Requirement of protamine for maintaining nuclear condensation of medaka (Oryzias latipes) spermatozoa shed into water but not for promoting nuclear condensation during spermatogenesis

YOHEI SHIMIZU1,2, KOICHI MITA1, MASARU TAMURA3, KAZUO ONITAKE4 and MASAKANE YAMASHITA1,*

1Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 2Hokkaido Central Fisheries Experimental Station, Yoichi, 3Mammalian Development Laboratory, National Institute of Genetics, Shizuoka and 4Department of Biology, Faculty of Science, Yamagata University, Yamagata, Japan

ABSTRACT Protamine is an arginine-rich basic protein found in the sperm nuclei of many vertebrates, but its actual roles in spermatozoa remain to be elucidated. In this study, we investigated the physiological roles of protamine by examining protamine-less spermatozoa produced in vitro in the presence of the transcriptional inhibitor actinomycin D. Even under inhibited transcription, medaka spermatocytes underwent meiosis and differentiated into spermatozoa with a condensed nucleus and an elongated flagellum. Using a newly produced anti-medaka protamine antibody, we confirmed the absence of protamine protein in the spermatozoa differentiated in the presence of actinomycin D. These findings clearly indicate that sperm nuclear condensation in medaka is independent of protamine. Since medaka spermatozoa are shed into water upon natural fertilization, we also investigated the roles of protamine by comparing the differences between the nuclear morphology of protamine-equipped and protamine-less spermatozoa immersed in water. The nuclei without protamine more rapidly swelled than did those with protamine and completely broke down within 10 min, whereas more than 80% of the sperm nuclei with protamine resisted the disruption under similar conditions. These findings strongly suggest that a physiological role of protamine in medaka spermatozoa is to protect the ejaculated spermatozoa against the disruption by low osmotic pressure until arrival at the eggs for successful fertilization.

KEY WORDS: actinomycin D, cell culture, fertilization, medaka sperm, protamine

Introduction

Spermatozoa are haploid cells that are highly specialized in carrying the male genome to a female germ cell, the egg. They are produced through spermatogenesis, which mainly consists of three processes: mitotic proliferation of spermatogonia, meiosis of spermatocytes, and transformation of spermatids into spermatozoa called spermiogenesis. Spermiogenesis includes condensation of the nucleus, elongation of the flagellum, and discard of the cytoplasm. Protamine, a sperm-nucleus-specific basic protein with a high arginine content, is expressed during spermiogenesis in many vertebrates (Bloch, 1969; Poccia, 1986; Hecht, 1998). Although the biological roles of protamine are still a matter of speculation (Oliva and Dixon, 1991), this protein is thought to be essential for nuclear condensation by its substitution for nuclear histones, since a deficiency in protamine in humans results in, for example, the production of spermatozoa with a large and round head (Balhorn et al., 1988; Belokopytova et al., 1993). During spermatogenesis of the medaka Oryzias latipes, protamine mRNA is expressed in secondary spermatocytes and spermatids and translated into a protein after meiosis (Tamura et al., 1994), suggesting the involvement of protamine in nuclear condensation during spermiogenesis also in this species. However, our recent study of spermatogenesis of a hybrid medaka between O. latipes and O. curvinotus has demonstrated that the spermatozoa of this hybrid contain a condensed nucleus in spite of the absence of protamine mRNA expression (Shimizu et al., 1997), a finding raising the possibility that protamine is unnecessary for nuclear condensation during medaka spermatogenesis, in contradiction to the concept that protamine is essential for this process.

Abbreviations used in this paper: AUT-PAGE, acid/urea/Triton X-100 polyacrylamide gel electrophoresis; DIG, digoxigenin; PBS, phosphate-buffered saline.

*Address for reprints: Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan. FAX: 81-11-706-4456 or 4851. e-mail: myama@sci.hokudai.ac.jp
Medaka is a useful experimental animal for investigating regulatory mechanisms of spermatogenesis, because 1) continuous spermatogenesis under artificially controlled environmental conditions allows us to investigate it all the year round, and 2) culture techniques of medaka spermatocytes newly established (Saiki et al., 1997; Shimizu et al., 1997) enable more detailed investigations into control mechanisms of spermatogenesis. In this study, we investigated the physiological roles of protamine, using protamine-less spermatozoa produced in vitro in the presence of the transcriptional inhibitor actinomycin D. We clarified the unnecessity of protamine for promoting sperm nuclear condensation by demonstrating its occurrence in the spermatozoa without protamine. Based on the finding that the sperm nuclei lacking protamine are apparently more labile in water than those equipped with protamine, we also suggest that a physiological role of protamine in medaka spermatozoa is to protect their nuclei against disruption in freshwater until reaching the eggs for fertilization.

