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ABSTRACT  In addition to soluble factors, the extracellular matrix (ECM) also plays a vital role 
in normal vasculogenesis and in the pathological angiogenesis of many disease states. Here we 
will review what is known about the role of the ECM molecules fibronectin and tenascin-C in the 
vasculature and highlight a potential collaborative interplay between these molecules in develop-
mental and tumorigenic angiogenesis. We will address the evolution of these modular proteins, 
their cellular interactions and how they become assembled into an insoluble matrix that impacts 
the assembly of other ECM proteins and the bioavailability of pro-angiogenic factors. The role of 
fibronectin and tenascin-C networks in tumor angiogenesis and metastasis will be described. We 
will elaborate on lessons learned about their role in vessel function from the functional ablation 
or the ectopic expression of both molecules. We will also elaborate on potential mechanisms of 
how fibronectin and tenascin-C affect cell adhesion and signaling that are relevant to angiogenesis.

KEY WORDS: tumor angiogenesis, matrix assembly, fibronectin, tenascin-C

Introduction

Cells and extracellular matrix (ECM) form tissues, and collections 
of tissues form organs. In the organism different organs act together 
through blood and lymphatic vessels. Solid tumors resemble organs 
that are structurally and functionally abnormal. They contain multiple 
cell types and ECM components and develop through complex 
interactions between these different components using processes 
that often resemble those used by developing organs (reviewed 
in Egeblad et al., 2010). It is long known that tumors need to turn 
on angiogenesis in order to grow more than a few millimeters in 
diameter. Tumors have developed several strategies to trigger the 
so called “angiogenic switch” in order to develop a connection to 
the hemapoietic and lymphatic vasculature which is believed to 
be essential for nourishment and oxygenation. Connections to the 
vasculature also present pathways for motile cancer cells to travel 
to distant organs to seed metastasis. 

In the initial concept of sprouting angiogenesis, largely supported 
by angiogenesis observed in tumor xenograft experiments, tumors 
secrete factors that stimulate the process of the outgrowth of new 
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blood vessels from preexisting vessels (Risau, 1997). The devel-
opment of new vasculature by angiogenesis occurs in two stages. 
First, a dense, immature, evenly spaced network of new vessels 
develops by recursive sprouting and fusion of sprouts. Second, 
the network is remodeled into a hierarchically spaced network by 
adaptive pruning events and blood flow. How vessel branching is 
regulated at the molecular level is a matter of debate. Whether 
the tip cell represents the default state or is actively induced is not 
clear. At least it is known that VEGFR2, Wnt and notch signaling 
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are involved in tip cell organization (Bentley et al., 2008). Apart 
from sprouting angiogenesis, there are several other mechanisms 
of tumor vascularization, including intussusceptive angiogenesis, 
vessel co-option, and recruitment of endothelial progenitor cells. 
In addition, lymphangiogenesis and vasculogenic mimicry are 
involved in the formation of the tumor microcirculation (Dome et 
al., 2007; Hillen and Griffioen, 2007; Kucera et al., 2009). 

Much emphasis has been placed on the role of angiogenic 
cytokines such as vascular endothelial growth factor (VEGF) in 
endothelial cell biology. However, considerable evidence indicates 
that the matrix is equally important in vessel homeostasis and 
remodeling. Its role at the molecular level is still poorly under-
stood. ECM proteins provide instructive signals to cells during 
development, homeostasis and in disease states. The ECM can 
regulate cell and tissue behavior by serving as a structural net-
work as well as initiating biochemical signaling cascades in cells 
through interactions with a number of specialized transmembrane 
ECM receptors such as integrins (reviewed in Erler and Weaver, 
2009). Emerging evidence indicates that distinct ECM molecules 
act in concert to elicit their biological effects. Thus, deciphering 
the coordinated action of ECM proteins is key to understanding 
how the ECM network can support normal vascular function and 
influence the tumor microenvironment to promote angiogenesis. 

Fibronectin is a large multi-domain ECM glycoprotein with a 

fundamental role in blood vessel morphogenesis during embry-
onic development and pathological angiogenesis. Since the first 
investigation of fibronectin distribution by Linder and collaborators 
in chick embryos (Linder et al., 1975), countless studies have 
documented its elevated expression at sites of tissue remodel-
ing, organogenesis and in numerous disease states. Whereas 
fibronectin is strongly expressed around developing blood vessels 
during embryogenesis (Peters and Hynes, 1996), its expression 
is barely detectable in the normal adult vasculature (ffrench-
Constant and Hynes, 1989; Peters et al., 1996). Re-expression 
of fibronectin occurs during pathological angiogenesis in vari-
ous diseases such as cancer, late stage artherosclerosis and 
in blinding ocular conditions (Astrof and Hynes, 2009; Neri and 
Bicknell, 2005; Pedretti et al., 2009, 2010; Roy et al., 1996, and 
references therein). 

Fibronectin is commonly classified into two forms, plasma fi-
bronectin (p-fibronectin), a soluble form produced by hepatocytes 
that circulates in blood at high concentrations, and cellular fibro-
nectin (c-fibronectin) produced in tissues where it is incorporated 
in a fibilllar matrix. c-Fibronectin differs from p-fibronectin by the 
presence of additional domains, including the highly conserved 
fibronectin type III “extra” domains B (EDB) and/or A (EDA), that 
arise from alternative splicing of the pre-mRNA. (Fig. 1, ffrench-
Constant and Hynes, 1989; Peters et al., 1996; White et al., 2008, 

Fig. 1. Domain structure of fibronectin 
and tenascin-C and potential binding 
partners. (A) Fibronectin is a dimeric 
protein of 240-270KDa, composed of 2 
similar or identical monomers joined by a 
pair of disulfide bonds near the C terminus. 
Each monomer is organized into type I, 
type II and type III repeats (FN I-III). Extra 
Domains B (B) and A (A) correspond to type 
III repeats. Alternate splicing at a third site 
(V) gives rise to inserts of variable length 
(up to 5 in humans) that are nearly always 
included in c-fibronectin. Heparin-binding 
domains (Hep) I-III and binding domains 
for cellular receptors, ECM components, 
enzymes and growth factors are indicated. 
Multiple cellular binding sites for fibronec-
tin contribute to angiogenesis (reviewed 
in Avraamides et al., 2008; Hynes, 2007). 
Most notably, the tri-peptide motif Arg-Gly-
Asp (RGD) located in the 10th FN type III 
repeat (FN III-10) is the site of binding to 
a5b1 integrin, as well as av-based integrins 
(Leiss et al., 2008; Pankov and Yamada, 
2002) including avb3 and avb5, which are 
all currently targeted in anti-angiogenic 
strategies (Desgrosellier and Cheresh, 
2010). The asterisks correspond to sites of 
mutations FN1 identified in patients with 
glomerulopathy and fibronectin deposits 
(GFND) (Castelletti et al., 2008). Integrin 
a5b1 binding to the RGD motif in FN III-10 
requires the synergy region in the 9th FN 
type III repeat (Danen et al., 1995). (B) 
Tenascin-C is a modular molecule composed of an oligomerization domain, EGF-L and FN type III (constant and alternate) repeats, and a fibrinogen like 
domain (see Orend and Chiquet-Ehrismann, 2006). Binding sites for interacting molecules are indicated. CALEB, chicken acidic leucine-rich EGF like 
domain containing brain protein, EGFR, epidermal growth factor receptor, NaN, sodium channel subunit b 2, RPTPb, protein tyrosine phosphatase b, 
TLR4, toll like receptor 4.
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in enhancing tumor cell proliferation, promoting angiogenesis, 
invasion and metastasis (Orend and Chiquet-Ehrismann, 2006). 
Tenascin-C interacts with several ECM molecules and cell surface 
receptors, thus affecting tissue architecture, tissue resilience and 
cellular responses relevant in angiogenesis, metastasis and the 
stem cell niche (reviewed in Midwood and Orend, 2009). 

