Formation of a functional morphogen gradient by a passive process in tissue from the early Xenopus embryo

NATASHA MCDOWELL1, JOHN B. GURDON*,1 and DAVID J. GRAINGER2

1Wellcome/CRC Institute of Cancer and Developmental Biology, Cambridge and Department of Zoology, University of Cambridge, England and 2Department of Medicine, Addenbrooke’s Hospital, Cambridge, England

ABSTRACT In early development much of the cellular diversity and pattern formation of the embryo is believed to be set up by morphogens. However, for many morphogens, including members of the TGF-β superfamily, the mechanism(s) by which they reach distant cells is unknown. We have used immunofluorescence to detect, at single cell resolution, a morphogen gradient formed across vertebrate tissue. The TGF-β ligand is distributed in a gradient visible up to 7 cell diameters (about 150-200 μm) from its source, and is detectable only in the extracellular space. This morphogen gradient is functional, since we demonstrate activation of a high response gene (Xeomes) and a low-response gene (Xbra) at different distances from the TGF-β source. Expression of the high affinity type II TGF-β receptor is necessary for detection of the gradient, but the shape of the gradient formed only depends in part on the spatial variation in the amount of receptor. Finally, we demonstrate that the molecular processes that participate in forming this functional morphogen gradient are temperature independent, since the gradient forms to a similar extent whether the cells are maintained at 4°C or 23°C. In contrast, TGF-β1 internalisation by cells of the Xenopus embryo is a temperature-dependent process. Our results thus suggest that neither vesicular transcytosis nor other active processes contribute to a significant extent to the formation of the morphogen gradient we observe. We conclude that, in the model system used here, a functional morphogen gradient can be formed within a few hours by a mechanism of passive diffusion.

KEY WORDS: Xenopus, morphogen, TGF-β, passive diffusion.

Introduction

Across a range of species much of embryonic development appears to be dependent upon signals that act at a distance from their source. Many of these signals are thought to be morphogens, secreted molecules that form extracellular concentration gradients across tissue (for review see Neumann and Cohen, 1997). At any given position in the gradient, the cellular response is dependent upon the morphogen concentration at that position. A morphogen can thus induce a diversity of cell types in defined spatial relationships to one another and therefore contribute to the positional information required to pattern the embryo (Wolpert, 1969).

In vertebrates such as the frog, Xenopus laevis, much work on morphogens has focused on how members of the TGF-β superfamily, including activin, can act as morphogens in the induction of the mesoderm (for review see McDowell and Gurdon, 1999). This is the middle germ layer of the embryo and later gives rise to a range of tissue types including notochord, muscle and blood. In tissue of the early embryo, such ligands have been shown to induce, at a distance of up to a few hundred μm, mesodermal response genes in a concentration-dependent manner (Gurdon et al., 1994). Furthermore, use of dominant inhibitory receptors to eliminate signalling in response to TGF-β superfamily members has suggested that these molecules have an in vivo role in early development (Hemmati-Brivanlou et al., 1992; Dyson and Gurdon, 1997).

The mechanism by which members of the TGF-β superfamily reach distant cells nonetheless remains unclear. Much of the work investigating the movement of morphogens through tissue has concentrated on ligand movement in the polarised single cell sheets of the Drosophila embryonic epidermis and wing epithelium. For example, it is thought that Wingless (Wg), the Drosophila Wnt homologue, spreads to cells distant in the wing disc by vesicular transcytosis (for review see Pfeiffer et al., 1999). This has
been identified as a mechanism of transcellular transport within the plane of the epithelium (as opposed to transport along the baso-apical axis) that is ATP-dependent and involves both endo- and exocytosis (Pfeiffer et al., 1999).

The first indication that Wg spreads from its source by vesicular transcytosis came from observations that Wg protein is localized to vesicular structures within the responding cells (van den Heuvel et al., 1989; Gonzalez et al., 1991). However, more recent observations that a mutation in shibire, the Drosophila homologue of the GTPase dynamin that is required for clathrin-coated vesicle formation, reduces the range of Wg protein distribution provides direct evidence for a role of vesicular transcytosis in Wg movement (Bejsovec et al., 1995; Moline et al., 1999). Other genetic experiments have led to the proposal that a class of Wg receptor exists that is solely responsible for transcytosing the Wg protein (Hays et al., 1997). Similar data has also been obtained for another morphogen Hedgehog (Hh). Immunofluorescence has located Hh in a punctate distribution in the wing disc (Tabata et al., 1994; Bellaiche et al., 1998) which is thought to reflect the localization of Patched, a Hh receptor and binding protein, to intracellular vesicles (Bellaiche et al., 1998).

