Overexpression of S-adenosylmethionine decarboxylase (SAMDC) activates the maternal program of apoptosis shortly after MBT in Xenopus embryos

MASATAKE KAI, TAKAYASU HIGO, JUN’ICHI YOKOSKA, CHIKARA KAITO, ERI KAJITA, HIROSHI FUKAMACHI, EIJI TAKAYAMA1, KAZUEI IGARASHI2, and KOICHIRO SHIOKAWA*

Laboratory of Molecular Embryology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan; 1Department of Parasitology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan; 2Faculty of Pharmaceutical Sciences, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

ABSTRACT Overexpression of S-adenosylmethionine decarboxylase (SAMDC) mRNA in 1- and 2-cell stage Xenopus embryos induces cell autonomous dissociation at the late blastula stage and developmental arrest at the early gastrula stage. The induction of cell dissociation took place "punctually" at the late blastula stage in the SAMDC-overexpressing cells, irrespective of the stage of the microinjection of SAMDC mRNA. When we examined the cells undergoing the dissociation, we found that they were TUNEL-positive and contained fragmented nuclei with condensed chromatin and fragmented DNA. Furthermore, by injecting Xenopus Bcl-2 mRNA together with SAMDC mRNA, we showed that SAMDC-overexpressing embryos are rescued completely by Bcl-2 and become tadpoles. These results indicate that cell dissociation induced by SAMDC overexpression is due to apoptotic cell death. Since the level of S-adenosylmethionine (SAM) is greatly reduced in SAMDC-overexpressing embryos and this induces inhibition of protein synthesis accompanied by the inhibition of DNA and RNA syntheses, we conclude that deficiency in SAM induced by SAMDC overexpression activates the maternal program of apoptosis in Xenopus embryos at the late blastula stage, but not before. We propose that this mechanism serves as a surveillance mechanism to check and eliminate cells physiologically damaged during the cleavage stage.

KEY WORDS: SAMDC overexpression, maternal apoptosis program, MBT, surveillance mechanism.

*Address correspondence to: Koichiro Shiokawa. Laboratory of Molecular Embryology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan. FAX: 81 3 5841 4431. e-mail: xshioka@biol.s.u-tokyo.ac.jp

Abbreviations used in this paper: SAMDC, Sadenosylmethionine decarboxylase; SAM, S-adenosylmethionine; MBT, midblastula transition; TUNEL, TdT-mediated dUTP digoxigenin nick end labeling; GFP, green fluorescent protein.

In Xenopus embryogenesis, fertilized eggs cleave rapidly, and when embryos reach the late blastula stage, G1 phase appears in the cell cycle (Graham and Morgan, 1966), and midblastula transition (MBT) takes place (Newport and Kirschner, 1982). Shortly after MBT (at the late blastula stage), cleavage becomes asynchronous (Signoret and Lefresne, 1971; Newport and Kirschner, 1982), and zygotic nuclei are activated (Newport and Kirschner, 1982; Shiokawa et al., 1994; Almouzni et al., 1994) to provide mRNAs necessary to support the development beyond the gastrula stage (Gurdon, 1988). Along with these changes, cells in the future dorsal region acquire motility (Minoura et al., 1995), and transcription of ribosomal RNA genes (Shiokawa et al., 1981) and formation of definitive nucleoli start (Nakahashi and Yamana, 1976).

In our previous experiments, we microinjected into Xenopus fertilized eggs the mRNA for Xenopus S-adenosylmethionine decarboxylase (SAMDC) (XSD3, Shinga et al., 1996), a key enzyme in the metabolism of both polyamines and S-adenosylmethionine (SAM), and found that embryos overexpressed with SAMDC undergo cell-autonomous dissociation shortly after MBT and stop development at the gastrula stage. An interesting aspect of this phenomenon was that cleavage proceeded apparently normally and embryos became normal-looking blastulae at the correct time. In this experiment, we found that SAMDC-induced dissociated cells cultured in a hypotonic medium (0.1X Steinberg’s solution) autolyze due to osmotic shock (Shibata et al., 1998), but in isotonic media (1X Steinberg’s solution and Stearn’s complete medium) they do not autolyze and remain intact at least in their outer appearance for quite a long period, although they neither divide nor synthesize DNA, RNA and protein.

