cells 
in an in vivo migration assay (Ojalvo et al., 2010). The latter are 
probably similar to the perivascular TAM in the imaging study by 
Wyckoff et al., (2007), and the CD68+ CD206neg dextranneg TAM in 
the imaging study by Egeblad et al., (2008). Surprisingly enough, 
these TAM populations were very different at the gene expression 
level. Of interest, the dextran+ TAM expressed elevated levels of 
nearly all genes belonging to a consensus gene signature for in 
vivo-induced M2-like macrophages, including CD206 (Hassanzadeh 
Ghassabeh et al., 2006). In that respect, these cells resemble the 
MHC IIlow CD206+ M2-like TAM subpopulations from orthotopically 
grown mammary tumors, while the MHC IIhigh CD206neg M1-like TAM 
from these tumors might be similar to the migratory/perivascular 
TAM (Movahedi et al., 2010). Overall, the existence of following 
two TAM subpopulations seems consistent throughout several 
independent studies by different researchers: (i) M-CSFR+Gr-
1negDextrannegCD206negMHC IIhigh perivascular TAM that can be 
co-opted by cancer cells to migrate and are generally less M2-
oriented; and (ii) sessile M-CSFR+Gr-1negDextran+CD206+MHC IIlow 
TAM found at tumor-stroma borders and/or hypoxic regions that 
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resemble more M2-like or “trophic” macrophages (Fig. 2).

Concluding remarks

For many years, the development of cancer therapeutics was 
mainly a search for ways to interfere with cancer cell-intrinsic 
characteristics. However, evidence in breast carcinoma patients 
and experimental mouse mammary tumor models make a strong 
case for the implication of TAM in regulating tumor progression and 
metastasis. Hence, significant efforts have been made to better 
characterize this “other half of the tumor”, and data are available 
to proclaim TAM as potential targets for therapeutic intervention. 

In order to develop novel strategies for TAM-directed anticancer 
therapies, several ongoing research lines will be important. These 
include the determination of TAM molecular signatures, using –
omics approaches, which might yield novel targets for intervention. 
In addition, the better characterization of distinct TAM subsets, 
residing in different tumor regions and performing specialized 
functions, promises to gain better insights in fundamental TAM/
cancer cell crosstalk and might provide the opportunity to specifi-
cally target the most protumoral TAM. Finally, it might well be that 
diverse tumor-associated host cells (such as myofibroblasts) will 
fall into a diversity of functional subtypes like it was found for TAM.
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