Results

Production of spermatozoa in vitro

Under culture conditions, a primary medaka spermatocyte was able to differentiate into four spermatozoa each having a condensed nucleus and an elongated flagellum after undergoing meiosis and spermiogenesis (Fig. 1A), as described previously (Saiki et al., 1997; Shimizu et al., 1997). In situ hybridization analyses with an antisense riboprobe showed that the spermatids and spermatozoa produced in vitro expressed protamine mRNA (Fig. 2A,B), as is the case in vivo (Tamura et al., 1994). To examine protamine protein in the spermatogenic cells, we produced an antibody against a synthetic peptide corresponding to the C-terminal half of medaka protamine (see Materials and Methods).

Production of spermatozoa without protamine

To produce spermatozoa without protamine, we cultured primary spermatocytes in the presence of the transcriptional inhibitor actinomycin D. Even in the presence of actinomycin D, the spermatocytes underwent both meiosis and spermiogenesis and differentiated into spermatozoa with an elongated flagellum and a condensed nucleus (Fig. 1B). Electron microscopic observations indicated that the nuclei...
of spermatozoa produced in the presence of actinomycin D were condensed to the same extent as those of spermatozoa without inhibitors (Fig. 5A,B). For confirming the inhibition of protamine expression by actinomycin D, the treated cells were examined by in situ hybridization with the antisense protamine RNA probe and by immunocytochemistry with the anti-protamine antibody. The actinomycin D treatment completely inhibited the expression of protamine mRNA (Fig. 2C,D) and protein (Fig. 4C,D). In contrast to actinomycin D treatment, spermatocytes underwent neither meiosis nor spermiogenesis in the presence of the translational inhibitor cycloheximide (Fig. 1C). These results clearly indicate the occurrence of nuclear condensation without protamine during medaka spermatogenesis. These results also indicate that the progression of meiosis and spermiogenesis are mainly under the translational control of mRNAs that have already been stored in primary spermatocytes, which we discussed in a recent paper (Mita et al., 2000).

Resistance of sperm nucleus to water

In the wild, spermatozoa are ejaculated into water for fertilizing eggs. To investigate the biological roles of protamine, we therefore examined the differences between the resistance to water of spermatozoa equipped with protamine and those without protamine. The protamine-equipped sperm nuclei were considerably resistant to water (Figs. 6A,7A). About half (41.7%) of the nuclei remained intact for 2 min in water. During a 10-min observation period, 15.8% of the nuclei remained unchanged, 76.3% swelled, and 7.9% broke down (Fig. 6A). On the contrary, the protamine-less sperm nuclei were highly labile in water (Figs. 6B,7B). The majority of the nuclei (94.1%) rapidly swelled within 1 min and all of them broke down within 10 min (Fig. 6B).

Discussion

Protamine is an arginine-rich basic nuclear protein found in the spermatozoa of many animal species. Generally, sperm nuclei condense tightly during spermiogenesis. Because nuclear condensation usually coincides with the replacement of preexisting histone with newly produced protamine, protamine is believed to play a key role in this process. In fact, it has been reported that a deficiency in human protamine 2 yields infertile spermatozoa with large and round heads (Balhorn et al., 1988; Belokopytova et al., 1993). This notion is also supported by the finding that goldfish sperm nuclei, which have no protamine, are not fully condensed as compared with those of other fishes having protamine (Muñoz-Guerra et al., 1982). However, our previous finding that sperm nuclei of an interspecific hybrid between *Oryzias latipes* and *O. curvinotus* undergo nuclear condensation without protamine mRNA expression (Shimizu et al., 1997) raised the possibility that protamine is not primarily involved in initiating sperm nuclear condensation in medaka. Here, we provide for the first time strong evidence that medaka sperm nuclear condensation is independent of protamine by having demonstrated that sperm nuclei of wild type medaka, as well as the hybrid (Shimizu et al., 1997), are condensed even in the absence of protamine.

It is concluded that protamine is not involved in nuclear condensation during medaka spermatogenesis. We have also shown that nuclear condensation of medaka spermatozoa occurs under continuous inhibition of transcription starting from primary spermatocytes, indicating that the mRNAs for proteins responsible for nuclear condensation must have already existed in primary spermatocytes. In *Xenopus*, sperm nuclei are thought to be condensed by the aid of sperm-specific basic proteins different from protamine, a major component of which (SP4) is transcribed in primary spermatocytes (Hiyoshi et al., 1991; Mita et al., 1991; Yokota et al., 1991; Arai et al., 1992).
This situation is consistent with that in medaka shown in this study. Like in *Xenopus*, it is plausible that sperm nuclear condensation in medaka is promoted by sperm-specific basic proteins, but not by protamine, the transcriptions of which are initiated at the latest in primary spermatocytes, although we must await biochemical characterization of these proteins responsible for medaka sperm nuclear condensation.