In the present experiments, we injected Xenopus SAMDC mRNA into Xenopus fertilized eggs, and examined the nature of SAMDC-induced dissociated cells which appeared during the late blastula to early gastrula stages. As in our previous experiments (Shibata et al.,...
mRNA-injected embryos cleaved normally until the blastula stage and underwent cell dissociation at the early gastrula stage (stage 10.5). Injections of SAMDC RNA without a cap structure and mRNAs for other proteins such as β-galactosidase, type IIA activin receptor, nrp-1 mRNA and eIF4E did not induce such an effect (see also Shibata et al., 1998). When we fixed the dissociated cells in SAMDC mRNA-injected embryos at the early gastrula stage and processed them for transmission electron microscopy, we found that their nuclei were fragmented into two or three portions, although their cell membrane, nuclear envelope and mitochondria appeared to be intact (Fig. 1A). In such nuclei circular electron-dense bodies were frequently observed (Fig. 1A, arrows). When we were performing these experiments, similar cell dissociation and embryo death were found to take place in Xenopus embryos when they were treated with γ-ray (Anderson et al., 1997; Hensey and Gautier, 1997), hydroxyurea (Stack and Newport, 1997), cycloheximide (Stack and Newport, 1997; Hensey and Gautier, 1997) and α-amanitin (Sible et al., 1997; Hensey and Gautier, 1997) during the cleavage stage. Furthermore, cells dissociated by these treatments have been shown to be TUNEL-positive, form fragmented nuclei, and contain fragmented DNA, and the cell dissociation was modified by Bcl-2. Thus, the changes observed here in
dissociated cells in SAMDC mRNA-injected embryos were quite similar to those observed in γ-ray-α-amanitin- and cycloheximide-treated cells (Sible et al., 1997; Hensey and Gautier, 1997). We, therefore, conclude that overexpression of SAMDC in Xenopus cleavage stage embryos induces apoptotic cell death shortly after MBT (at the late blastula to early gastrula stage), as in the case of the embryos treated with γ-ray, α-amanitin and cycloheximide (Sible et al., 1997; Hensey and Gautier, 1997).

In the experiments reported by Sible et al. (1997) and Hensey and Gautier (1997), the injection of Bcl-2 mRNA modifies the onset of apoptosis at the late blastula stage, but the “rescued” embryos stop development completely after 2-3 h. To see to what extent the Bcl-2 mRNA injection “modifies” the apoptosis in SAMDC mRNA-injected embryos, we coinjected SAMDC and Bcl-2 mRNAs into uncleaved fertilized eggs at different dosage combinations, and examined the development of the coinjected embryos. We found here that in embryos co-injected with SAMDC and Bcl-2 mRNAs cell dissociation at the early gastrula stage was completely suppressed (Fig. 2 A,B,C). Furthermore, we found that a significantly large percentage of the injected embryos reached tailbud stage (Fig. 2D) and developed into tadpoles. As shown in Figure 2E, this effect was dosage-dependent: As the ratio of the injected amount of Bcl-2 mRNA to SAMDC mRNA was increased from 0.5/1 to 1/0.5 and to 2/0.5, the percentage of embryos which developed into tadpoles increased from 5% to 20% and to 40%. We followed here the level of SAMDC mRNA (1 ng/embryo) injected into fertilized eggs, and found that it decreases rapidly and disappears from the embryo by the end of the gastrula stage (data omitted). Furthermore, when we followed the level of SAMDC in the embryos coinjected with SAMDC mRNA (0.5 ng/embryo) and Bcl-2 mRNA (2 ng/embryo), we found that the level of SAMDC per embryo greatly increased as in our previous report (Shibata et al., 1998), reached the maximum at the late blastula stage, then decreased thereafter (data omitted). Therefore, the complete rescue of SAMDC mRNA-injected embryos by Bcl-2 mRNA injection was not due to the inhibition of translation of the injected SAMDC mRNA, but probably due to the decrease in the level of the overexpressed SAMDC in the post-gastrula stages.

Finally, we performed the experiment to inject different volumes of SAMDC mRNA solution (2.0, 1.0, 0.50, 0.25, 0.13 and 0.063 nl; all at 1 ng/ml) into one of the animal side blastomeres at different stages (1-, 2-, 4-, 8-, 16- and 32-cell stage, respectively). Here, the concentration of the injected SAMDC mRNA within the injected blastomere was expected to be approximately 2 ng/µl (an egg is roughly 1 µl), although in later stage embryos it must be slightly larger, since the volume of the cytoplasm of animal top blastomeres is slightly smaller than that of the vegetal blastomeres. In this experiment, all the embryos injected with SAMDC mRNA at later stages (16- and 32-cell stages) developed into tadpoles, without stopping development at the early gastrula stage. However, in the experiment to coinject SAMDC mRNA (ca. 2 ng/µl cytoplasm) and GFP mRNA (ca. 0.2 ng/µl cytoplasm) into one of the animal side blastomeres at 8- and 16-cell stages, we found that cells which received SAMDC mRNA were dissociated and confined into the blastocoel at the early gastrula stage and disappeared from the embryo (data omitted). Therefore, we concluded that SAMDC mRNA injection induces apoptosis constantly at the late blastula stage, irrespective of the stage of the mRNA injection.