In contrast, elucidation of the mechanism of passage of Dpp, a TGF-β superfamily member, has been hampered by the lack of an immunofluorescence detection method sufficiently sensitive to detect Dpp in the responding cells: an antibody against Dpp was able to detect the protein only in those cells in which it is synthesized (Lecuit and Cohen, 1998). Although the functional range of Dpp activity has recently been shown to be reduced in endocytosis-defective Drosophila wing-discs, the inability to detect the ligand...
makes it unclear whether endocytosis is required for Dpp signalling, transport or in receptor recycling (Gonzalez-Gaitan and Jackle, 1999).

In vertebrate embryos much less information is available on how molecules can reach distant cells. Probably the most data has been accumulated for molecules of the TGF-β superfamily in the Xenopus embryo. For example, it has been shown that activin, as well as other TGF-β family members, can act directly on distant cells and that the release of other additional secreted signalling molecules is not required for their long-range signalling (McDowell et al., 1997). In 1996, Reilly and Melton proposed that movement of TGF-β family members through embryonic tissue may occur by a cell-to-cell relay of the same signal, where each cell along the gradient would induce production of TGF-β family members by its immediate neighbours. However, more recent data established that such a relay mechanism is unlikely to contribute to ligand spread across tissue (Jones et al., 1996; McDowell et al., 1997) since, for example, the long-range signal can pass through layers of cells unable to respond to the morphogen, and the discrepancies between the conclusions were accounted for (McDowell et al., 1997). In addition, the observation of 35S-labelled activin molecules in cells distant from an implanted bead source also demonstrates that long-range signalling by activin does not necessitate a mechanism of relay (McDowell et al., 1997). However, although the 35S-labelled activin formed a concentration gradient across the tissue, the path-length of the 35S nuclear decay made it impossible to determine whether the ligand was intra- or extracellularly located. Hence, it is not known whether members of the TGF-β superfamily diffuse in the extracellular environment between cells or move through cells by vesicular transcytosis in the vertebrate embryo.

It has long been debated whether extracellular diffusion would be possible in the solid tissue of the Xenopus embryo. Kalt (1971) noted that the cells of the Xenopus embryo are tightly packed. Furthermore, one of the main arguments against diffusion is that there are too many molecules in the extracellular milieu with which a ligand might interact. For example, computer simulations have been used to propose that TGF-β diffusion would be dramatically hindered by the presence of its high affinity signalling receptors (Kersberg and Wolpert, 1998). In addition, the TGF-β family members bind proteoglycans, such as betaglycan (Lopez-Casillas et al., 1991): any interaction between these and other binding proteins (Yamaguchi et al., 1990) has also been proposed to limit the ability of TGF-β-related molecules to spread by passive diffusion in the extracellular environment (Reilly and Melton, 1996).

Technical difficulties currently preclude a definitive resolution of this debate. Localization of the morphogen, using antibodies, has so far failed to detect a functional morphogen gradient in vertebrate tissue. In addition, mutagenesis is not presently possible in Xenopus, preventing the use of the powerful experimental strategies that have begun to delineate the pathways involved in ligand distribution in Drosophila. In our study we have utilised a model system, involving the diffusion of TGF-β1 from a bead into animal cap tissue of the early Xenopus embryo, in order to exploit the exceptional sensitivity of an optimised immunofluorescence procedure for the detection of TGF-β1 protein (Mosedale et al., 1996). In this way we have directly visualised a functional morphogen gradient of TGF-β1 in a solid tissue that appears unpolarized with respect to either the direction or rate of signalling (McDowell et al., 1997). We have also investigated whether the molecular processes that contribute to the formation of this functional morphogen gradient are temperature dependent, and therefore active processes, as a first step to determining whether a gradient can be set up by passive diffusion or whether vesicular transcytosis is necessary for ligand movement across early embryonic tissue. In the absence of mutants in vesicular transport (such as the shibire mutant in Drosophila) and highly specific chemical inhibitors of endocytosis, the temperature dependence of morphogen gradient formation is likely to provide a useful tool to discriminate between the two models of ligand transport in the vertebrate embryo.

