
 

Nervous vascular parallels: axon guidance and beyond
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ABSTRACT  The vascular and nervous systems are organized with well defined and accurate net-
works, which represent the anatomical structure enabling their functions. In recent years, it has 
been clearly demonstrated that these two systems share in common several mechanisms and 
specificities. For instance, the networking properties of the nervous and vascular systems are go-
verned by common cues that in the brain regulate axon connections and in the vasculature remodel 
the primitive plexus towards the vascular tree. Here, we summarize the role of semaphorins as a 
paradigmatic example of the role of axon guidance molecules in physiological and pathological 
angiogenesis. Finally, we discuss the presence in blood vessels of neurexin and neuroligin, two 
proteins that finely modulate synaptic activity in the brain. This observation is suggestive of an 
intriguing new class of molecular and functional parallels between neurons and vascular cells.
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Introduction

The development of the nervous system involves progressive 
and regressive actions. Progressive events like neural proliferation, 
neurite outgrowth, and synapse formation set up a broad pattern 
of neural connectivity. Later in development, however, regressive 
events such as cell death, axon pruning, and synapse elimination 
are necessary to refine the pattern to more precise and mature 
circuitry (Low and Cheng, 2006). Vascular development displays a 
number of similar features. The primitive vascular plexus originated 
from the migrating angioblasts undergoes a profound remodeling 
leading to the mature vascular trees. These morphogenetic events 
are characterized by pruning that enables removal of redundant or 
misguided capillaries and by generation of new vessels program-
med to differentiate into veins and arteries (Jain, 2003). The major 
driving force leading to these vascular rearrangements is oxygen 
delivery. Therefore arteries, veins and capillaries have specialized 
anatomical properties that allow the proper blood pressures along 
the vascular tree and the exchanges of nutrients and catabolites 
with tissues. Finally, the intercapillary distances in different organs 
are programmed accordingly to their partial oxygen pressure and 
the oxygen diffusion coefficient (~150 mm) (Pittman, 1995).

The similarities between vascular and nervous organogenesis 
appear indeed at different levels. A first and well established example 
is the role exerted by biogenic amines in neuron communication 
and vascular tone. More recently, common mechanisms have been 
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envisaged at the level of cell commitment and differentiation. In 
vitro, cells purified from bone marrow and cord blood can originate 
neurons and glia (Goolsby et al., 2003; Reali et al., 2006) whereas 
mouse neural stem cells acquire an endothelial phenotype when 
co-cultured with human mature endothelial cells (Wurmser et al., 
2004). In vivo, bone marrow-derived cells enter the brain and 
differentiate into neural cells not only in a mouse model, but also 
in patients that underwent bone marrow transplantation (Mezey 
et al., 2003). Moreover, murine neural stem cells can engraft into 
the hematopoietic system of irradiated hosts to produce blood 
(Bjornson et al., 1999) while in the quail-chick chimera model the 
avian cranial neuroectoderm originates smooth muscle cells (Korn 
et al., 2002). In addition, embryonic stem cell-derived Neuropilin-1 
positive cell population differentiates in vitro towards endothelial 
or neural phenotypes depending upon microenvironmental cues 
(Gualandris et al., 2009; Noghero et al., 2010). 

Finally, in the last 10 years several studies have thoroughly de-
monstrated that vascular cells and neurons share molecular tools 
and strategies during their networking (Adams and Alitalo, 2007; 
Carmeliet, 2003; Eichmann et al., 2005; Serini and Bussolino, 2004). 
Several and exhaustive reviews have focused the role of Netrin, 
Slit and Ephrin as axon guidance cues that function during vascular 
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assembly (Adams and Alitalo, 2007; Adams and Eichmann, 2010; 
Carmeliet, 2003; Eichmann et al., 2005; Gelfand et al., 2009; Serini 
and Bussolino, 2004) and that of angiogenic inducers in neuronal 
behavior (Greenberg and Jin, 2005; Zacchigna et al., 2008). Here 
we summarize the more recent aspects of semaphorins (SEMA) 
activities in vascular remodeling and envisage a new family of 
common features between neurons and vascular cells based on 
the role exerted by the synaptic proteins neurexin and neuroligin 
in the vascular system.