We have revealed that protamine does not function in promoting nuclear condensation during medaka spermatogenesis. Then, what are protamine’s roles in this species? Bloch (1969) proposed that, besides its role in nuclear condensation necessary to inhibit gene activity, protamine might be involved in the protection of condensed nuclei against adverse environmental conditions until the spermatozoa reach the eggs. In many freshwater fishes, in which spermatozoa are ejaculated into water for fertilizing eggs, spermatozoa must resist water invasion into the sperm cells by low osmotic pressure until arrival at the eggs. In this study, we demonstrated that, when treated with water, most of the nuclei that contain no protamine swelled rapidly within 2 min and all of them were disrupted within 10 min, in striking contrast to the nuclei equipped with protamine, almost all of which (ca. 92%) resisted water invasion for at least for 10 min. The swelling of sperm nuclei within a few minutes must cause a severe defect in fertilizability, because medaka spermatozoa must pass through the narrow micropyle before entering the egg cytoplasm (the diameter of the inner opening of micropyle being 3.5 µm and the diameter of sperm head being 1.7 µm, Iwamatsu et al., 1997). It has been reported in medaka that the time required for the spermatozoa to reach the eggs following insemination depends on the concentration of spermatozoa, varying from 5 to 25 sec at concentrations of 20×10⁷ to 1×10⁸/ml (Iwamatsu et al., 1991). It is reasonable to assume that at a relatively low concentration of the spermatozoa, which might frequently occur under natural fertilization conditions, the time required for successful fertilization is much longer, in the order of minutes. Thus, it is highly likely that the spermatozoa unequipped with protamine are unable to participate in fertilization under natural conditions, because of their failure to pass through the narrow micropyle due to their rapid swelling and disruption in water.

Taken together, the findings strongly suggest that medaka protamine plays an essential role in successful fertilization by protecting the spermatozoa from disruption and swelling during the process from ejaculation into water until entering the egg cytoplasm via the micropyle. In this experiment, however, we cannot exclude the possibility that actinomycin D inhibits the expression of proteins other than protamine necessary for nuclear protection. Further investigations in which protamine expression and function are specifically inhibited by injecting the antisense RNA and antibody, respectively, are necessary for verifying the biological role of protamine proposed in this study.

Materials and Methods

Medaka and cell culture

An orange-red variety of medaka was purchased from a local fish farm in Aichi Prefecture and cultured under reproductive conditions (14-h light and 10-h dark at 28°C). Spermatocytes were isolated from testes and cultured on poly-L-lysine-coated cover slips as described previously (Shimizu et al., 1997). Transcription and translation were inhibited by 2 µg/ml actinomycin D and cycloheximide, respectively.

Electron microscopic observation

Spermatozoa differentiated *in vitro* were observed by electron microscopy as described previously (Shibata and Hamaguchi, 1986, 1988). Briefly, spermatozoa on cover slips were fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS: 102.4 mM NaCl, 1.6 mM KCl, 6.4 mM NaH₂PO₄, 1.6 mM KH₂PO₄, pH 7.4), dehydrated with ethanol, embedded in epoxy resin, and observed under an electron microscope.
In situ hybridization

Expression of protamine mRNA was examined by in situ hybridization using digoxigenin (DIG)-UTP-labeled probes transcribed in vitro from a medaka protamine cDNA (Tamura et al., 1994). Spermatozoa were washed with PBS and fixed with 4% paraformaldehyde in PBS for 4 h at 4°C. Preparation of the DIG-labeled probe, conditions of hybridization and washing, and detection of the signal were performed according to manufacturer’s instructions (Boehringer, Tokyo, Japan).

Immunological detection of medaka protamine

The anti-medaka protamine polyclonal antibody (antisera) was raised against a synthetic peptide, CVRRTVVRRRRVGR, which corresponds to the C-terminal half of medaka protamine (named MP-1, Tamura et al., 1994) with an additional cysteine in the N-terminus. The peptide was conjugated to bovine serum albumin as described previously (Kajiura et al., 1994) with an additional cysteine in the N-terminus. The peptide was used as a primary and a secondary antibody, respectively. Specimens were mounted with 10 μg/ml Hoechst 33258 (Calbiochem, La Jolla, CA) and observed under a fluorescence microscope.

Morphological changes in the sperm nucleus in water

Spermatozoa were washed with PBS and treated with distilled water under a light microscope. Changes in sperm nuclear morphology were recorded with a video camera (CTV-270, Shimadzu, Kyoto, Japan) and shown by the percentage of the sperm nuclei classified into three categories (intact, swelled and broken) during a 10-min observation period. Using the data recorded, sperm nuclear volume was also calculated from its diameter and expressed as the swelling index (V_t-V_0 /V_0 , where V_t indicates the value at time t and V_0 indicates the initial value at time 0). Similar experiments using tap water instead of distilled water gave essentially the same results.

Acknowledgments

We thank Drs. Hiroko Kajiura-Kobayashi and Yoshitaka Nagahama (National Institute for Basic Biology, Okazaki, Japan) for providing a synthetic peptide corresponding to the C-terminal half of medaka protamine. We are also grateful to Dr. Takashi Shimizu (Hokkaido University) for advice on the recording with a video camera and Dr. Megumi Moriya (Hokkaido University) for the detection of protamine by AUT-PAGE and the observation with an electron microscope. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (No. 11236201 to MY).

References

Received: December 1999

Accepted for publication: December 1999

Role of protamine in medaka spermatozoa 199