At present, little is known about the interdependence of 
tenascin-C and fibronectin, yet a functional complicity of these 
two ECM molecules is strongly supported by their overlapping 
expression, physical interaction and modulatory role in cell 
adhesion-dependent processes (reviewed in Midwood and Orend, 
2009). Here, we will address when both matrix molecules have 
evolved and how this may further our knowledge about their 
potential role in the vasculature of vertebrates in normal tissue 
homeostasis and in cancer. We will describe how the ablation of 
fibronectin and tenascin-C affects developmental and pathologi-
cal angiogenesis. Finally, we will summarize and discuss what 
is known about fibronectin and tenascin-C in angiogenesis, in 
pathologies including cancer. 

Evolutionary aspects of fibronectin and tenascin-C in 
the vasculature

The vasculature of vertebrates has a number of anatomical 
features that sets it apart from the vasculature of other members of 
the phylum Chordata. Notably, it is composed of a closed system 
of tubes lined by endothelial cells that are in turn invested by a 
basement membrane (Fig. 2). The urochordates (also known as 
tunicates or sea squirts), which are generally believed to be the 
closest relatives to the vertebrates (e.g., Putnam et al., 2008)), 
have what appear to be inside-out vessels, at least from a ver-

Fig. 2. Evolution of fibronectin and tenascin-C. (A) Integrins are found in single-celled holozoans 
and fungi, but extracellular matrix (ECM) first appeared in early metazoans. Tenascins (TN) and fibro-
nectin (FN) evolved much later in basal chordates. (B) The evolution of blood vessels in the Phylum 
Chordata. In cephalochordates (also known as lancelets or amphioxus) the circulatory system is open, 
and blood vessels are matrix tubes without endothelial cells (EC) or surrounding epithelial cells (EP). 
Cephalochordates have a tenascin gene, but not a fibronectin gene. In urochordates (also known as 
tunicates or sea squirts) the circulatory system is also open. Blood vessels are lined by extracellular 
matrix and surrounded by epithelial cells. Occasionally cells are encountered lining the lumen of the 
vessels, but it is not known if these are endothelial cells. The urochordate Ciona has a tenascin gene 
and a fibronectin-like gene that lacks key features of vertebrate fibronectin. In vertebrates the circula-
tory system is closed and lined by endothelial cells; all vertebrates examined have multiple tenascin 
genes and a highly conserved fibronectin gene. 

and references therein). Importantly for clinical applications, 
fibronectin splice variants containing the EDB and EDA domains, 
often referred to as oncofetal variants, are amongst the most 
specific markers of angiogenic blood vessels to date (Kaspar 
et al., 2006). In addition to promoting adhesion and signaling 
through cell surface receptors, the fibronectin matrix functions 
as a fibrillar scaffold for the assembly of other matrix proteins. 
Itprovides a platform for angiogenic signaling by increasing the 
bioavailability of soluble angiogenic factors, and cooperating 
with their transmembrane receptors (Hynes, 2007; Hynes, 2009; 
Miyamoto et al., 1996; Mosher et al., 1980). 

Tenascin-C is another large modular ECM protein that exhibits 
a restricted and low expression in normal tissue. It is the founding 
member of the tenascin familiy with four members, tenascin-C, 
-R, -W and tenascin-X (reviewed in Chiquet-Ehrismann and Chi-
quet, 2003). All tenascins harbor several homologous domains 
that have been extensively described elsewhere (reviewed in 
Chiquet-Ehrismann and Chiquet, 2003; Orend, 2005; Orend and 
Chiquet-Ehrismann, 2006, Fig. 1). Tenascin-C can assemble into 
hexamers, it can be processed into monomers and it interacts 
with several cell surface receptors and other matrix molecules 
(reviewed in Midwood and Orend, 2009, Fig. 1). Its expression is 
elevated in embryonic tissues and in tissue of several cancers, 
and high tenascin-C expression has been found to correlate with 
lymph node metastasis and poor prognosis (reviewed in Midwood 
and Orend, 2009). Tenascin-C is one of the few genes within the 
signature of predictive value for lung metastatis in breast cancer 
patients (Minn et al., 2005). Moreover, a robust expression of 
tenascin-C is associated with resistance to tamoxifen therapy 
in patients with estrogen receptor positive breast cancer (Hel-
leman et al., 2008). Tenascin-C plays a yet poorly defined role 

BA
tebrate’s point of view: the lumen of the 
tunicate heart and major vessels is lined by 
the basement membrane of myoepithelial 
cells and not by an endothelium (Davidson, 
2007). Cells are occasionally encountered 
lining the lumen of urochordate vascu-
lature, and though these may represent 
endothelial-like cells, recent evidence 
suggests that in at least some colonial 
tunicates they are Piwi-positive stem cells 
(Rinkevich et al., 2010). In contrast to the 
closed system of vertebrates, the circula-
tory system of the tunicates is open, with 
the vessels leading from the heart empty-
ing into lacunae where the hemolymph can 
bathe the organs. The cephalochordates 
(also known as lancelets or amphioxus), 
which are most likely a more distantly 
related invertebrate chordate, also have 
an open vascular system lined by ECM, 
but it lacks the epithelial lining of tunicate 
vessels (Fig. 2). For example, the aorta 
of amphioxus forms from the basement 
membranes of the gut endoderm and the 
ECM of the surrounding mesenchyme 
(Kucera et al., 2009). This primitive acel-
lular matrix-tube vasculature is widely 
found in other invertebrates as well (Rupert 
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and Carle, 1983; reviewed by Kucera and Lammert, 2009), even 
though invertebrates are perfectly capable of making tubular or-
gans lined with epithelia like the trachea or salivary glands (e.g., 
see Castillejo-Lopez et al., 2004). Other anatomical features that 
are unique to the vertebrates include a lymphatic system and 
thymus (Bajoghli et al., 2009): no comparable systems are found 
in tunicates or amphioxus. 

On the cellular, physiological and molecular levels the vertebrate 
circulatory system also has a number of unique features. For 
example, an adaptive immune system appears to have evolved 
with jawed fish (e.g., see Bajoghli et al., 2009), and amphioxus 
and tunicates lack the complex coagulation systems of vertebrates 
(Doolittle, 2009). Amphioxus and tunicates have many blood 
cells that appear to share roles with leukocytes, but they do not 
have erythrocytes (Cima et al., 2001; Huang et al., 2007). The 
tunicate Ciona has both globin and hemocyanin-related genes, 
but it is unknown if one or both play roles in respiration (Ebner 
et al., 2003).

Many ECM genes have origins that coincide with the appear-
ance of basal metazoa, including collagens (Exposito et al., 2008), 
thrombospondins (Bentley and Adams, 2010) and syndecans 
(Chakravarti and Adams, 2006). Wnt and key players that make 
up the Wnt signaling pathways are present in sponges but not 
choanoflagellates, suggesting that they also evolved with the first 
metazoans (Richards and Degnan, 2009). Even more ancient 
are the integrins and molecules involved in integrin signaling 
like paxilin, talin and Integrin-linked Kinase (ILK) (Sebe-Pedros 
et al., 2010), some of which are in single-celled holozoans as 
well as fungi. In contrast, tenascins and fibronectin are encoded 
by relatively new genes, having evolved early in the chordate 
lineage. Of the two, tenascins appear to have evolved first, as the 
amphioxus Branchiostoma has a gene that encodes a tenascin 
that closely resembles vertebrate tenascins, but it lacks a fibro-
nectin gene (Tucker and Chiquet-Ehrismann, 2009). Nothing is 
known about the expression of the amphioxus tenascin, but it is 
remarkable for having multiple (at least 7) copies of RGD motifs 
predicted to be exposed to integrin binding. It is interesting to 
speculate that at least some of the functions of fibronectin in ver-
tebrates may be carried out in amphioxus by this RGD-rich form 
of tenascin. In contrast, the tunicate Ciona has a tenascin gene 
and a fibronectin-like gene, but the predicted protein encoded by 
the latter has distinctive features (e.g., it lacks an RGD motif and 
domains that correspond to EDA and EDB domains) that leads 
one to suggest that it may play different roles than its highly con-
served vertebrate counterpart (Tucker and Chiquet-Ehrismann, 
2009). Interestingly, the Ciona tenascin gene is expressed in 
the notochord and muscle cells, and is not associated with the 
developing heart (Kawashima et al., 2009; Tucker et al., 2006). 