Results

A TGF-β ligand gradient

Animal cap cells from stage 8 Xenopus embryos do not contain the type II TGF-β receptor (TGF-βIIR) and cannot respond the TGF-β isoform. However, following injection of mRNA encoding TGF-βIIR, these ligands will induce mesodermal response genes in a manner analogous to endogenous mesoderm inducers (Bhushan et al., 1994; Reilly and Melton, 1996; McDowell et al., 1997). Conjugates were prepared as previously described (Gurdon et al., 1994; McDowell et al., 1997), in which TGF-β1 or TGF-β2 protein-loaded beads are sandwiched within either wild-type animal cap tissue or within tissue that had been previously injected with TGF-βIIR mRNA. In order to optimise antigen preservation, such conjugates were shock frozen without fixation and cryostat sectioned. We then employed a highly sensitive immunofluorescence procedure that has been optimized to quantitatively detect low concentrations of TGF-β (Grainger et al., 1995a; Mosedale et al., 1996). This protocol has been shown to increase specific staining up to fivefold over typical published protocols. A range of antibodies against TGF-β1 and TGF-β2 were tested; however, only
We found that the FITC fluorescence due to TGF-β1 (Fig. 1A) and TRITC fluorescence due to TGF-βIIR (Fig. 1B) directly overlap. This co-localization was confirmed when the sections were viewed using confocal microscopy (TGF-β1 staining Fig. 1C; TGF-βIIR staining Fig. 1D). When these channels are superimposed (Fig. 1E) yellow is seen indicating co-localization of green (TGF-β1) and red (TGF-βIIR).

When animal caps, injected with TGF-βIIR mRNA as above, are sandwiched around control beads loaded with BSA but no TGF-β1 (blue arrowheads), no gradient fluorescence signal following staining for TGF-β1 was ever observed (Fig. 1 F,L; Fig. 1G shows the localization of TGF-βIIR in the section shown in 1F). Hence when the confocal images of TGF-β1 staining and TGF-βIIR staining (shown in Fig. 1 F,G) from a control conjugate are superimposed, no yellow colour (indicative of TGF-β1 co-localized with the TGF-βIIR) is seen (Fig. 1H). A small amount of antibody-specific staining with the anti-TGF-β1 was detected within the nuclei (verified by Hoechst labelling, data not shown). This nuclear staining was present to the same extent (assessed by quantitative immunofluorescence analysis) in the BSA-treated control samples (Fig. 1 F,L) as in conjugates containing TGF-β1 beads (Fig. 1C). Staining of the nuclei with this antibody may be due either to non-specific binding of this primary antibody (but not any of the others used in this study) to the nuclei or, more likely, to specific binding of the antibody to a TGF-β1-like antigen that is constitutively present in the nuclei of animal cap cells of the early Xenopus embryo. The background fluorescence observed in tissue containing both ligand and receptor, but stained in the absence of the anti-TGF-β1 primary antibody (shown in Fig. 1J) was negligible. The background fluorescence in an equivalent control for TGF-βIIR (i.e. lacking the anti-TGF-βIIR primary antibody) was also negligible (data not shown). Note that all of the antibodies used in this study bind non-specifically to the beads (Fig. 1 A,B,F,G,I,K); however, the fluorescence from the bead does not influence the fluorescence detected from the nearby tissue (assessed by comparison of tissue fluorescence near beads which were either retained or lost from the section during sample preparation). Such bead fluorescence was excluded from all analysis.

When the analysis was repeated using wild-type animal caps (which were not injected with TGF-βIIR mRNA), no TGF-β1 gradient was detected with either TGF-β1 loaded beads (Fig. 1k) or control beads. It has previously been shown that the related molecule TGFβ2 can pass across tissue lacking TGF-βIIR. We therefore conclude that the presence of the high affinity receptor sites is required to concentrate the ligand and thus allow visualisation of the gradient by the method we are using, rather than being necessary to enable the ligand to diffuse.

