Molecular mechanisms of cell-cell signaling by the Spemann-Mangold organizer

EDDY M. DE ROBERTIS*, OLIVER WESSELY, MICHAEL OELGESCHLÄGER, BRENDA BRIZUELA, EDGAR PERA, JUAN LARRAÍN, JOSÉ ABREU and DANIEL BACHILLER

Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA, USA and
1Victor Goodhill Ear Center. Division of Head and Neck Surgery, UCLA School of Medicine, Los Angeles, CA, USA

ABSTRACT We review how studies on the first Spemann-Mangold organizer marker, the homeobox gene goosecoid, led to the discovery of secreted factors that pattern the vertebrate embryo. Microinjection of goosecoid mRNA formed secondary axes and recruited neighboring cells. These non-cell autonomous effects are mediated in part by the expression of secreted factors such as chordin, cerberus and Frzb-1. Unexpectedly, many of the molecules secreted by the Spemann-Mangold organizer turned out to be antagonists that bind growth factors in the extracellular space and prevent them from binding to their receptors. The case of chordin is reviewed in detail, for this molecule has provided biochemical insights into how patterning by Spemann’s organizer can be regulated by diffusion and proteolytic control. The study of the BMP-binding repeats of Chordin, which are present in many extracellular proteins, may provide a new paradigm for how cell-cell signaling is regulated in the extracellular space not only in embryos, but also in adult tissues.

KEY WORDS: Spemann-Mangold organizer, chordin, cerberus, Frzb-1, tolloid, collagen, BMP, TGFβ.

Introduction

Since the original experiment of Spemann and Mangold (1924), isolating the molecules responsible for the inductive activities of organizer grafts has been the Holy Grail of vertebrate embryologists. After a number of premature attempts (related in Holtfreter and Hamburger, 1955; Nakamura and Toivonen, 1978), the advent of recombinant DNA technology opened the organizer problem to experimentation. The molecular exploration of the Spemann-Mangold organizer proved a gold mine for new genes and included unexpected surprises. The main surprise was that the organizer is a source of secreted antagonists of growth factors, which they bind in the extracellular space. These secreted antagonists can act as inhibitors that prevent binding to the cognate growth factor receptors, as well as modulators of signaling, in which a growth factor that was inactive can be brought back to signaling by the action of specific proteases that degrade the inhibitor. The principles of signaling regulation in the extracellular space learned from studies on the vertebrate Spemann-Mangold organizer may serve as a useful paradigm for understanding homeostasis of adult tissues and organs as well. This review is concerned with the homeobox gene goosecoid, which provided the first organizer gene marker, and with chordin and other secreted antagonists isolated in the course of efforts to identify genes transcriptionally activated by goosecoid.

Goosecoid and the isolation of organizer specific genes

The isolation of the homeobox gene goosecoid in 1991 provided the first organizer-specific gene (Cho et al., 1991). This was an important landmark, because before it had not been possible to visualize Spemann-Mangold organizer tissue, and its existence could only be inferred from the results of transplantation experiments. goosecoid is a homeobox-containing gene, and the fact that overexpression of its mRNA in ventral cells led to the formation of secondary axes implicated, right from the outset, homeobox transcription factors in the execution of Spemann-Mangold organizer activity (Cho et al., 1991). Microinjection of goosecoid mRNA was able to recruit neighboring cells into a secondary body axis and to trigger anteriorward cell movements (Niehrs et al., 1992). As this single mRNA could mimick many of the properties of organizer cells, it came as a surprise that later on it was found that a great many other transcription factors have similar or even more potent activities than goosecoid (Fig. 1). In time it became clear that the Spemann-Mangold organizer is composed by multi-

Abbreviations used in this paper: BMP, Bone Morphogenetic Protein; gsc, goosecoid; Xtwn, Xenopus Twin homeobox gene; Dpp, Decapantaplegic; CR, cysteine rich domain of the chordin type; fkh, forked-head gene.
ple populations of cells that are controlled by a plethora of transcription factors. These transcription factors in turn regulate the production of downstream secreted factors that mediate the inducing activities of the organizer (Fig. 1; reviewed in De Robertis et al., 1997; Harland and Gerhart, 1997; Nieto, 1999).