Semaphorins and vascular development

SEMA constitute a wide family of membrane bound and secreted 
guidance cues originally characterized for their ability to steer axon 
growth cones and then found to regulate vascular development as 
well (Ruiz de Almodovar et al., 2009). In vertebrates, seven different 
secreted class 3 SEMA (SEMA3) exist, each SEMA3 protein being 
assigned a letter from A to G (Committee, 1999). SEMA3 signal 
through a holoreceptor complex formed by neuropilin (Nrp)1 or 2 
and type A or D plexin, which respectively constitute the ligand 
binding and signal transducing subunit (Neufeld and Kessler, 
2008). The multifaceted SEMA-elicited plexin signaling is a key 
regulator of cell adhesion and cytoskeletal dynamics in motile cells 
during neural, vascular, and epithelial morphogenesis (Jackson and 
Eickholt, 2009; Serini and Bussolino, 2004). Different SEMA3 can 
preferentially bind either Nrp1, e.g. SEMA3A, or Nrp2, for example 
SEMA3F, while others, such as SEMA3C, bind both Nrp1 and Nrp2 
(Neufeld and Kessler, 2008). Moreover, distinct SEMA3 employ 
different type A or type D plexins to transduce their signals; for 
example, in neurons SEMA3A and SEMA3F principally use plexi-
nA4 and A3 respectively (Yaron et al., 2005). PlexinD1 is the major 
endothelial plexin and among the different SEMA3, SEMA3E is a 
notable exception, since it can bind with high affinity plexinD1 (Gu 
et al., 2005). However, plexinD1 can also combine with either Nrp1 
or Nrp2 to give rise to SEMA3 holoreceptor complexes endowed 
with a higher affinity than the corresponding plexinA-containing 
holoreceptors (Gitler et al., 2004). Furthermore, recent mutational 
studies (Merte et al., 2010; Nogi et al., 2010) suggest that, similarly 
to SEMA3E, the collapsing activity of Nrp1-bound SEMA3A also 
relies on its ability to interact, albeit at lower affinity, with plexins.

After a decade of studies, we are just starting to understand the 
mechanisms by which SEMA3 signaling can control vascular deve-
lopment. Indeed, this issue is complicated by the species-specific 
usage of different SEMA3 and by the high degree of redundancy 
and compensation. Zebrafish sema3a1 or sema3a2 or plxnd1 
morphants display a qualitatively similar aberrant and unrestrained 
morphogenesis of intersegmental blood vessels, suggesting that 
SEMA3A via plexinD1 can exert an inhibitory effect on endothelial 
cell migration during vascular development (Torres-Vazquez et 
al., 2004). On the contrary, in sema3e morphants the sprouting of 
intersomitic blood vessels is severely delayed; indeed, autocrine/
paracrine Sema3e promotes endothelial cell (EC) motility likely 
through plexinB2 receptor (Lamont et al., 2009).

In mice, the regulation of vascular development by SEMA3 sig-
naling appears to be different and more complex than in Zebrafish. 
Murine Sema3a and Sema3f mRNAs are enriched in endothelial 
tip cells of sprouting blood vessels (Strasser et al., 2010) and 
knockdown of Sema3a gene resulted in a defective embryonic 
vascular remodeling of head and trunk blood vessels in the outbred 