What can we learn from the evolution of ECM about the ori-
gins of the distinctive anatomical and molecular features of the 
circulatory system in vertebrates? Only in vertebrates do we see 
a closed circulatory system with proper endothelial cells, and 
during vertebrate development cells lining blood vessels, which 
are likely to be endothelial cells, express both tenascin (Tucker, 
1993) and fibronectin (Astrof and Hynes, 2009; ffrench-Constant 
and Hynes, 1989). As we will see below, both tenascin-C and 
fibronectin are critical for normal vascularization, so the appear-
ance of these interrelated matrix molecules may have played 
a role in the evolution of this distinctive feature of vertebrates.

Fibronectin and tenascin-C in loss of function models 

Effect of a loss of fibronectin and its receptors on the vas-
culature

Genetic evidence points to a major role for fibronectin and its 
receptors in vascular development. Ablation of the fibronectin gene 
leads to embryonic lethality at embryonic day 9.5 (E9.5) with se-
vere cardiovascular defects and aberrant somitogenesis (George 
et al., 1993). Interestingly, the severity of the defects was found 
to vary as a function of the genetic background of the fibronectin-
null mice (George et al., 1997). A search for gene modifiers of the 
heart defects led to the identification of potential candidates on 
chromosome 4, proposed to affect a migratory process involved 
in coalescence of the two heart primordia into a single heart tube 
(Astrof et al., 2007b). The gene encoding tenascin-C is also located 
on chromosome 4, at a distinct locus. It is intriguing to speculate that 
tenascin-C could participate in genetic interactions that determine 
the severity of the phenotype. Integrin a5-null mice lacking the main 
fibronectin receptor, a5b1, die at E10.5 with a phenotype similar 
to fibronectin-null mice (Francis et al., 2002; Yang et al., 1993). A 
comparable phenotype was observed in mice with an inactivating 
mutation of the a5b1-binding motif of fibronectin (RGD to RGE) 
(Takahashi et al., 2007), attesting to the functional importance of 
this ligand-receptor pair for vascular morphogenesis. Concerning 
the role of other fibronectin-binding integrins in vascular develop-
ment and angiogenesis (reviewed in Hynes, 2007)), avb3 and 
avb5 integrins that bind to the RGD sequence in the cell-binding 
domain of fibronectin have received the most attention. Studies 
of integrin antagonists indicate that av integrins promote angio-
genesis, while genetic deletion studies indicate that av integrins 
are not required for angiogenesis. Although their exact function in 
angiogenesis has been subject to much debate (see (Astrof and 
Hynes, 2009; Desgrosellier and Cheresh, 2010; Hodivala-Dilke, 
2008), av-targeting agents are currently being developed or used 
in the clinic for cancer therapeutics. 

Genetic ablation of the fibronectin gene deletes all fibronectin 
variants (up to 20 in humans). What about the role of the alter-
nately spliced isoforms, and their cellular receptors? Selective 
ablation of EDB and EDA domains suggests that these domains 
confer essential functions to fibronectin, as evidenced by the early 
embryonic death of mice lacking both exons (Astrof et al., 2007a). 
However, the precise roles of these domains and the molecular 
events involved have yet to be fully understood, as compensatory 
mechanisms can rescue mice with single knock outs of either the 
EDB or EDA variant (recently reviewed in Astrof and Hynes, 2009; 
White et al., 2008). The EDB domain has been proposed to gener-
ate a conformational modification of fibronectin and improve the 
access to nearby integrin binding domains (see Balza et al., 2009; 
Bencharit et al., 2007; Carnemolla et al., 1992; Hashimoto-Uoshima 
et al., 1997; Ventura et al., 2010). This function is consistent with 
results from isoform-selective knockdown studies in endothelial 
cells (Cseh et al., 2010).

Whereas no EDB-specific cellular receptor has been identified 
to date, inclusion of the EDA repeat in c-fibronectin creates new 
binding sites for a4b1, a4b7 and a9b1 integrins (Kohan et al., 
2010; Liao et al., 2002) (Fig. 1). a4b1 and a9b1 are structurally 
similar integrins that can bind to several ECM proteins; in the case 
of a9b1 this includes tenascin-C (Humphries et al., 2006; Yokosaki 
et al., 1998). Genetic and pharmacological studies in mice reveal a 
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role for these integrins in the lymphatic vasculature. Hence, a9b1 
null mice die between 8-12 days after birth from major defects in 
development of the lymphatic system (Huang et al., 2000). More 
recently, it was shown that the interaction between integrin a9 and 
fibronectin containing the EDA domain is required for fibronectin 
matrix assembly during lymphatic valve morphogenesis (Bazigou 
et al., 2009). Integrin a4 knock out mice die at E11.5 with cardiac 
malformations and placental defects. Interestingly, targeted dele-
tion of a4 in lymphatic vessels or pharmacological inhibition of 
a4b1 was found to suppress growth factor- and tumor-induced 
lymphangiogenesis and prevent metastatic spread in vivo. In this 
same study, a4b1 and c-fibronectin were identified as markers of 
proliferative lymphatic endothelium in invasive tumors (Garmy-
Susini et al., 2010). In addition to the EDA domain, sequences in 
the variable (V) region (Fig. 1) can also bind to a4b1 integrin and 
thus contribute to the observed effects. Collectively, these findings 
shed light on the role of c-fibronectin variants as fundamental 
regulators of both blood and lymphatic vessels. 

In humans, mutations in the fibronectin gene were identified in 
patients with glomerulopathy with fibronectin deposits (GFND), 
an autosomal dominant disease characterized by proteinuria, 
microscopic hematuria, hypertension, and massive glomerular 
deposits of non-fibrillar fibronectin in the mesangium and subendo-
thelial space that lead to end-stage renal failure (Castelletti et al., 
2008). These mutations affect the heparin binding domains Hep-II 
and Hep-III. Functional studies showed that mutant recombinant 
Hep-II fragments display lower binding to endothelial cells and 
podocytes, compared to wild-type Hep-II, and an impaired ability 
to induce endothelial cell spreading and cytoskeletal reorganiza-
tion. Hep-II and -III domains participate in fibronectin assembly in 
ECM, through complex fibronectin-fibronectin and fibronectin-cell 
surface proteoglycan interactions (Singh et al., 2010). Interestingly, 
heparin-binding domains of fibronectin are sites of tenascin-C 
binding and have been shown to mediate functional interactions 
between fibronectin and tenascin-C that involve cell surface pro-
teoglycans of the syndecan family, as discussed below.

Effect of tenascin-C knock out on the vasculature
Tenascin-C knock out mouse was generated in two different 

laboratories (Forsberg et al., 1996; Saga et al., 1992). In both 
studies the signal peptide and the heptad repeat sequences were 
disrupted. Saga and colleagues inserted a lacZ-neo construct just 
in front of the translational initiation codon in exon 2 of the tenascin-
C gene, deleting parts of the exon 2 and intron 2 and keeping the 
regulatory unit of the tenascin-C gene for lacZ expression (Saga 
et al., 1992). Since expression of a truncated tenascin-C in these 
mice was detected (Mitrovic and Schachner, 1995), a second 
independent tenascin-C knock out mouse was generated where 
a neomycin resistance cassette was inserted into exon 2 leading 
to two aberrant splice products of tenascin-C in homozygous mice 
inducing a frameshift and translation stop after 99 and 18 nucleotides 
(Forsberg et al., 1996). It is now clear that tenascin-C expression 
is lost in most tissues. Surprisingly, in both cases tenascin-C knock 
out mice were alive and fertile and exhibited an apparently normal 
development. The apparently normal development and tissue 
organization of these mice has been attributed to compensation 
mechanisms (reviewed in Orend and Chiquet-Ehrismann, 2006). 
It was noticed that in the subventricular zone of the brain oligoden-
drocyte precursor cells respond differently to growth factors and 

proliferate less, but this appears to be compensated by a reduced 
apoptosis rate later on. Thus the number of oligodendrocytes ends 
up being similar in the tenascin-C knock out and wildtype mouse 
(Garcion et al., 2001). Later studies showed that the absence of 
tenascin-C imposes problems for tissue homeostasis which is 
particularly evident during wound- or inflammation-associated 
tissue repair (reviewed in Orend and Chiquet-Ehrismann, 2006). 
Meanwhile tenascin-C knock out mice present valuable tools for 
addressing the roles of tenascin-C in development, angiogenesis, 
inflammation, heart failure and tumorigenesis. 