Studies on goosecoid expression helped identify the corresponding homologous regions of the Spemann-Mangold organizer in other vertebrates, such as mouse, chick and zebrafish (reviewed in De Robertis et al., 1999). Together with Brachyury—which provides a marker of all trunk mesoderm—goosecoid, which marks the Spemann-Mangold organizer and subsequently the prechordal plate, is widely used to define anatomical points of reference of the various vertebrate embryos during gastrulation. Studies in the mouse showed that organizer formation starts with the initial appearance of primitive streak cells in the posterior of the embryo. Organizer cells are then found in the anterior primitive streak (Blum et al., 1992) before becoming located in the definitive node (more properly called the mesoderm). Hensen’s node of the mouse), head process and prechordal plate. Transplantation experiments in mouse have confirmed this allocation of organizer tissue to the anterior primitive streak (Beddington, 1994; Tam and Steiner, 1999), which was initially supported only by crude Einsteck experiments (transplantation into the blastocoel cavity) using mouse day 6.5 embryo fragments transplanted into Xenopus gastrulae (Blum et al., 1992).

Studies using chick goosecoid showed, in addition to expression in the tip of the progressing primitive streak and Hensen’s node, a much earlier phase of expression in the posterior of the embryo (Izpisúa-Belmonte et al., 1993). This expression is seen in the recently laid chicken egg, in cells located just beneath the epiblast in a structure called Koller’s sickle. Although Koller’s sickle had been known for over a hundred years, its role could only be analyzed when a molecular marker became available. As has proven often the case, the availability of novel markers coupled to lineage tracing of cell fates can lead to new insights. In the case of the goosecoid positive cells of Koller’s sickle, they were shown to mark the initial precursors of what will become, after extensive cell migrations, the organizer region in the anterior of the primitive streak (Izpisúa-Belmonte et al., 1993).

The study of goosecoid provided the first visualization of Spemann-Mangold organizer cells and of their dynamic changes during gastrulation. A disappointment was that the knockout of the goosecoid gene was lethal but lacked severe effects on gastrulation (Yamada et al., 1995; Rivera-Pérez et al., 1995). Subsequent studies showed that the region that develops in association with the prechordal plate is indeed affected, reflecting early defects in the formation of the midline of the base of the cranium (Belo et al., 1997). Transplantation experiments of mouse node into chick gastrulae indicate that gsc−/− nodes are severely reduced in their neural-inducing strength (Zhu et al., 1999a). Importantly, Filosa et al. (1997) have shown that in gsc−/−;HNF-3β−/− compound mutants, dorso-ventral patterning of the CNS is severely disrupted in day 8.5 embryos. This is a recurring theme in organizer studies; with so many genes involved, double mutant studies are required to uncover redundant compensatory functions. We also now know that vertebrates contain at least three genes of the goosecoid family (reviewed in Belo et al., 1997), which could contribute to the relatively weak phenotypes observed in homozygous mutant mice.

Mouse homologues of the Xenopus organizer specific-genes Siamois and Xtwn (Lemaire et al., 1995; Laurent et al., 1997) have not yet been cloned in the mouse and therefore have not been mutated.
Another homeobox gene in zebrafish (variously designated dharma or nieuwkoid; Yamanaka et al., 1998; Koos and Ho, 1998 and 1999) has a strong mutant phenotype, leading to cyclopia in zebrafish mutants known as bozozok (Fekany et al., 1999). Interestingly, the dharma/bozozok gene is more related in sequence to goosecoid than to Siamois or Xtwn, and functions upstream of goosecoid, whose expression is severely inhibited in zebrafish bozozok mutants (Fekany et al., 1999). From these studies we now know that goosecoid is not the initial organizer homeobox gene to be activated, but rather part of a second wave of gene expression that takes place in dorsal mesoderm once the gastrula organizer is induced. Unraveling the respective contributions of the many genes involved in Spemann-Mangold organizer activity (Fig. 1) will undoubtedly require detailed genetic analyses in the future.