Receptor distribution is not the sole determinant of gradient shape

In many of the sections analysed, the TGF-β1 gradient was found to be patchy across the tissue (as in Figs. 1A and 2A), an observation that was unexpected. However, double-labelling for TGF-βIIR indicates that the expression of TGF-βIIR is also highly mosaic across the tissue (Figs. 1B and 2B). It is known that injection of mRNA results in mosaic expression of the corresponding protein. Hence, if the presence of TGF-βIIR is necessary to enable detection of the ligand, then the patchy fluorescence due to TGF-β1 can be accounted for by the mosaicism of receptor expression. We therefore investigated whether the shapes of the TGF-β1 gradients that we observe were due only to the mosaicism of receptor distribution. Since the immunofluorescence protocol used here has previously been shown to yield a linear
relationship between antigen concentration and fluorescence, we were able to divide the fluorescence due to the ligand (Fig. 2A) by the fluorescence due to the receptor (Fig. 2B), in order to obtain an estimate of the ligand concentration corrected for variations in the TGF-β1IR concentration (Fig. 2C). After correction for TGF-β1IR levels, a gradient of TGF-β1 can still be observed (Fig. 2C). We conclude that, while the high affinity TGF-β1IR sites may be involved in the formation and/or detection of the gradient, the receptor distribution is not the sole determinant of the shape of the gradient.

The TGF-β1 gradient is functional as a morphogen gradient

The above results indicate that TGF-β1 forms a concentration gradient as it moves away from a localized, exogenous source. However, since the experimental system used is a model system, it is important to show that under the conditions of our experiments this model gradient can act as a functional morphogen gradient. The concentration of TGF-β1IR mRNA we injected was the same as that previously documented to transduce the TGF-β signal and induce mesodermal gene response in Xenopus cells (Bhushan et al., 1994; McDowell et al., 1997), indicating that such a concentration of TGF-β1IR mRNA can provide a physiologically normal response. To provide the ligand source, we have used beads incubated in 100 mM solution of TGF-β1. Although this is a non-physiological concentration, it is important to note that we do not know what fraction of TGF-β1 actually loads onto the beads. Furthermore, previous work has indicated that only 5% of the ligand that actually loads onto the beads is released from the bead into the tissue (McDowell et al., Curr. Biol. 1997). However, in order to ascertain that the concentration range of TGF-β1 in the tissue is physiologically, we analysed gene expression response in the vicinity of the gradient. In order to describe a molecule as a morphogen it must be shown that it can elicit at least two gene responses, in addition to the nil response, from the responding cells (Gurdon et al., 1998). We found that TGF-β1 can activate, in a manner similar to activin, the high response gene Xeomesodermin (Xeomes) (Ryan et al., 1996) in a ring close to the bead (Fig. 2D), while Xbra (Xbra) (Smith et al., 1991) a low response gene, is turned on further away from the bead (Fig 2E). As would be expected from the mosaic pattern of receptor expression (and ligand localization), the gene expression response is also somewhat patchy. In addition, TGF-β1 seems to be a weaker inducer of mesoderm than activin, as both gene expression responses appear closer to the ligand source than is the case for activin (Gurdon et al., 1994). Nonetheless, in cells containing TGF-β1IR it is clear that the TGF-β1 gradient we are observing is physiologically relevant and that TGF-β1 can act as a morphogen in a manner similar to activin under our experimental conditions.

Formation of the TGF-β1 gradient is independent of temperature

The observation of a gradient of TGF-β1 in tissue distant from its source raises the question of the mechanism by which the ligand has reached those distant cells. If the mechanism involved transcellular transport, such as via vesicular transcytosis, ligand might be detected within the cells, possibly in a punctate staining pattern typical of vesicles as has previously been described for Wg and Hh in Drosophila (van den Heuvel et al., 1989; Gonzalez et al., 1991; Tabata and Kornberg, 1994; Bellaiche et al., 1998; Cardigan et al., 1998). We never observe the fluorescence due to TGF-β1 staining in a punctate pattern within the cells. This suggests that the TGF-β1 is not localized to intracellular vesicles, at least at high concentration. However, we cannot rule out that TGF-β1 is present in vesicles, but below our level of detection. We therefore adopted an alternative approach to distinguish extracellular diffusion from active transcytosis: diffusion is a passive process and hence relatively temperature independent (Burshtein, 1996), while transcytosis is an active, energy-requiring process which should be highly sensitive to variations in temperature (Koenig and Edwardson, 1997).