By using a cardiac allograft model it was shown that tenascin-
C is a mediator of postnatal cardiac angiogenic mechanisms in 
mice (Ballard et al., 2006). Upon subdermal transplantation of 
wild-type cardiac tissue into a syngenic host, a fibrin clot forms 
around the allograft and both the clot and cardiac tissue become 
vascularized, resulting in engraftment of viable cardiac tissue. Clot 
formation is unaffected in tenascin-C-null mice; however, these 
mice fail to form any vessels and no engraftment of cardiac tissue 
is observed. In wildtype mice the donor endothelial cells engrafted 
at sites of tenascin-C expression, suggesting that tenascin-C acts 
to promote homing and incorporation of endothelial or progenitor 
cells. Indeed, cultured rat cardiac microvascular endothelial cells 
adhere to tenascin-C substrata, but spreading and monolayer 
formation are delayed compared to cells plated on fibronectin or 
collagen. Futhermore, migration of these cells into a collagen gel 
is enhanced when cultured on tenascin-C (Ballard et al., 2006). 
These data support a role for tenascin-C in the early stages of 
angiogenesis by modulating endothelial cell adhesiveness, and 
thus promoting migration. 

Tenascin-C also seems to play a role in vascularization asso-
ciated with lung development. The tenascin-C knock out mouse 
does not show apparent defects in lung anatomy and function, 
presumably due to unknown compensatory mechanisms. This 
compensation seems not to apply when the embryonic lung is 
placed in culture since the lung explants from tenascin-C knock 
out embryos display reduced branching (defective cleft formation 
and enlarged terminal lung buds) and decreased vascularization 
(Roth-Kleiner et al., 2004). Results from another report indicate 
that lung vascularization and branching morphogenesis are de-
pendent on Wnt and fibronectin signaling. Wnt signaling is turned 
on between E10.5 and E12.5 in the developing lung. Later (E13.5) 
Wnt signaling is largely reduced by Dickkopf (DKK) 1–3, and 
this coincides with induction of the Wnt target gene, fibronectin. 
Moreover DKK1 and fibronectin are instrumental in promoting lung 
branching morphogenesis and angiogensis, since recombinant 
DKK1 and anti-fibronectin antibody both block cleft formation and 
angiogenesis. DKK1 treatment causes thinner blood vessels, re-
duced sprouting from existing vessels and impaired formation of 
large vessels with fewer interconnections (De Langhe et al., 2005). 
Given that tenascin-C blocks fibronectin signaling, represses DKK1, 
and plays a role in lung branching morphogenesis, it is possible 
that a tight balance between fibronectin and tenascin-C regulates 
normal lung branching and vascularization. In this scenario DKK1 
repression by tenascin-C would result in Wnt activation and induc-
tion of fibronectin.

The role of tenascin-C in tumorigenesis was also investigated 
in a mouse model that develops metastasizing mammary gland 
tumors (due to ectopic expression of the polyoma virus middle T-
antigen in the mammary epithelium) in the presence of wildtype 
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tenascin-C or in a tenascin-C knock out setting (Talts et al., 
1999). There was no difference observed in tumor onset, 
angiogenesis or metastasis between the genotypes, but the 
authors observed an altered organization of the tumor tissue. In 
tenascin-C wildtype tumors ECM molecules such as fibronectin, 
collagen I, nidogen and fibulin-2 were arranged in continuous 
long tracks whereas they were assembled in shorter matrix 
patches in the tenascin-C knock out background. These struc-
tures might represent matrix channels that were subsequently 
identified by others in metastasizing melanomas (Kaariainen 
et al., 2006, see below). In contrast to melanomas, where the 
tenascin-C matrix channels seem to promote metastasis, other 
mechanisms might exist to promote metastasis in mammary 
gland tumors, in the absence of tenascin-C. It was also noted 
that tenascin-C knock out breast carcinomas are significantly 
more infiltrated by activated macrophages (Talts et al., 1999). 
Since M2 macrophages promote tumor metastasis (Mantovani 
et al., 2008) it is possible that this species is increasingly at-
tracted to the tissue that lacks tenascin-C. Previously it was 
shown that tenascin-C inhibits T lymphocyte adhesion to 
fibronectin (Hauzenberger et al., 1999) and activation (Puente 
Navazo et al., 2001). Thus, it is possible that in the tenascin-C 
knock out mammary gland carcinomas the inhibitory effect of 
tenascin-C is absent and this situation allows the attraction of 
macrophages. The reason why this would only affect a subset 
of macrophages needs to be addressed in the future. 

In Balb/c-nude mice lacking tenascin-C, subcutaneously 
xenografted human melanoma cells made smaller tumors 

tenascin-C and fibronectin in several different carcinomas using 
antibodies specific for different splice variants (Berndt et al., 2010). 
Both proteins were generally present in the vessel wall, with fibro-
nectin being preferentially localized at the luminal side and tenascin-
C at the extraluminal side of the vascular basement membrane. 
Interestingly, tumour vessels showed a heterogenous positivity for 
oncofetal fibronectin and tenascin-C variants, with some vessels 
lacking both proteins, some vessels exclusively positive for fibro-
nectin or tenascin-C, and other vessels surrounded by both matrix 
proteins. As an example, expression and partial colocalization of 
c-fibronectin variants and tenascin-C in a murine RT2 insulinoma is 
shown (Fig. 3). This stratified pattern clearly suggests a temporally 
and spatially regulated expression of these ECM proteins in the 
tumor vasculature and may reflect different maturation states of the 
vessels. In the study by Berndt et al., fibronectin was expressed 
by endothelial cells and carcinoma associated fibroblasts (CAFs) 
whereas tenascin-C was abundantly produced by carcinoma cells. 
It will be important to identify which cell types in various cancer 
tissues express tenascin-C and fibronectin with different domain 
structures. Further, it remains to be determined whether tenascin-C 
and c-fibronectin variants with different domain compositions fulfill 
distinct roles in tumor angiogenesis. 

Some light was shed on these questions by RNA expression 
analysis in breast cancer tissue. Amongst the more than 500 theo-
retically possible splice variants only 2 or 3 are usually expressed in 
cancer tissue, and these differ between cancers of different organs 
(reviewed in Orend, 2005). In invasive breast cancer, the authors 
found a prominent expression of a tenascin-C molecule with extra 
repeats B and D that is derived from the tumor cells, whereas a 
tenascin-C molecule only expressing the D domain appears to 
be expressed by carcinoma associated fibroblasts (reviewed in 

Fig. 3. Colocalization of fibronectin and tenascin-C in the tumor vasculature. 
(A-D) Tenascin-C and fibronectin expression in tumors. Coexpression of total 
fibronectin (A), FN-EDA (B,C) or FN-EDB (D) and tenascin-C in fibrils of an RT2 
tumor (Gasser and Orend, unpublished). The anti FN-EDB antibody was kindly 
provided by Dr. A. K. Olsson (Uppsala University, Sweden). Scale bar 20 mm 
(A,C) and 100 mm (B,D). Note the fibrillar organization of both molecules and 
their close apposition in tube-like structures, presumably representing blood 
vessels and/or matrix tubes.