Secreted antagonists as patterning molecules

During the course of differential screens of a cDNA library prepared from Spemann-Mangold organizer tissue, we have identified several secreted factors (Sasai et al., 1994; Bouwmeester et al., 1996). As shown in Fig. 2, these include Frzb-1, a Wnt inhibitor (Leyns et al., 1997; Wang et al., 1997; Mayr et al., 1997), cerberus, a multivalent inhibitor of Nodal, Wnt and BMP signals (Bouwmeester et al., 1996; Piccolo et al., 1999), and chordin, a BMP inhibitor thought to play a central role in organizer function (Sasai et al., 1994; 1995; Piccolo et al., 1996). Other groups used different methods to isolate additional organizer-specific secreted factors such as the BMP inhibitor Noggin (Smith et al., 1992; Lamb et al., 1993; Zimmerman et al., 1996); the Activin and BMP inhibitor Follistatin (Hemmati-Brivanlou and Melton, 1994; Sasai et al., 1995; Fainsod et al., 1997) and the Wnt inhibitor Dickkopf (Glinka et al., 1998).

In overexpression experiments, molecules such as chordin and noggin can induce neural tissue in ectodermal explants and dorsal mesoderm in ventral mesoderm explants (Lamb et al., 1993; Sasai et al., 1995; Piccolo et al., 1996). In addition to their neural inducing activity, chordin and noggin can induce endoderm, in particular dorsal endoderm, in animal cap explants (Sasai et al., 1996). This lead to the current model by which BMP antagonists emanating from the organizer would pattern all three germ layers of the embryo (Fig. 3). This view is in agreement with the result of injecting chordin mRNA into a ventral blastomere of the Xenopus embryo. As can be seen in Fig. 4, secondary axes are induced that contain, as in Spemann and Mangold’s original experiment, a secondary neural tube, dorsal mesoderm (somites) and a secondary gut. Thus, the organizer phenomenon can be reproduced by the injection of a single molecule. Similar results can be obtained with noggin, another BMP antagonist, or with short-gastrulation mRNA. Short-gastrulation is the Drosophila homologue of chordin (Holley et al., 1996; Schmidt et al., 1995) and was known to act as a genetic antagonist of decapentaplegic (Dpp, a BMP homologue) signaling in Drosophila (Ferguson and Anderson, 1992). This gave us the clue that chordin might function as a BMP antagonist (reviewed in De Robertis and Sasai, 1996).

Unraveling the mechanism of action of Chordin

In microinjection experiments, the neural inducing activity of chordin could be inhibited by co-injection of BMP-4 mRNA (Sasai et al., 1995). In what came initially as a surprise, the neuralizing activities of noggin and follistatin could also be blocked by BMP-4 (Sasai et al., 1995). In the converse experiment, blocking BMP signaling with a dominant-negative BMP receptor (tBR, Suzuki et al., 1994; Graff and Melton, 1994) or with antisense BMP-4 RNA (Steinbeisser et al., 1995) resulted in the induction of anterior neural tissue in animal cap ectodermal explants in this groundbreaking study by Sasai et al. (1995).

Fig. 5. Model of BMP signal re-activation by Xolloid cleavage. BMP-4 binds to BMP receptors inducing the ventral pathway. Binding to Chordin blocks this signaling, whereas cleavage of Chordin by the Xolloid metalloprotease at two specific sites releases active BMP-4, re-establishing the ventralizing signal.
The molecular mechanism by which these neural inducers work was resolved with the purification of Chordin (Piccolo et al., 1996) and Noggin (Zimmerman et al., 1996) proteins, and the demonstration that they bind BMPs, preventing binding to BMP receptors (Fig. 5). The equilibrium dissociation constant (KD) of Chordin for BMP-4 is 3×10^{-10} M, which is about the same as the affinity of BMP for its cognate receptors on cell membranes (Piccolo et al., 1996). The affinity of Noggin for BMP is higher, of the order of 1.5×10^{-11} M (Zimmerman et al., 1996). A concentration of 1 nM Chordin protein is sufficient to induce NCAM in ectodermal animal cap explants or α-actin in ventral marginal zone explants. In the case of Noggin, 1 nM will dorsalize mesoderm, but concentrations in the 10 nM range are required to induce neural tissue (Harland and Gerhart, 1997). Thus, embryonic cells have biological responses to the various neural inducers that are not solely dependent on in vitro affinities.