It has been shown that low temperature (such as 4°C) is sufficient to almost eliminate ligand-receptor internalization in mammalian cells (Koenig and Edwardson, 1997). If the same is true for Xenopus cells then a gradient established by transcytosis, which requires internalization, would not be formed across tissue kept at 4°C. Alternatively, if diffusion is responsible for the spread of the ligand, then a gradient should still form at 4°C. Firstly, we therefore needed to investigate whether the rate of TGF-β1 internalization by cells from the stage 8 Xenopus embryo is reduced at low temperature. Washing cells at a low pH can remove proteins bound to the cell surface whilst not releasing cytoplasmic proteins (Koenig and Edwardson, 1997; Dyson and Gurdon, 1998), thus allowing internalised ligand to be distinguished from ligand bound at the surface. For example, Massague and Kelly (1986) were able to remove approximately 90% of the 125I-TGF-β1 bound to the surface of mammalian cells at 4°C by treatment with acidic medium, suggesting the majority of the ligand had not been internalised. In contrast, at 37°C the majority of the label could not be washed off with acidic medium suggesting internalisation had occurred. We therefore used this technique to examine TGF-β1 internalisation by amphibian cells. We bound 125I-TGF-β1 to cells from stage 8 animal caps and then compared the amount of 125I-TGF-β1 that could be removed by a low pH wash at 4°C to that which could be removed by low pH at 23°C (the binding, internalization and washing steps were all performed at either 4°C or 23°C; see Materials and Methods). If more 125I-TGF-β1 is removed by washing with low pH at 4°C than at 23°C, this would indicate that the difference is due to ligand internalization occurring at 23°C. From Fig. 3A it can be seen that the acid-resistant (and therefore internalized) 125I-TGF-β1 associated with the cells is significantly reduced (p=0.0092) when the cells are kept at 4°C as opposed to 23°C. These results are consistent with the report of Massague and Kelly (1986) indicating that TGF-β ligand internalisation is temperature-sensitive. However, consistent with the observations of Dyson and Gurdon (1998), who found little internalisation of the related protein activin in amphibian cells, we found less internalisation of TGF-β1 by cells from the Xenopus embryo than by the mammalian cells lines examined previously.

As we do not know what happens to the ligand that is internalized, we cannot use the above data as support either for or against transcytosis. For example, the internalized TGF-β1 may be directed towards lysosomes for degradation. However, since we have shown that low temperature significantly decreases (by about 50%) the rate of TGF-β1 ligand internalization, we can ask whether the spread of the gradient is also decreased by a similar amount following a reduction in temperature. For example, if a reduction in gradient spread were to be seen at 4°C then it would suggest that the ligand that is internalized at 23°C is actually involved in ligand movement and hence we could conclude that the gradient is likely to be formed by a mechanism of transcytosis.
Fig. 4. In contrast to TGF-β1 internalization, the extent of the gradient is not significantly reduced at 4°C. Conjugates were prepared and cultured for 3 h at either 4°C or 23°C (green arrowheads indicates TGF-β1 bead spaces; blue arrowheads indicate BSA bead). (A) In tissue injected with 4 ng TGF-βIIR mRNA and cultured at 4°C, FITC fluorescence due to TGF-β1 can be observed at a distance from the beads. (B) The localization of TGF-βIIR protein in the section shown in (A). (C) The extent of the gradient when tissue containing TGF-βIIR and TGF-β1 is cultured at 23°C (D) Image showing the localization of TGF-βIIR protein in the section shown in (C). (E) High magnification image of the section shown in (A). A few random specks of fluorescence can be seen both on the tissue and in the bead space (indicated by the red arrowhead); as these also occur on the surrounding slide it is likely that they are artefacts. (F) High magnification image of the section shown in (B). (G) No fluorescence due to TGF-β1 is seen when tissue containing a BSA bead (blue arrowhead) and TGF-βIIR is cultured at 4°C. (H) The localization of TGF-βIIR in the section shown in (G).