(Tanaka et al., 2004). In this model blood vessels were visualized 
by immunofluorescence upon injection of rhodamine-labeled gela-
tin, which allows selective visualization of perfused vessels that 
arise through sprouting angiogenesis. Despite a lack of quantita-
tive data, the authors showed in tissue stainings that the arising 
tumor vasculature is reduced in the absence of host tenascin-C. 
They link this to reduced VEGFA expression in the tumor tissue. 
Although the melanoma cells exhibit strong tenascin-C expres-
sion, this does not appear to have a significant impact on VEGFA 
levels in the tumor. These data suggest that tenascin-C made by 
stromal cells has a major impact on VEGFA expression and that 
this mechanism potentially accounts for the angiogenesis promot-
ing effect of tenascin-C (Tanaka et al., 2004). 

Effects of fibronectin and tenascin-C on the vasculature 
in tumors and in other pathological tissues

Similar to fibronectin, tenascin-C is only weakly expressed, 
or undetectable, in the ECM of quiescent vasculature. However, 
following vessel injury, tenascin-C and fibronectin are highly 
upregulated. Tenascin-C expression is strongly associated with 
sites of vascular remodeling during dermal tissue repair (Betz et 
al., 1993; Fassler et al., 1996; Latijnhouwers et al., 1996; Mackie 
et al., 1988). Tenascin-C expression is also highly associated with 
angiogenesis in a wide range of disease states, including diabetes, 
aortic aneurysm (Castellon et al., 2002; Jallo et al., 1997; Paik 
et al., 2004), artherosclerosis (Fischer, 2007), ulcerative colitis 
(Dueck et al., 1999), inflammatory bowel disease (Geboes et al., 
2001), Crohn‘s disease (Riedl et al., 2001), vasculitis (Gindre et 
al., 1995) and cancer. 

Recently, Berndt and collaborators reported the distribution of 
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Guttery et al., 2010).
During tissue neovascularization, endothelial cells undergo 

pro-angiogenic activation, and assume a migratory morphology 
(Carmeliet, 2000; Ingber, 2002). Tenascin-C may promote tumor 
angiogenesis through several mechanisms, such as by serving 
as a chemoattractant for endothelial cells by initiating endothelial 
cell differentiation, or by promoting survival and proliferation. In 
vitro, tenascin-C is specifically upregulated by sprouting and cord 
forming bovine aortic endothelial cells but not by non-sprouting 
(i.e., resting) cells (Canfield and Schor, 1995; Schenk et al., 1999). 
This angiogenic phenotype is inhibited when cells are grown in the 
presence of anti–tenascin-C antibodies, suggesting that the transi-
tion from a resting to a sprouting phenotype may be promoted by 
tenascin-C (Canfield and Schor, 1995). Indeed, soluble tenascin-C 
reduces focal adhesions in endothelial cells (Chung et al., 1996; 
Murphy-Ullrich et al., 1991) and enhances endothelial cell migra-
tion (Chung et al., 1996). These events appear to involve integrin 
avb3, FAK and Prx1 amongst other, not yet identified, molecules 
(reviewed in Orend and Chiquet-Ehrismann, 2006). 

Counter-adhesive activities of fibronectin and tenascin-C

Shortly after its discovery in the early 1980s as myotendinous 
antigen (Chiquet and Fambrough, 1984), as glioma-mesenchymal 

extracellular matrix molecule (GMEM) (Bourdon et al., 1983) and 
as neuronal protein janusin J1 (Faissner et al., 1988) it was noted 
that tenascin-C can bind to fibronectin (Chung et al., 1995; Lightner 
and Erickson, 1990). Since then, several reports have extended 
this finding although some controversy exists whether the long 
and/or the short form of tenascin-C (i.e. including or lacking the 
alternatively spliced fibronectin type III repeats, respectively) 
(Chiquet-Ehrismann et al., 1991; Chung et al., 1995; Huang et 
al., 2001) have different affinities for fibronectin. All three heparin 
binding domains seem to bind tenascin-C, with Hep-I being cryptic 
and exhibiting low affinity (Ingham et al., 2004). Tenascin-C binds 
to the Hep-III domain in fibronectin, but it is not known whether 
this interaction competes with binding of cell adhesion receptors. 
Binding of tenascin-C to the fibronectin-Hep-II domain blocks 
cell spreading (Chiquet-Ehrismann et al., 1991; Huang et al., 
2001; Midwood et al., 2004a; Orend et al., 2003) and fibronectin 
fibrillogenesis (To and Midwood, 2010) through competition with 
syndecan-4. The Hep-II domain serves as coreceptor for the major 
fibronectin binding integrin a5b1 (Fig. 4 A,B). The exact binding 
site in fibronectin has been mapped to the 13th fibronectin type III 
repeat within the Hep-II domain, and a peptide representing 10 
amino acids of the cationic craddle rescued tenascin-C induced 
cell rounding (Huang et al., 2001; Orend et al., 2003). Activation 
of syndecan-4 signaling induced upon ectopic expression of syn-

Fig. 4. Inhibition of syndecan-4 by tenascin-C. (A) 
Cells activate integrin a5b1 and syndecan-4 upon ad-
hesion to their respective binding sites in fibronectin 
(FN type III repeats 9 and 10, and 13, respectively). 
This induces formation of focal adhesions. Crucial 
steps in cell spreading are phorphorylation of focal 
adhesion kinase (FAK) and paxillin and GTP loading 
of RhoA. Consequently, G-actin is polymerized into 
F-actin and cells spread on fibronectin. (B) Tenascin-C 
binds to the 13th FN type III repeat in fibronectin 
thus competing for cell binding to this domain. This 
mechanism applies to tumor cells and fibroblasts, 
but has yet to be addressed in endothelial cells. 
In the presence of tenascin-C, FAK and paxillin 
stay unphosphorylated and RhoA remains inactive 
(Huang et al., 2001, Midwood and Schwarzbauer, 
2002). No focal adhesions or actin stress fibers 
are formed. The rounded cell shape translates into 
altered gene expression and causes repression of 
alpha tropomyosin (aTM) and Dickkopf-1 (DKK1) 
as well as induction of endothelin receptor type A 
(EDNRA) amongst changes in expression of several 
other genes (Ruiz et al., 2004). (C) The rounded cell 
shape can be reverted on a fibronectin/tenascin-C 
substratum upon activation of syndecan-4 with a 
peptide (pep I) that mimics the cationic craddle in 
syndecan-4 or upon overexpression of syndesmos, 
a molecule that binds to the cytoplasmic tail of syn-
decan-4 and provides a molecular bridge in the focal 
adhesions to proteins binding to integrins (Baciu et 

al., 2000; Lange et al., 2008; Orend et al., 2003). Inhibition of EDNRA with BQ123 also induces cell spreading (Lange et al., 2007). Combined signaling 
from platelet derived growth factor (PDGF) and the lysophosphatidic acid (LPA) and by endothelin receptor type B (EDNRB) involving the EGFR induce 
cell spreading on the mixed fibronectin/tenascin-C substratum. Signaling by these molecules induces focal adhesion and actin stress fiber formation 
although with a cell shape that is particular for each treatment. Nevertheless, repression of aTM is ablated and tropomyosins 1-3 are expressed to 
stabilize actin stress fibers (Lange et al., 2007; Lange et al., 2008). Regulation of aTM is crucial for cell spreading on fibronectin since its knock down 
inhibits cell spreading on fibronectin and interferes with restored cell spreading on the fibronectin/tenascin-C substratum upon treatment with pep I 
and activation of LPA receptors and PDGF receptors or EDNRB (Lange et al., 2007; Lange et al., 2008). 
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decan-4 (but not of syndecan-1 or –2) rescued tenascin-C-inhibited 
cell spreading on fibronectin (Huang et al., 2001; Midwood et al., 
2004b; Orend et al., 2003) as did overexpression of syndesmos, 
a molecule that binds to the cytoplasmic tail of syndecan-4 and 
triggers downstream signaling (Lange et al., 2008, Fig. 4C). The 
major binding site for fibronectin-Hep-II may reside in the 6-8 fibro-
nectin type III repeats of tenascin-C as was deduced from antibody 
blocking experiments (Chiquet-Ehrismann et al., 1988; Riou et al., 
1990). This is now supported by a recent report demonstrating 
that memprinb-cleaved tenascin-C loses its anti-adhesive prop-
erties in a fibronectin context (Ambort et al., 2010). The authors 
showed that memprinb cleaves within the 7th fibronectin type III 
repeat of tenascin-C thus destroying this interaction site, and that 
memprinb-cleaved tenascin-C does not interfere with cell spreading 
on fibronectin (Ambort et al., 2010). Inhibition of syndecan-4 by 
tenascin-C prevents focal adhesion formation, blocks activation of 
FAK and paxillin and has a strong negative impact on expression 
and protein stability of RhoA and tropomyosin 1–3 (Lange et al., 
2007; Lange et al., 2008), and Rho activation (Midwood et al., 2006). 
The effect on the cytoskeleton appears to be instrumental in cell 
rounding by tenascin-C since ectopic expression of tropomyosin-1, 
an actin stress fiber stabilizing molecule with tumor suppressor 
activity, restores cell spreading which is linked to FAK and paxillin 
phosphorylation (Lange et al., 2007). 