In SAMDC mRNA-injected embryos, inhibition of protein synthesis takes place prior to cell dissociation, and this is preceded by a large decrease in the level of SAM (the substrate of SAMDC) (Shibata et al., 1998) and is followed by the inhibition of DNA and RNA syntheses (Shibata et al., 1998). Therefore, we assume that the sequence of events which take place in SAMDC mRNA-injected embryos are 1) over-function of SAMDC due to its overexpression; 2) induction of a SAM-deficient state; 3) inhibition of protein synthesis, probably due to interference with methylation of either mRNA cap or DNA; 4) inhibition of DNA and RNA syntheses; 5) activation of the maternal program of apoptosis, which results in the induction of cell dissociation. Thus, SAMDC overexpression is a new condition to execute the maternal program of apoptosis shortly after MBT in Xenopus embryogenesis.

We, however, propose here that there is a potentially important difference between SAMDC-induced apoptosis and apoptosis induced by other agents such as γ-irradiation, α-amanitin or cycloheximide. In the experiments by Sible et al. (1997) and Hensey and Gautier (1997), Bcl-2 only shifted the onset of apoptotic cell death from stage 10.5 to stage 12 (by 2.3 h). In our system, by contrast, considerably large percentages of SAMDC-overexpressed embryos were “rescued completely” by Bcl-2 mRNA injection and developed into tadpoles. We assume that the reason for the difference may be...
that, while the agents used by Sible et al. (1997) and Hensey and Gautier (1997) are not the normal metabolites which probably remain as toxic substances within the cells, the agent used here is a naturally-occurring enzyme of a high turn-over nature (cf. Heby and Persson, 1990).

Experimental Procedures

In vitro transcription of mRNAs

The plasmid harboring cDNA for wild-type Xenopus SAMDC (pBluescript SK(-) - XSD3) was maintained and used as described by Shibata et al. (1998). The ORF was subcloned into NcoI and XbaI sites in pSP36T (gift from Drs. Amaya and Kirschner), a derivative of pSP64T (Krieg and Melton, 1984), that carried 5' and 3'-UTRs (untranslated regions) of Xenopus β-globin mRNA. To obtain GFP mRNA, pbGFP/RN3P (Zernicka-Goetz et al., 1996) was used. Both constructs were linearized respectively at the PvuII or SfiI site and transcribed in vitro with SP6 RNA polymerase in the presence of a cap analog, m7G(5')ppp(5')G (New England Biolabs). RNAs were dissolved in distilled water, and kept at -80°C until used.

mRNA injection

Unfertilized eggs of Xenopus laevis were manually ovulated from gravid females which had been injected with a human chorionic gonadotropin hormone, Gonatropin (Teikoku Zoki Co.). Eggs were artificially fertilized, and dejellied in 2% cysteine-HCl (pH 8.0) (Koga et al., 1999). mRNAs (0.01 to 10 ng in 10 nl of distilled water) were microinjected into the region specified in each experiment in 1X modified Barth's solution (MBS), which contained 3% Ficoll 400 and 50 mg/ml gentamycin. Microinjection was performed using a programmable microinjection (IM 300; Narishige). Injected embryos were kept in 1X MBS until stage 7 (Nieuwkoop and Faber, 1967), when they were transferred into either 0.1X Steinberg's solution or fresh 1X Steinberg's solution as specified in each experiment. All the embryos were cultured at 21°C.

Transmission electron microscopy

Embryos were fixed overnight in 2.5% glutaraldehyde in 0.1 M Cacodylate buffer (pH 7.4) at 4°C. They were post-fixed with 1% OsO4 for 2 h, dehydrated in a graded series of ethanol, embedded in Embedding Resin (TAAB), and sectioned at ca. 90 nm in thickness. Sections were stained with uranyl acetate and lead citrate, and examined in an electron microscope (100CX; JEOL).

TUNEL methods

Embryos microinjected with SAMDC mRNA at the 1- or 2-cell stage were fixed at stages 8 to 10 (Nieuwkoop and Faber, 1967). TUNEL staining of embryos was carried out according to Hensey and Gautier (1997). Briefly, fixed embryos were labeled with fluorescein-conjugated to anti-fluorescein antibody.

DNA gel electrophoresis

Embryos were homogenized in DNA extraction buffer (10 mM Tris [pH 8.0], 0.1 mM EDTA, 50 mg/ml RNase A, 0.5% SDS) (Sible et al., 1997) and incubated at 37°C for 1 h. To the homogenate, proteinase K was added to a final concentration of 100 µg/ml, and incubation performed at 50°C for 2 h. Samples were treated with phenol:chloroform (1:1), and DNA was precipitated with ethanol. Electrophoresis was performed on a 2% agarose gel and DNA stained with ethidium bromide.

Acknowledgments

We thank greatly Professor J. Maller (Colorado University) for kindly providing us with the plasmid for Xenopus Bcl-2, and Professor J. B. Gurdon (Cambridge University) for providing us with the plasmid for GFP. We also thank Drs. C. Hensey and J. Gautier for kindly sending us the protocol for TUNEL assay. Thanks are also due to Drs. E. Amaya and M. Kirschner for providing us with the Xenopus globin cassette plasmid, pSP36T.