Alternatively, if no reduction in the spread of the gradient were to be seen at 4°C, then it would suggest that the ligand internalized at 23°C does not significantly contribute to gradient formation and instead suggest that the gradient is formed by ligand diffusion in the extracellular milieu.

Conjugates were therefore incubated at either 4°C or 23°C, then sectioned and double-labelled with anti-TGF-β1 and anti-TGF-βIIR as before. To show that Xenopus tissue kept at 4°C is still viable, some conjugates were returned to 23°C after three hours at 4°C, cultured for a further two hours to allow gene expression to occur then fixed and analysed for Xeomes and Xbra expression at stage 10.5. The expression of Xeomes in such conjugates (Fig. 3B) is similar to that observed in conjugates cultured continuously at 23°C (compare Fig. 2D). Equivalent data (not shown) was obtained for Xbra expression. In addition, the embryos transiently incubated at 4°C underwent the elongation movements associated with gastrulation (data not shown). It would therefore appear that culture at 4°C does not adversely effect on the tissue.

In the conjugates cultured at 4°C and then analysed by immunofluorescence, the concentration of receptor present generally appears weaker than in conjugates cultured at 23°C, probably because cells kept at 4°C are limited in their ability to translocate the injected TGF-βIIR mRNA. The cells are also slightly larger when conjugates are kept at 4°C, presumably because they have undergone less rounds of cell division at the lower temperature. Nevertheless, a gradient of TGF-β1 ligand can still be observed after 3 hours of culture at 4°C (Fig. 4A and at high magnification in E). Fig. 4B,F shows the localization of TGF-βIIR in same section. As expected, in conjugates containing control beads without TGF-β1 and cultured at 4°C, no fluorescence due to TGF-β1 is observed (Fig. 4G), although TGF-βIIR is still detected (Fig. 4H).

Importantly, in the conjugates containing beads loaded with TGF-β1, the distance to which the ligand has spread across the tissue is similar in conjugates cultured at 4°C to those cultured at 23°C (compare Fig. 4A to Fig. 4C and 1A; Fig. 4D shows the localization of TGF-βIIR in the section analysed in 4C). A similar result was observed in 4 other samples. Hence, in contrast to ligand internalization, the extent of the gradient formed is not significantly reduced at 4°C. This suggests that whatever processes are involved in movement of the TGF-β1 molecules to sites distant from the exogenous source, they are not active, energy requiring processes such as vesicular transcytosis which requires ligand internalisation. The best candidate mechanism to establish such a concentration gradient in a temperature-independent manner is passive diffusion through the extracellular milieu.

Discussion

We have used a high sensitivity immunofluorescence technique to visualize a model gradient of TGF-β1 in the solid tissue of the early Xenopus embryo. To our knowledge, our detection of this gradient is the first visualization of a morphogen gradient across vertebrate tissue at a subcellular resolution. The gradients we observe can extend a substantial distance (150 µm-200 µm) from their source in only three hours of culture and are functional since mesodermal response genes are induced in their vicinity.
In order to visualise a morphogen gradient, however, it has been necessary to resort to a model system using a ligand/receptor complex that is not endogenous to the cells of the early *Xenopus* embryo. The use of a model system such as this has both advantages and disadvantages. On the positive side, we were able to utilise a well-validated, high sensitivity detection method that has been used extensively to look at TGF-β1 in mammalian systems (Grainger et al., 1995a; Grainger et al., 1995b; Mosedale et al., 1996; Lawn et al., 1996; Reckless et al., 1997; Grainger et al., 1998). To date, we have been unsuccessful in our attempts to detect activin (which has been extensively studied in Xenopus embryos) either as an endogenous gradient in the embryo, or in a similar model system using activin-loaded beads. Several factors may account for this failure: firstly, there are relatively few antibodies available for activin and none of these may be of sufficient affinity. Secondly, although present in wild-type tissue, the activin receptor cannot be over-expressed to the same levels as TGF-βIIIR, possibly because activin is a more powerful mesoderm inducer than the TGF-βs. Injection of greater than 2 ng ActRIIB mRNA is toxic to the embryo, while our experiments were performed with 4 ng of TGF-βIIIR mRNA. Since we demonstrated that no TGF-β1 gradient was detectable in the absence of TGF-βIIIR receptors, it seems likely that the lower levels of ActRIIB necessary to avoid toxicity limited our ability to detect activin gradients using our methods.