Chordin inhibition can be reversed by the Xolloid metalloprotease

In *Drosophila*, the gene *tolloid* functions genetically to increase *dpp* (BMP) signaling (Ferguson and Anderson, 1992). In *Xenopus*, a related gene called *xolloid* was isolated by Leslie Dale’s laboratory (Goodman et al., 1998; Piccolo et al., 1997). Microinjection of *xolloid* mRNA causes an almost textbook-like ventralization of *Xenopus* embryos (loss of notochord, decrease in somite, increase in blood islands) as shown in Fig. 6. This phenotype is similar to what one observes by injecting intermediate doses of BMPs, or would expect to find from a partial inhibition of Spemann-Mangold organizer activity.

Using a biochemical approach it was shown that the Xolloid zinc metalloprotease can cleave Chordin, but not Noggin, at two specific sites (Piccolo et al., 1997). Furthermore, it was demonstrated that the cleavage of Chordin is able to reactivate previously inactive BMP, which is once again able to signal (Fig. 5) in *Xenopus* assays (Piccolo et al., 1997). Thus, the way in which Xolloid works is through the specific inactivation of Chordin and the ensuing release of reactivated BMPs. In parallel studies in *Drosophila*, Marqués et al. (1997) found that *Drosophila* Tolloid cleaves Short-gastrulation at three sites, two of which correspond to the cleavage sites of Xolloid on Chordin.

More recent studies have revealed additional vertebrate homologues of Tolloid and that some of them, in particular BMP-1 and mouse tolloid-like-1, are effective at inactivating Chordin as well (Wardle et al., 1999; Scott et al., 1999). The exact location of the two sites at which Chordin is cleaved by Tolloid metalloproteases (Piccolo et al., 1997; Scott et al., 1999) is of interest. As shown in Fig.
Secreted antagonists pattern the gastrula

7. Chordin is a large protein containing four cysteine-rich domains (CRs) of about 70 amino acids each. Xolloid cleaves Chordin just downstream of CR1 and CR3 at conserved aspartic acid residues. It has recently been shown that the BMP-binding activity of Chordin resides in the CR repeats and that CR1 and CR3 bind BMP much better than CR2 and CR4 (Larraín et al., 2000). The binding affinity of CR1 or CR3 repeats is about 10 times lower (K_d of 3×10^{-9} M) than that of intact Chordin. Thus, a possible model of how Chordin might work is by binding a BMP dimer to each Chordin monomer (in agreement with results from crosslinking studies, Piccolo et al., 1996) via CR1 and CR3 (Fig. 8). Once Xolloid cleaves Chordin, CRs still bound to BMP would be released. Since the affinity of this interaction is 10 times lower, this decrease in affinity might suffice to allow binding of BMP to its receptors (Fig. 8), or perhaps additional components may be required to liberate BMP from the CRs.

Genetic studies discussed below indicate that the interaction of Chordin with BMPs is of central importance for generating dorso-ventral pattern. The binding of BMP to Chordin could permit the diffusion of BMPs to distant sites without being sequestered by BMP receptors that are present at high concentrations in adjoining cell membranes. Once the Chordin-BMP complex meets the metalloprotease, active BMPs can be released at a distance (reviewed by Weinmaster, 1998). In Drosophila, it is known from genetic mosaic and other studies that Short-gastrulation can affect Dpp/Screw signaling many cell diameters away (Zusman, 1988; Ashe and Levine, 1999). In conclusion, mechanistic studies on the Chordin protein have provided important insights into how gradients of dorso-ventral positional information are generated by protein interactions in the extracellular space.