CD-1 strain (Serini et al., 2003). Ostensibly because of genetic 
heterogeneity due to different maintenance this was not observed 
in another colony of Sema3a null CD-1 mice (Vieira et al., 2007). 
However, in further support for a role of SEMA3A in vascular 
remodeling, it has been recently reported that Sema3a deletion 
in an inbred strain results in defective renal vascular patterning 
(Reidy et al., 2009). Notably, in the same Sema3a null mice both 
Sema3b and Sema3e mRNA were found to be up-regulated (Rei-
dy et al., 2009), thus providing a molecular mechanism by which 
compensation can occur in Sema3a null mice (Vieira et al., 2007). 
Indeed, both Sema3e and Plxnd1 null embryos have defects in 
intersomitic vessel patterning (Gitler et al., 2004; Gu et al., 2005). 
Nevertheless, while all Plxnd1-/- pups die shortly after birth because 
of life-threatening cardiovascular defects (Gitler et al., 2004; Gu 
et al., 2005), Sema3e null mice are viable and healthy (Bellon et 
al., 2010; Chauvet et al., 2007; Gu et al., 2005); suggesting that 
in ECs plexinD1 might convey signals not only from SEMA3E, but 
also from other Nrp-binding SEMA3, such as SEMA3A. Accordingly, 
plexinD1 is required for SEMA3A-mediated EC migration in vitro 
(Zhang et al., 2009) and both Sema3a (Behar et al., 1996) and 
Plxnd1 (Kanda et al., 2007) null embryos display similar defects 
in axial skeletal morphogenesis, such as rib fusion and vertebral 
split. Recently, a Tie2Cre-mediated gene inactivation approach 
showed endothelial knock down of Plxnd1 in mice causes skeletal 
malformations that are associated to a severe reduction of the bone 
marrow microvasculature (Zhang et al., 2009), strongly supporting 
the hypothesis that skeletal defects of Plxnd1 null mice are most 
likely secondary to vascular abnormalities. Since Sema3a gene 
deletion causes similar abnormalities in the axial skeleton (Behar 
et al., 1996), it will be worth studying the bone vasculature of 
Sema3a-/- mouse embryos as well.

A knock-in mouse strain harboring mutations that altered the 
SEMA3 binding ability of Nrp1 was generated (Nrp1Sema-) and 
reported to display neural, but not vascular patterning defects (Gu 
et al., 2003). However, a careful analysis of some peripheral nerve 
projections, such as those of the ophthalmic nerve, shows that 
the phenotype of Nrp1Sema- knock-in mice (Gu et al., 2003) is 
significantly less severe than that of both Sema3a (Taniguchi et al., 
1997) and Nrp1 (Gu et al., 2003; Kitsukawa et al., 1997) knockout 
mice. The latter observation, together with the fact that plexinD1, 
i.e. the main endothelial plexin, is significantly more efficient that 
type A plexins in increasing the affinity of Nrps for SEMA3 (Gitler 
et al., 2004), raises the possibility that the lack of vascular defects 
in Nrp1Sema- knockin mice could be due to the persistence of 
responsivity of ECs to SEMA3, albeit reduced if compared to that 
of wild type Nrp1. It will be therefore important to test the ability 
of Nrp1Sema- ECs to respond to Nrp1-binding SEMA3 in vitro.

Semaphorins and tumor angiogenesis

The capacity of semaphorins to regulate vessel patterning is 
particularly relevant to cancer progression and in general to the alte-
red vascularization occurring, for example, in chronic inflammation. 
SEMA3 emerge as promising targets for cancer therapy. Indeed, 
molecules belonging to this class of chemorepulsive agents can 
display a direct effect of both on tumor cells; e.g. SEMA3F inhibits 
the growth of a wide range of xenograft cancer models (Neufeld 
and Kessler, 2008; Potiron et al., 2007), and on ECs, e.g. SEMA3A 
and SEMA3F repel ECs and inhibit their migration promoted by 
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angiogenic inducers (Bielenberg et al., 2004; Futamura et al., 2007; 
Kessler et al., 2004; Serini et al., 2003). Several SEMA3, including 
SEMA3A and SEMA3F, are expressed by ECs, suggesting that they 
may function in an autocrine fashion. This autocrine production of 
chemorepulsive SEMA3 molecules is balanced by the autocrine 
production of angiogenic inducers, with the final results of a proper 
vessel navigation and shape (Serini et al., 2008). An imbalance in 
the ratio of autocrine VEGF-A/SEMA3 in ECs might happen during 
tumor progression and contribute to the structural and functional 
defects observed in tumor blood vessels (Jain, 2008). By studying 
two mouse transgenic models of carcinogenesis, namely Rip-Tag 
insulinoma model and K14-HPV16/E2 uterine cervix carcinoma as 
well as patients affected by aggressive multiple myelomas (Maione 
et al., 2009; Vacca et al., 2006), we observed that such an ho-
meostatic balance can be disrupted due to a dramatic drop in the 
production of SEMA3 by tumor ECs. Importantly, we found that the 
reintroduction of SEMA3A caused marked endothelial apoptosis, 
significant reduction in vessels density and branching, enhance-
ment of pericyte coverage and reduction of tumor tissue hypoxia 
(Maione et al., 2009). Of note, the normalizing activity exerted by 
SEMA3A on tumor blood vessels is similar, but apparently longer 
lasting than that observed upon VEGF-A inhibition (Jain, 2005). 
Interestingly, another member of SEMA class 3, SEMA3E, inhibits 
tumor angiogenesis and the growth of primary tumor, but it favors 
metastasis spreading (Casazza et al., 2010). In addition, SEMAs 
other than SEMA3 has been found to modulate tumor angiogenesis. 
For instance, SEMA4D behaves as a pro-angiogenic factor (Basile 
et al., 2005; Basile et al., 2007; Conrotto et al., 2005; Sierra et al., 
2008) which is also involved in tumor progression. In particular, 
it has been reported that tumor growth is significantly impaired in 
mice lacking Sema4D (Sierra et al., 2008); tumor associated ma-
crophages constitutes a major source of Sema4D that is required 
for proper vessel maturation in tumors.