Binding of tenascin-C to the Hep-II domain of fibronectin can also 
have implications for angiogenic growth factor signaling. Indeed, 
it has been shown using molecular and biochemical approaches 
that several growth factors (up to 25, including VEGF, HGF, FGF-2, 
PDGF-BB and TGF-b1) bind to this domain (see (Hynes, 2009; Mar-
tino and Hubbell, 2010). Moreover, fibronectin-Hep-II-bound growth 
factors are even more potent than their un-bound counterparts in 
triggering capillary morphogenesis of endothelial cells in fibrin gels 
(Martino and Hubbell, 2010). Although not shown in endothelial 
cells, cellular responses to tenascin-C can be modulated by growth 
factors. Thus, in fibroblasts and tumor cells growth factor signaling 
can override the necessity of syndecan-4 in fibronectin-induced cell 
spreading. Combined signaling from LPA and PDGF-BB (but not 
from each factor alone) restores cell spreading on a fibronectin/
tenascin-C substratum even in cells that lack syndecan-4 (knock 
out) in a PI3K- and MEK-dependent manner, and this is linked to 
restored high expression of tropomyosins 1-3 and RhoA (Lange 
et al., 2008, Fig. 4C). Again, high levels of tropomyosin 1-3 are 
essential since sh-mediated knock down of the tropomyosins 1, 2 
and 3 counteracts LPA/PDGF-BB-induced cell spreading on the 
fibronectin/tenascin-C substratum (Lange et al., 2008). 

Adhesion to a fibronectin/tenascin-C substratum also has long 
term consequences as revealed by RNA profiling (Ruiz et al., 2004). 
In particular, 12h after plating, endothelin receptor type A (EDNRA) 
is induced 5-fold, and, signaling through this receptor maintains 
cell rounding by tenascin-C since it is blocked by a specific ED-
NRA inhibitor. EDNRA associated cell rounding occurs in a MEK-
dependent manner and EDNRA inhibition causes cell spreading 
with activation of FAK and restoration of tropomyosin and RhoA 
levels (Fig. 4 B,C). These studies also reveal that, depending on 
the receptors present on the membrane, interactions with tenascin-
C can be interpreted very differently. In particular, in contrast to 
EDNRA signaling that induces tenascin-C cell rounding, activation 
of EDNRB restores cell spreading through a different pathway that 
does not involve MEK but does involve EGFR, PLCg, PI3K and 

JNK (Lange et al., 2007, Fig. 4C). Thus, whether cells respond to 
a fibronectin/tenascin-C matrix by rounding or spreading appears 
to be highly regulated and may have an impact on cell function, 
tissue stiffness and vessel diameter. Both endothelin receptors play 
an important role in modulating blood pressure and are linked to 
high blood pressure in heart disease and artherosclerosis (Nguyen 
et al., 2010). Since tenascin-C is expressed in diseased heart 
tissue and artherosclerosis, it remains to be determined whether 
tenascin-C-associated EDNRA signaling plays a role in blood pres-
sure regulation that has an impact in heart diseases. 

Tenascin-C potentially plays a role in EDNRA-associated events 
involving angiogenesis, e.g., in ovarian cancer progression. Primary 
and metastatic ovarian cancer cells not only overexpress tenascin-C 
(Wilson et al., 1999; Wilson et al., 1996) but also EDNRA and its 
ligand endothelin-1 (ET1) (Rosano et al., 2001). EDNRA signaling 
contributes to tumor angiogenesis presumably through stabilization 
of HIF-1a, induction of VEGFA (Grimshaw, 2007) and b-arrestin-
linked Wnt signaling (Rosano et al., 2001).

A tenascin-C – EDNRA axis might also be relevant in tumor 
cell migration and tumor lymphangiogenesis (Cueni et al., 2010). 
Tumors derived from xenografted breast adenocarcinoma cells 
that ectopically express the orphan receptor podoplanin induce 
lymphatic vessels, whereas this was not observed in tumors of 
control cells with low or no podoplanin expression. RNA profil-
ing of microdissected areas of the invading tumor front revealed 
overexpression of tenascin-C, ET1 and the ERM member villin. 
Previously it was shown that binding of the ERM family member 
ezrin to the cytoplasmic tail of podoplanin induces filopodia which 
was linked to collective tumor cell migration (Wicki et al., 2006). 
These results suggest that ET1 signaling may induce migration 
on a tenascin-C substratum by podoplanin through its link to the 
actin cytoskeleton. 

In addition to EDNRA, Wnt signaling is also induced in glioblas-
toma cells on a fibronectin/tenascin-C substratum. In particular, 
DKK1 is repressed, b-catenin stabilized and Wnt targets such 
as Id2 are induced (Ruiz et al., 2004). This observation could 
be relevant in glioblastomas where a high expression of Id2 and 
tenascin-C correlated with malignancy (Ruiz et al., 2004). Given 
that Wnt signaling is instrumental in angiogenesis, by triggering 
endothelial cell proliferation and sprouting (reviewed in Franco et 
al., 2009), it remains to be determined whether tenascin-C pro-
motes angiogenesis through Wnt signaling. Since EDNRA and 
Wnt signaling are linked through b-arrestin (Rosano et al., 2009) 
and through ET1-induced DKK1 repression (Clines et al., 2007) it 
is possible that tenascin-C enhances this cross-talk by activating 
both pathways.

Organization of fibronectin and tenascin-C into matrices

Fibronectin assembly and angiogenesis
Fibrillar organization is a key feature of the ECM. Many of the 

functions of fibronectin depend not only on its linear sequence but 
on the 3-dimensional structure of the protein and its assembly into 
a functional fibrillar matrix (see Mao and Schwarzbauer, 2005). Due 
to its compact conformation, fibronectin does not form fibrils in solu-
tion. Rather, fibril assembly is a cell-driven process in which a5b1 
integrin plays a major role (recently reviewed in Singh et al., 2010) 
and shown diagrammatically in Fig. 5). Importantly, soluble fibro-
nectin selectively binds to a5b1 integrin, and not other RGD-binding 
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integrins (Huveneers et al., 2008). Hence, bloodborne p-fibronectin 
in quiescent vessels is segregated from a5b1 integrins, located on 
the abluminal surface of endothelial cells. Studies to elucidate the 
mechanisms of fibronectin fibrillogenesis in endothelial cells have 
revealed a determinant role for ILK in this process (Vouret-Craviari 
et al., 2004). ILK, an integrin beta subunit adaptor, regulates actin 
dynamics and fibronectin fibrillogenesis by recruiting actin-binding 
regulatory proteins such as a-parvins and tensin (Legate et al., 
2006; Stanchi et al., 2009) involved in generating acto-myosin 
contractility for fibril growth. More recently, loss of function studies 
have revealed that fibronectin fibrillogenesis in endothelial cells 
is a cell autonomous process, wherein basally directed secretion 
of autocrine fibronectin is tightly coupled to fibronectin assembly 
and cadherin-based junction formation (Cseh et al., 2010). These 
results highlight the importance of spatial and temporal regulation 
of c-fibronectin expression and they support a model in which the 
induction of cellular c-fibronectin expression by angiogenic factors 
triggers the deposition of a perivascular fibrillar matrix.