Many proteins contain CR domains

The Chordin CR domains contain a series of conserved cysteines and hydrophobic residues that are present in a number of other proteins (Fig. 9A). CR repeats are present in Thrombospondin, von Willebrand factor and fibrillar procollagens (Bornstein, 1992; Sasai et al., 1994; François et al., 1994). Other proteins with such repeats include Nel-like proteins with four CRs and six EGF repeats (Watanabe et al., 1996), a C. elegans EST (Larraín et al., 2000) homologous to a chick transmembrane protein called CR1M with five CRs in the extracellular portion (Kolle et al., 2000), and Drosophila peroxidasin (Nelson et al., 1994).

The recent demonstration that at least some of these CRs are also implicated in BMP/TGFβ signaling, may have important consequences for the regulation of extracellular signals not only in the embryo, but also in adult tissues and organs. Collagen IIA mRNA is able to induce secondary axes in microinjected Xenopus embryos (Larraín et al., 2000) and this dorsalizing activity requires the CR repeats (Fig. 9B). The isolated CR repeat of Collagen IIA homologous to a chick transmembrane protein called CRIM1 with five CRs in the extracellular portion (Kolle et al., 2000), and Drosophila peroxidasin (Nelson et al., 1994).

The recent demonstration that at least some of these CRs are also implicated in BMP/TGFβ signaling, may have important consequences for the regulation of extracellular signals not only in the embryo, but also in adult tissues and organs. Collagen IIA mRNA is able to induce secondary axes in microinjected Xenopus embryos (Larraín et al., 2000) and this dorsalizing activity requires the CR repeats (Fig. 9B). The isolated CR repeat of Collagen II has BMP and TGFβ binding capacity (Zhu et al., 1999b; Larraín et al., 2000) but is devoid of biological activity. Presumably this is because, as in the case of Chordin, multiple CRs are required for high affinity binding. As shown in Fig. 9C, three CRs can come into close proximity in the NH$_2$-propeptide of procollagen trimers. This could provide binding sites for BMPs or other growth factors of the TGFβ superfamily at

Fig. 9. CR domains present in procollagen IIA modulate BMP signaling. (A) Sequence comparison of CR domains contained in different extracellular matrix proteins. Coll-CR, type IIA Xenopus procollagen; CR2, murine Chordin second repeat; Nel, rat nel; Pxdasin, Drosophila peroxidasin; C. eleg. EST, C. elegans hypothetical protein containing five procollagen-like domains (accession No. CAA94866). (B) Ventral injection of Xenopus procollagen IIA mRNA induces secondary axes. A construct encoding the splice variant Coll IIB lacking the CR domains is inactive in this assay (after Larraín et al., 2000). (C) Hypothetical model for the binding of BMP-4 to procollagen IIA triple helix. The cartoon shows how the presence of multiple CR domains in the procollagen triple helix could bind BMP-4 with high affinity, as is the case for Chordin. The question mark indicates the proposed protease that, like Tolloid, would release active BMPs from this extracellular reservoir of growth factors (see text) when required for tissue homeostasis.
places where they could be most required, such as developing prerichondrium, tendon or bone, all of them rich in fibrillar collagens (Sandell et al., 1991; Su et al., 1991; Cheah et al., 1991; Zhu et al., 1999b). In order for these growth factors to become active, one would have to propose the existence of a protease that, like Tolloid, would cleave the complexes close downstream of the CRs (indicated in Fig. 9C). Thus, Chordin has provided a paradigm for understanding extracellular signaling regulation in adult tissues. This model may perhaps also apply to other Spemann-Mangold organizer secreted factors that are members of large multigene families also expressed in adult tissues (Rattner et al., 1997; Hsu et al., 1998; Pearse et al., 1999).

Chordin mediates dorso-ventral patterning

Since multiple BMP inhibitors are secreted by the Spemann-Mangold organizer (Fig. 3), loss-of-function studies are required to determine their individual functions and whether they compensate for each other. In zebrafish extensive genetic screens have been carried out, and two ventralized (as one would expect from loss or reduction of the Spemann-Mangold organizer) mutants have been isolated (Hammerschmidt et al., 1996a). The strongest mutation, chordino, was a loss-of-function of chordin (Schulte-Merker et al., 1997). As indicated in Fig. 10, at the gastrula stage neural (fkh) and dorsal mesodermal (shh) markers are reduced, and ventral mesodermal markers (eve-1) are expanded in chordino mutants (Hammerschmidt et al., 1996b). Chordin embryos regulate, and despite the much reduced initial neural plate, eventually a CNS develops, but the embryos have smaller heads and for the most part die at the stage shown in Fig. 10. These loss-of-function studies showed that the organizer-specific gene chordin is required for patterning both the ectodermal and mesodermal germ layers, as had been predicted from Xenopus overexpression studies.