Neurexin and neuroligin: synaptic proteins tackle vas-
culature

It was recently discovered (Bottos et al., 2009) that various iso-
forms of the essential synaptic proteins neurexins and neuroligins 
are expressed by cells of the vascular wall (endothelial and smooth 
muscle cells). In this context, in analogy to the brain, they are mo-
dified by alternative splicing and reciprocally interact. Moreover, 
an antibody against a specific isoform of neurexin (anti- b NRXN) 
inhibits vascular remodeling/angiogenesis, whereas the overex-
pression of neuroligin in ECs placed in a tumorigenic environment 
induces vessel growth in the chicken chorioallantoic membrane. 
As an insight into its mechanism of action it was demonstrated 
that anti-b NRXN modulates vascular tone of isolated arteries by 
reducing vessel tension induced by noradrenalin. 

Neurexins and neuroligins are transmembrane proteins that 
are codified respectively by three and five genes in humans (Bo-
lliger et al., 2001; Tabuchi and Sudhof, 2002). Both gene families 
present a high degree of evolutionary conservation that can be 
explained by the action of a positive selective pressure which in 
turn suggests a conservation of their functions across vertebrate 
evolution (Rissone et al., 2007; Rissone et al., 2010)

Neurexins, which are produced as a long (a) and a short (b) 
forms by each of their genes, have been widely studied because 
of their exceptionally extended alternative splicing (Rissone et 
al., 2007; Tabuchi and Sudhof, 2002) and have been indirectly 
localized at the pre-synaptic membrane (Sudhof, 2001). Thou-
sands of different isoforms were predicted to be produced by the 
three mammalian neurexin genes, so that they were proposed as 
molecular codes for the specific reciprocal neuronal recognition 
(Missler and Sudhof, 1998). Neuroligins are less subjected to 
alternative splicing, are localized at the post-synaptic membrane 
(Song et al., 1999) and interact with neurexins from the opposite 

Fig. 1. Domain structures and synaptic arran-
gement of neurexin and neuroligin. There are 
three neurexin genes in mammals, each of which 
has both an upstream promoter that is used to 
generate the larger a-neurexins and a downstream 
promoter that is used to generate the b-neurexins. 
Alternative splicing at five sites (arrows 1 to 5) 
and N- and O-glycosylation contribute additional 
diversity. b-Neurexins contain a single LNS domain 
(laminin, neurexin, sex-hormone-binding protein 
domain; also known as a Laminin G, LG, domain), 
whereas a-neurexins contain six LNS domains or-
ganized into modules with three EGF-like domains. 
There are five neuroligin genes in humans: NLGN1, 
NLGN2, NLGN3, NLGN4 and NLGN4Y The major 
extracellular domain of neuroligins, which contains 
two potential splicing sites (A and B), is homologous 
to acetylcholinesterase but lacks cholinesterase ac-
tivity and mediates binding to neurexins. Cytosolic 
tail of both neurexin and neuroligin contains a PDZ 
(Post synaptic density protein (PSD95), Disc large 
tumor suppressor, DlgA and Zonula occludens-1 
protein, zo-1, domain) binding site. Neuroligin is 
presented as a dimer, which represents its normal 
functional conformation. 
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side (in trans) of the synaptic cleft in a calcium-dependent manner 
(Nguyen and Sudhof, 1997) (Fig. 1). 