One example of how transient c-fibronectin expression partici-
pates in a “pro-angiogenic switch” comes from elegant studies on 
vascular patterning in the developing retinal vasculature (Gerhardt 

et al., 2003; Jiang et al., 1994; Uemura et al., 2006). During this 
process, blood vessels use the existing astrocyte network as a 
template, and fibronectin is the principal component of the astro-
cyte-derived extracellular scaffold. Upon contact with the growing 
blood vessels, fibronectin expression becomes dramatically down 
regulated in the astrocytes and turned on in the endothelial cells 
that deposit fibronectin matrices. It should be interesting to examine 
the expression and localization of tenascin-C in this model. 

Once assembled, fibronectin fibrils provide a scaffold for the 
assembly of a growing list of matrix proteins, including fibrillar 
collagens, thrombospondin-1, fibulin-1, fibrinogen, fibrillins and 
tenascin-C (reviewed in Dallas et al., 2006). Further, fibronectin 
interactions can impact higher order fibrils and matrix rigidity by 
bringing together cross-linking enzymes such as tissue transglu-
taminase (Mosher et al., 1980) and lysyl oxidase (Fogelgren et 
al., 2005) as well as their activators (e.g., Bone Morphogenetic 
Protein-1) and substrates (e.g., procollagen, biglycan and chordin, 
Huang et al., 2009).

Fibronectin and tenascin-C co-assemble into a matrix
Apart from the a5b1 integrin, other fibronectin-binding integrins 

Fig. 5. Fibrillar organization of c-fibronection in endothelial cells and mechanisms of assembly. 
(A,B) Immunostaining of fibronectin in bovine aortic endothelial cells plated on adsorbed p-fibronectin 
(left) or non-coated (right) coverslips. Upon adsorption, fibronectin undergoes conformational changes 
(stretch-induced “activation”) that modify its interaction with other proteins (e.g. cellular receptors, ECM 
components) and affect its biological activity. Note the increase in stress fiber formation in cells plated 
on a dense carpet of p-fibronectin. Scale bars 20mm. (C) Sequence of events involved in fibronectin 
assembly. Work from numerous laboratories have contributed to the understanding of fibrillogenesis 
that can be summarized as follows (for a detailed review see Singh et al., 2010. Binding of secreted 
c-fibronectin to inactive a5b1 integrins (bent conformation) leads to integrin activation, clustering, and 
recruitment of integrin effectors, such as ILK, PINCH, parvin (IPP complex, (Legate et al., 2006)) and 
tensin that mediate cytoskeletal linkage and actin crosslinking. Acto-myosin-generated contractility 
“streches” the integrin-bound fibronectin, thereby exposing cryptic self-assembly sites and fibrillogen-
esis proceeds as integrins translocate along paths of growing fibrils.
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have been reported to promote fibrillar 
assembly, albeit less efficiently (see 
Leiss et al., 2008). Fibronectin matrix 
is also regulated by molecules that 
affect integrin expression or function, 
including transmembrane molecules 
(e.g., syndecans 2 and 4, the receptor 
for urokinase-type plasminogen activa-
tor, CD98hc, VEGFR1 and neuropillin), 
intracellular proteins (e.g., the tumor sup-
pressor von Hippel-Lindau protein) or ex-
tracellular components (e.g., extracellular 
Alix ALG-2-interacting protein X). With 
regard to functional interactions between 
fibronectin and tenascin-C that impact 
matrix formation, they are likely to involve 
effects on the fibronectin matrix mediated 
by syndecans 2 and 4, and regulation of 
intracellular signaling events that accom-
pany fibronectin binding to integrins, as 
mentioned above. Proteoglycans, such as 
decorin and periostin, known to modulate 
fibronectin matrix assembly (Kii et al., 
2010; Kinsella et al., 2000) are essential 
for matrix incorporation of tenascin-C 
(Chung and Erickson, 1997; Kii et al., 
2010). It is known that tenascin-C can 
bind to purified fibronectin and co-localize 
with fibronectin fibrils on the surface of 
cultured cells (e.g., Ramos et al., 1998). 
A recent study in fibroblasts involving 
the use of recombinant tenascin-C do-
mains demonstrated an inhibitory effect 
of tenascin-C domain III 1-8 (fibronectin 
type III domains 1-8) on the formation of 
an insoluble fibronectin matrix, whereas 
the full length protein was without effect 
(To and Midwood, 2010). These data 
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suggest that conformational changes may expose fibronectin-
tenascin-C interaction sites that are important for regulation of 
matrix assembly in vivo.

Tenascin-C and fibronectin in tumor matrix tubes
In breast cancer tissue tenascin-C causes remodeling of the 

matrix. This effect, apparent at first glance by disruption of the 
basement membrane, can be seen in tumors and in cultured 
mammary epithelial cells. Using a 3-dimensional model of breast 
tumor cells, Taraseviciute and colleagues showed that tenascin-C 
interferes with basement membrane assembly in a c-Met dependent 
manner. In presence of tenascin-C the mammary epithelial cells 
proliferate and fill the acini lumen (Taraseviciute, 2009). In cancer 
tissue, the expression of tenascin-C is frequently not homogenous. 
Rather, it accumulates in matrix tracks as seen in the tissue of 
malignant melanomas (Kaariainen et al., 2006), breast (Degen et 
al., 2007) and colorectal carcinomas (Degen et al., 2008). In the 
case of melanomas, the combined high expression of tenascin-C 
and fibronectin, amongst other factors, was found to discriminate 
between metastatic and non-metastatic malignancies. The switch 
to an invasive phenotype was associated with the presence of 
tenascin-C and fibronectin, colocalized with laminin and procollagen 
in tubular channels containing tumor cells, but not blood endothe-
lial or lymph endothelial cells (Kaariainen et al., 2006). In another 
study gene profiling revealed a panel of ECM molecules, includ-
ing tenascin-C, several laminins, and collagens that were highly 
expressed in metastatic breast cancers from MMTV-VEGF/c-myc 
transgenic mice, whereas their expression was largely reduced or 
undetectable in non-metastatic c-myc-induced tumors (Calvo et al., 
2008). These studies suggest that a combined high expression of 
distinct ECM molecules, including tenascin-C and fibronectin, and 
their assembly in matrix channels, is somehow linked to metastasis. 

The existence of vessel-like structures that are distinct from 
blood and lymphatic vessels has been known for a long time 
and was described as vasculogenic mimicry (VM) (Hendrix et al., 
2003). VM is characterized by the large absence of endothelial 
cells and by staining with PAS (Periodic Acid Schiff reagent), which 
identifies proteoglycans with glycosaminoglycan residues present 
in the ECM without further information on the molecular nature of 
these proteoglycans. It is likely that the matrix tubes that contain 
tenascin-C and fibronectin described in melanomas (Kaariainen 
et al., 2006) are part of the PAS-positive structures that are char-
acteristic of VM. In a large number of different cancers including 
melanoma, uveal melanomas, colorectal carcinoma, ovarian 
carcinoma (summarized in Kucera and Lammert, 2009) and astro-
cytoma (El Hallani et al., 2010), VM is frequently associated with 
metastasis and bad prognosis. It is claimed that several forms of 
VM exist, which are classified according to the degree and nature 
of cells that associate with the ECM: no endothelial cells, patchy 
distribution of endothelial cells, tumor cells only, or a combination 
of both cell types. By comparing in vitro cultures of cancer cells that 
do or do not exhibit VM in vivo, several VM-associated molecules 
have been identified. These include g2 chain containing laminins, 
several metalloproteases (MMPs 1, 2, 9 and 14), Cox2, PI3K, 
EphA2, nodal and pigment epithelial derived factor, amongst a list 
of growing candidates (reviewed in Dome et al., 2007; Paulis et al., 
2010). Eventually, cells are found associated with matrix structures: 
melanoma cells, and erythrocytes in tenascin-C matrix channels 
(Kaariainen et al., 2006), and macrophages along collagen-rich 

tracks found in so called co-opted vessels (Pollard, 2008). Although 
matrix structures had been identified that appear to be different, 
more work is needed to clarify whether they are potentially part of 
the same matrix network. 