The opposite class of mutations, the dorsalized mutants, are also of interest in the context of organizer function. The strongest mutant, swirl, is a mutation in BMP-2 (Mullins et al., 1996; Kishimoto et al., 1997; Nguyen et al., 1998). BMP-2 has a strong maternal component, and in its absence transcription of zygotic BMP-4 is also prevented in the ventral side (Kishimoto et al., 1997). Double mutants of swirl;chordin have a swirl phenotype (Hammerschmidt et al., 1996b); these epistatic studies show that chordin is a dedicated BMP antagonist. Other dorsalized mutations affect additional components of the BMP signaling pathway such as Smad-5 and BMP-7 (Hild et al., 1999; Dick et al., 2000; Schmid et al., 2000).

These genetic results in zebrafish highlight that a large part of the dorso-ventral patterning by the Spemann-Mangold organizer is effected through BMP signaling (Fig. 3). Last but not least, the most frequently isolated dorsalized mutation, mini-fin, has been identified as the zebrafish homologue of tolloid/xolloid (Connors et al., 1999), confirming the importance of proteolytic control in establishing gradients of dorso-ventral polarity.

Therefore the antagonism between the Spemann-Mangold organizer secreted protein Chordin and BMP is required for the establishment of the dorso-ventral polarity of ectoderm and mesoderm in zebrafish. Zebrafish photographs courtesy of Dr. Stefan Schulte-Merker (Tübingen).

Fig. 10. Chordin is required for dorso-ventral patterning in zebrafish. The Chordin mutant phenotype is due to a loss-of-function of zebrafish chordin. In mutant embryos the tail is enlarged at the expense of head and anterior trunk. In situ analyses of mutant embryos demonstrated a reduction of the neural plate (marked by fkd3) and dorsal mesoderm (marked by shh), and an expansion of ventral mesoderm (marked by eve1) (Hammerschmidt et al., 1996).

Fig. 11. Loss of prosencephalon in chordin and noggin double mutants.

A. wt and chd-/-;nog-/- day 8.5 mouse embryo hybridized with Six-3, Krox-20 and Shh. Note that forebrain tissue expressing Six-3 is almost completely absent, whereas Krox-20 is expressed in the double mutant at the expected position. The white arrowhead in B marks the level of anterior-most expression of Shh. These double mutant mouse embryos lose the prosencephalon as well as the anterior notochord.
In the case of mouse embryos, mutation of *chordin* results in milder phenotypes and neural induction is normal (Bachiller et al., 2000, and unpublished results). Similarly, in *noggin* mutants development is relatively normal until embryonic day 8.5, although strong posterior axial deficits are seen at later stages (McMahon et al., 1998; Brunet et al., 1998). Double mutant studies have shown that these two BMP antagonists, which are co-expressed in the mouse Hensen’s node, compensate for each other. In *chordin*-*noggin* embryos, the prosencephalic vesicle is essentially absent at day 8.5 (Fig. 11, note the lack of expression of the Six-3 forebrain marker). This antero-posterior deficit can be traced back to the early neural plate stages (Bachiller et al., 2000). In addition, dorso-ventral phenotypes are observed such as the lack of notochord and *sonic hedgehog* expression in the anterior of the embryo (Fig. 11B, arrowhead). Finally, the left-right axis is also affected, with randomization of the heart situs (Bachiller et al., 2000). Therefore, genetic studies in the mouse demonstrate that the BMP antagonists *Chordin* and *Noggin* are required for correct patterning of the three main body axes of the mammalian embryo.