Both neurexins and neuroligins display a strong and selective 
synapse formation-promoting activity in vitro (Graf et al., 2004; 
Scheiffele et al., 2000). Nonetheless, knocking down the expres-
sion of the three a forms of neurexins (Missler, 2003) or neuroligins 
1-3 (Varoqueaux, 2006) in mouse shows that these proteins have 
fundamental functions that reside in the modulation of synaptic 
transmission more than in the early adhesive steps of synapse 
formation. The same studies reveal a redundancy of function 
between isoforms of the same gene family. Altogether, neurexin 
and neuroligin are part of a large set of Synaptic Cell Adhesion 
Molecules (SCAMs) whose elimination in mice surprisingly results 
in an overall maintenance of synaptic structure (Piechotta et al., 
2006), while affecting their functions. 

Albeit with a number of open questions, both neurexin and neu-both neurexin and neu-
roligin have been involved in the pathogenesis of autism spectrum 
disorders (ASDs) (Sudhof, 2008). Neuroligins were the first to be 
implicated in this disease when it was found that the X linked genes 
NLGL4 and NLGN3 contained point mutations in affected individu-
als (Jamain, 2003). The role of neurexins in autism susceptibility 
was widely reported in the following years (Feng, 2006; Kim, 2008; 
Szatmari et al., 2007). Finally, SHANK3, a downstream intracellular 
scaffolding protein that binds indirectly to neuroligin through PSD95 
and GKAP (Sheng and Hoogenraad, 2007) has been involved in 
ASDs (Durand, 2007; Marshall, 2008; Wilson, 2003).

Why synaptic proteins on blood vessels?
Although very appealing, the finding of neurexin and neuroligin 

in blood vessels poses important conceptual challenges, mostly be-
cause synaptic activity appears distant from the vascular functions. 
As a matter of fact, unlike many of the proteins that mediate axon 
or vessel guidance, the neuronal role of neurexin and neuroligin 
cannot easily be linked to any of the most characterized cellular 
events of angiogenesis (proliferation, adhesion, or migration). 

Which are the possible roles of these two synaptic proteins 

in the vascular context (Fig. 2)? The neurexin/neuroligin protein 
families are very complex and achieving a gratifying answer to 
this question will take time and different approaches. However, 
the data can be looked at from two perspectives. 

The first is the role that neurexin and neuroligin can have during 
the growth and remodeling of the vascular system itself. In this 
context it should be noted that, although b neurexin null mice are 
not yet available, no vascular defects have been described for mice 
carrying null mutations within the three a neurexin (Missler, 2003) 
or the three neuroligins (Varoqueaux, 2006) genes. Therefore, 
though dedicated studies are needed, to date, the most direct 
approaches aimed at illustrating the functions of these proteins 
have not been informative. The following working hypotheses and 
reflections can be introduced: i) in analogy to the synaptic environ-
ment (Piechotta et al., 2006), a redundant collection of adhesive 
proteins (that never perform pure “adhesive” functions) including 
neurexins and neuroligins, is at work to finely regulate blood vessels 
functions; ii) neurexins and neuroligins, which are crucially found 
in association in both nervous and vascular systems, could also 
work separately, because of the much higher amount of neuroligin 
that is expressed in blood vessels and the fact that neuroligin co-
precipitates specifically with b neurexins and not with a neurexins 
(Bottos et al., 2009), that can remain “orphans”; iii) these proteins, 
as other neuronal cues (Neufeld and Kessler, 2008), could exploit 
the molecular machinery of key regulators of vascular physiology 
(e.g. members of the VEGF/KDR and Angiopoieitn/Tie-2 families) to 
achieve their specific functions, by acting as coreceptors or scaffold 
proteins; iv) similarly, vascular proteins that are identical or have 
homologous counterparts to the known nervous protein partners 
of neurexins and neuroligins (for example dystroglycan (Sugita, 
2001), ion channels (Missler, 2003) or intracellular PDZ domain 
rich proteins) are good candidates for molecular and functional 
studies. Another possibility stems from the observation that during 
vascular development both endothelial and vascular smooth muscle 
cells express neurexin and neuroligin (Fig. 3). In mature vessels, 
however, neurexin and neuroligin tend to segregate respectively 
in smooth muscle cells and in endothelium (Bottos et al., 2009), 
suggesting that they play a role in the formation of vascular layers.