Currently there is little known about the functional significance 
of these matrix structures in respect to tumor angiogenesis and 
progression. However, there is experimental evidence that cancer 
cells can use the tenascin-C-containing matrix tubes to disseminate. 
In a coculture experiment of fibroblasts together with squamous 
carcinoma cells, the fibroblasts scouted their way through collagen-
enriched matrigel by degrading the ECM at the front. Tubes were 
left behind that were filled with fibronectin and tenascin-C. The 
squamous carcinoma cells invaded the matrigel by using these 
matrix tubes (Gaggioli et al., 2007). It was previously shown that 
carcinoma-associated fibroblasts or TGFb1 treated fibroblasts 
(differentiating into myofibroblasts) secrete tenascin-C into the 
collagen gels preparing a path for colorectal carcinoma cells to 
invade in a c-MET- and EGFR-dependent manner, involving activa-
tion of Rac and inhibition of RhoA (De Wever et al., 2004). They 
proved a crucial role of tenascin-C in these events since invasion 
was inhibited with an anti-tenascin-C antibody. Whether fibronectin 
plays a role in these structures is unknown, but likely.

Evolutionary development of endothelium-lined blood vessels in 
vertebrates seems to have followed laminin-based matrix tracks in 
invertebrates (Kucera et al., 2009) (Fig. 2). In amphioxus, laminin-
filled tubes are laid down as a scaffold in which a hole is drilled by 
cells of unknown origin to generate a coelom that allows blood to 
circulate (Kucera et al., 2009). As mentioned above the tenascin-C 
gene is present in amphioxus and it remains to be seen whether 
tenascin-C is part of this matrix circulation network. In co-cultures of 
endothelial cells with a macrophage cell line, where the endothelial 
cells deposit laminin, macrophages create a coelom-like cavity by 
partially digesting and clearing the ECM to generate space. Thus, 
it is possible that this ancient vessel program is turned on in tumors 
to establish the observed matrix-based networks. More informa-
tion about the composition of the matrix blood vessels in chordata 
and in human cancers is necessary to elucidate this possibility 
further. The observed tenascin-C matrix tubes in melanomas and 
other cancers may offer a route for dissemination of tumor and 
other cells through their continuum with blood vessels. They also 
potentially provide a scaffold to support growth of blood vessels. 
This possibility is interesting, considering that anti-angiogenic 
therapeutic approaches, despite efficient killing of the endothelial 
cells, fail in the long-run, and even promote tumor progression and 
earlier tumor metastasis (Paez-Ribes et al., 2009; Stockmann et 
al., 2008). Tenascin-C matrix tubes would not be affected by anti-
angiogenic drugs. Indeed, Fusenig and coworkers (Vosseler et al., 
2005) demonstrated that expression of tenascin-C in xenografts of 
squamous carcinoma cells is unchanged upon elimination of the 
endothelial cells with a VEGFA-targeting antibody. 

Matrix tubes containing tenascin-C are also present in a normal 
setting in mammals in so called reticular fibers of secondary lymphoid 
tissues such as lymph nodes, thymus and spleen (Lokmic et al., 
2008). They combine characteristics of basement membranes and 
fibrillar matrices, resulting in scaffolds that are strong and flexible, 
and in certain organs, such as the spleen and the thymus, form 
conduit networks for rapid fluid transport and cells (Lokmic et al., 
2008). In the thymus, the conduits exhibit a collagen core, a laminin 
wrapping and an outer lining of tenascin-C (Drumea-Mirancea et 
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al., 2006). Fibronectin is also part of the reticular fiber network 
(Sobocinski et al., 2010). Whether tenascin-C and or fibronectin are 
required for the formation and function of the conduits is not known. 

We speculate that a program may exist for the establishment 
of structured matrix that is potentially turned on inappropriately in 
cancer resulting in the described tenascin-C/fibronectin-containing 
matrix tubes. It is also tempting to consider that tubular matrix 
structures containing fibronectin and tenascin-C had developed 
once during evolution and were potentially further developed to fulfill 
other needs such as a transport system for maturing macrophages 
in reticular fibers, as scaffold for endothelial cell lined vessels and 
as an instructive matrix for branching morphogenesis. It will be 
important to understand how these matrix networks are created, 
and which signals induce their emergence. 

Lysyl oxidase, transglutaminase and other enzymes modifying 
fibronectin may be relevant in modulating interactions of fibronectin 
with tenascin-C and other matrix molecules. It is likely that mono-
meric rather than bulky hexameric tenascin-C is part of a dense 
tubular matrix network. Monomeric tenascin-C can be generated 
upon cleavage by several proteases that are abundant and active 
in cancer tissue. In particular, separation of the N-terminal part 
from the remainder of the molecule seems to result in the release 
of monomeric tenascin-C from the hexamer (Mackie, 1997). The 
N-terminal oligomerizing part of tenascin-C can be cleaved off 
by memprina and b (Ambort et al., 2010), pepsin (Chiquet et al., 
1991), trypsin (Fischer et al., 1995) and MMP7 (Siri et al., 1995). 

It will be necessary to determine what exact role tenascin-C 
plays in the matrix tubes in cancer. Recently, it was found that 
cancers are able to trick the immune system by using a chemokine 
signaling program that would mischievously tell the body that the 
tumor is a lymphoid tissue (Shields et al., 2010) and thus trigger 
tumor evasion. Given that lymphocytes use the reticular fiber sys-
tem to translocate within the lymphoid tissue and that tenascin-C 
and fibronectin are structural components of the reticular fibers it 
will be interesting to see whether these matrix molecules play a 
role in immune evasion in reticular fibers and in cancer. Assuming 
that ancient programs developed in evolution and are potentially 
involved in the creation of tubular matrix structures in mammals, 
it is intriguing to speculate that laminins and integrins may play 
an initial role followed by tenascin-C, fibronectin and other ECM 
molecules that were developed later during evolution.

Potential applications and outlook

Together, these data demonstrate that tenascin-C and fibronectin 
are key players in tumor angiogenesis and metastasis, and they 
represent attractive anti-cancer targets. Drugs targeting tenascin-C 
and c-fibronectin, or interactions with their cellular receptors are 
currently being developed, or have already reached clinical trials 
(reviewed in Desgrosellier and Cheresh, 2010; Midwood and Orend, 
2009; Pedretti et al., 2009; Schliemann and Neri, 2010). Novel 
approaches involving immunization against the EDB domain of 
c-fibronectin also may provide interesting alternative strategies for 
interfering with tumor angiogenesis and cancer growth (Huijbers et 
al., 2010). To optimize potential treatments, several questions related 
to the biology of these relatively new (evolutionarily speaking) ECM 
proteins remain to be further addressed. Many secrets appear to be 
hidden in their topographical organization, some of which may be 
revealed by comparing cancer tissue with embryonic tissue, and the 

ECM of different types of cancer. Beyond circumstantial evidence, 
do these molecules collaborate or counteract each other in induction 
of pro-angiogenic signaling and blood vessel remodeling? Does 
this occur through a receptor-mediated mechanism or indirectly 
e.g. by modulating signaling of proangiogenic growth factors? 
What are the mechano-regulatory mechanisms involved? How is 
their spatial regulation (different cells) and temporal regulation in 
tumors controlled? Do both molecules serve as chemoattractants 
for endothelial cells or their precursors? How are they involved in 
the recruitment of mural cells or cells of the hematopoetic system? 
Finally, do fibronectin and tenascin-C-containing matrix channels 
support regrowth of vessels in residual tumor tissue upon an 
anti-angiogenic therapy? Finding answers to these questions will 
require the complicity of many researchers. The answers should 
clarify the function of ECM in the evolution and development of 
vasculature, and should lead to the discovery of more effective 
therapies for fighting tumor growth and metastasis.
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