Conserved patterning mechanisms in evolution

Our interest in homeobox genes started with the isolation of the first Hox gene from vertebrates (Carrasco et al., 1984). As is now clear, the antero-posterior patterning system uses an intricate system of conserved genes in all bilateral animals (e.g., de Rosa et al., 1999). The isolation of a homeobox gene from a Spemann-Mangold organizer cDNA library, *goosecoid*, opened a new avenue of exploration for dorso-ventral patterning (Cho et al., 1991). Since microinjection of *goosecoid* mRNA had non-cell autonomous effects recruiting neighboring cells into secondary axes, this led to the search for downstream targets of *goosecoid* that could mediate these inductive activities. One such secreted target gene activated at the transcriptional level by injection of *goosecoid* mRNA was identified with the cloning of *chordin*, a gene that can mimic Spemann-Mangold organizer transcription when overexpressed (Sasai et al., 1994). As shown in Figure 12, *Chordin* is part of a conserved dorsal-ventral patterning system involving *dpp/sog/tolloid* in *Drosophila* and BMPs/chd/tolloid in vertebrates (Sasai et al., 1994; François et al., 1994; Holley et al., 1995; Schmidt et al., 1995; Piccolo et al., 1997; Marqués et al., 1997). The molecular machinery required for the generation of gradients of BMP signaling is intricate and involves activation of BMP signaling via a double inhibition mechanism requiring a novel proteolytic control step in the extracellular space. There is one important difference, however, and that is that the dorsal-ventral axis has been reversed during the course of evolution (reviewed in De Robertis and Sasai, 1996; De Robertis, 1997). The last common ancestor of protostomes and deuterostomes, called the Urbilateria, had both a dorsal-ventral and an antero-posterior patterning system in place. Current phylogenetic analyses place Urbilateria very deep in evolutionary times, even before the split of molting animals (such as arthropods and nematodes) from the other protostomes (such as mollusks, and annelids, Aguinaldo et al., 1997; de Rosa et al., 1999). Therefore, the body patterns of all bilateral animals are constructed using conserved dorso-ventral and antero-posterior patterning systems, raising the question of whether this placed any constraints in the evolution of body plans.

The Spemann and Mangold experiment provided embryologists with an intellectual framework for asking questions about pattern development in vertebrates. It is remarkable that more than 75 years later a simple transplantation experiment still continues to stimulate new research, as can be seen throughout this volume.

Acknowledgements

We would like to express our gratitude to the talented postdocs that participated in these studies on the Spemann-Mangold organizer. The organizer has been not only a fertile fishing ground but also a training ground for new generations of independent investigators: Eric Agius (CNRS, Toulouse), José A. Belo (Gulbenkian Institute, Lisbon), Martin Blum (University of Karlsruhe), Bruce Blumberg (UC Irvine), Ken W.Y. Cho (UC Irvine), J.C. Izpisúa-Belmonte (Salk Institute), Stefano Piccolo (U. of Padova), Tewis Bouwmeester (EMBL Heidelberg), Herbert Steinbeisser (Max Planck Tübingen), Luc Leyns (Free University of Brussels), Yoshihi Sasai (Kyoto University), Christoph Niehrs (German Cancer Center, Heidelberg), C.V.E. Wright (Vanderbilt University) and Ahikito Yamamoto (Kumamoto University, Japan). Linda Gont, Bin Lu and Sung Kim were graduate students and are at earlier stages of their careers. O.W., M.O. and E.P. were HFSPO fellows and J. L. and J.A. are PEW fellows. This work was made possible by long-term support from the NIH (R37 HD21502-15), the Norman Sprague Endowment and the Howard Hughes Medical Institute.

References

![Fig. 12. Vertebrates and invertebrates share a common dorsal-ventral patterning system. Vertebrate Xolloid blocks Chordin suppression of BMP-4 allowing ventralization (antineural); likewise in Drosophila, Tolloid blocks short-gastrulation suppression of Dpp allowing dorsalization (antineural) differentiation. This is a powerful argument in favor of the last common ancestor of protostomes and deuterostomes, the Urbilateria, having this dorso-ventral patterning system in place. During the course of evolution the dorsal axis has become inverted, as first proposed by French Zoologist Etienne Geoffroy Saint-Hilaire (1822).](Image)

SECRETED ANTAGONISTS PATTERN THE GASTRULA