However, since our experiments were performed using TGF-β1, it is not possible to be certain that other potentially more physiological TGF-β superfamly members behave in the same fashion. Although unlikely, it is also possible that the mechanism of gradient formation in our model system is substantially different from that which occurs in the undisrupted embryo. For example, dissection of the animal caps into culture might induce alterations in the tissue structure, although we obtained no evidence for such a change. In particular, we see no histological evidence for any disruption of the cell:cell interactions in our conjugates compared with whole embryos. In addition, at present it is unclear whether mesoderm induction, in vivo, involves short-range induction rather than the release of long-range signals. However, during gastrulation, long-range inhibitors are thought to diffuse from a localized source, the Spemann-Mangold Organizer, to create an activity gradient of a locally produced agonist. Since this agonist is soluble and extracellular, we can conclude that, at least under the experimental conditions of our model system, neither vesicular transcytosis nor any other temperature sensitive process is playing a major role in establishing the functional morphogen gradient we have observed.

Materials and Methods

Embryo injections, manipulations and bead preparation

Embryos were injected at the 4-cell stage in 1 x MBS, 4% Ficoll with 4 ng TGF-βIIIR. Synthetic capped mRNA was produced using Mega-Script in vitro transcription kits (Ambion) and cap analogue (New England Biolabs). Animal caps were dissected at stage 6 and conjugates made as described in the text. Beads (Affi-gel blue, 100 mesh, Bio-Rad) were washed 4 times in Ca²⁺/Mg²⁺ free 1 x MBS. TGF-β1 (R and D Systems) was diluted to 100 nM concentration in 1 x MBS containing 0.1% BSA. Beads were then added to 10% final volume (Gurdon et al., 1994). Control beads were prepared similarly by incubation in 1 x MBS + 0.1% BSA in the absence of TGF-β1.

Immunofluorescence analysis

Conjugates for immunofluorescence analysis were embedded in Cryo-M-Bed (Bright Instruments), shock frozen at -170°C and 15 μm cryosections were prepared. Quantitative immunofluorescence was performed exactly as described by Mosedale et al. (1996). Anti-TGF-β1 (R and D Systems; AB-101-NA) and anti-TGF-βIIIR (UBI; 06-227) were used as the primary antibod-
ies. Primary antibodies were detected using FITC (Jackson Immunoresearch; 703-095-155) and TRITC (Jackson Immunoresearch; 711-025-152) labelled secondary antibodies. Some of the images (but not the confocal images) were processed using Adobe Photoshop in order to improve contrast for presentation, but all analysis was performed on the raw image data collected by the Quantitative Immunofluorescence software (ImproVision).

In situ hybridisation
In situ hybridisations, using either Xbra or Eomes antisense probes, were performed on sections as previously described (Lemaire et al., 1995).

125I TGF-β1 binding to cells
The following procedure is based on that described by Dyson and Gurdon (1998). Animal caps from un.injected embryos or embryos previously injected with TGF-β1 mRNA at the 4 cell stage were dissected at stage 8. Cells were dissociated in Buffer A (Ca2+ /Mg2+ free 1 x MBS containing 0.1% BSA and 0.5 mM EDTA), then placed in polyhema-treated etpendorfs. Buffer A was also used throughout the procedure for the incubation and washing steps. Each etpendorf contained either TGF-β1- injected or wild-type cells from approximately seven animal caps. The cells were microfuged and then resuspended in Buffer A containing 200 μM 125I-TGF-β1 (Amersham Life Sciences) (at either 4°C or 23°C) for approximately 20 minutes, with gentle dispersal of the cells every few minutes. For this binding step, and all subsequent steps, the samples were treated at 4°C and half at 23°C. The cells were then washed once at the respective temperatures, by dispersal and centrifugation in 1 ml of solution, in order to remove unbound ligand. They were then left 40 minutes to allow any internalization to occur. This was followed by two subsequent washes at either pH 2.5 or pH 8, and the radioactivity associated with the cells was counted. For all samples, the background binding of 125I-TGF-