The second point of view relates to the possibility that neurexins 
and neuroligins mediate part of the physical cross talk between 
neurons and blood vessels. These events could take place in very 
different settings and timings. One is the recognition/adhesion bet-
ween the axon terminals (varicosities) and the target region of the 
blood vessels that takes place in the final phase of the autonomic 
innervation of the vascular system (Glebova and Ginty, 2005). 
These cell-to-cell adhesive events would be temporary, since, 
normally, the varicosities are located at a certain distance from the 
smooth muscle layer (Burnstock, 2008). An additional fascinating 
possibility is that neurexin and neuroligin mediate the interactions 
between the nervous and vascular system during angiogenesis/
synaptogenesis/neurogenesis phenomena that take place in the 
cerebellum and hippocampus upon repetitive physical activities 
and/or motor skill learning (Isaacs et al., 1992; Van der Borght et 
al., 2009). Neurexin-neuroligin mediated cross talk between blood 
vessels and neuronal cells could be at play also in the so called 
“vascular niche” of the subgranular zone (SGZ) of the hippocam-
pus where neuronal precursors are in intimate contact with the 
blood vessels (reviewed in (Doetsch, 2003)). As a final point, the 
widespread expression of neurexin and neuroligin in the vessels 

Fig. 2. Workig hypotheses regarding the role of neurexins and neuro-
ligins in the vascular systems.
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of the brain parenchyma (Bottos et al., 2009), indicates that they 
could mediate a pervasive interaction between the vasculature 
and the surrounding neural tissue. They could indeed be part of 
the so called “neurovascular unit” that matches the cerebral blood 
flow to the metabolic demands of neurons (Drake and Iadecola, 
2007). In this last circumstance, neurexin and neuroligin would 
have a double relations with autism spectrum disorders. In fact, 
cerebral temporal regions that are implicated in social percep-
tion, language, and theory−of−mind (abilities that are impaired in 
autism) can undergo hypoperfusion in autistic children (Ohnishi 
et al., 2000; Zilbovicius et al., 2000). In the same way, significant 
negative correlation has been observed between rCBF (Regional 
Cerebral Blood Flow) in the left superior temporal gyrus and the 
diagnostic score for autism ADI−R. The more severe the autistic 
syndrome, the more rCBF is low in this region, suggesting that 
left superior temporal hypoperfusion is related to autistic behavior 
severity (Gendry Meresse et al., 2005). These last observations are 
particularly intriguing when related to the involvement of b neurexin 
in vessel tone maintenance (Bottos et al., 2009). 

In conclusion, can we predict a general significance of the syn-
aptic/vascular parallels? Obviously, the capacity to form billions of 
specific and plastic cell-to-cell contacts through the synapses repre-
sents the most fascinating anatomical and biochemical features of 
the nervous system, and the enormous heterogeneity of neurexins 
and neuroligins matches this perspective perfectly. While the task 
of forming and operating such a network is enormously complex, 
blood vessels do not appear to have the same needs. However, as 
in many other instances, we should consider that nature saves its 
resources by using the same molecules or molecular arrangements 
with different purposes, while complex and specific functions can 
be built upon molecular “mixing”. For example, it is an established 
fact that the proteins positioned at the proximal intracellular side 
of tight junctions (typical of endothelial and epithelial linings) and 
those at synapses display a similar domain organization and build 
up comparable scaffolding structures (Bottos et al., 2009; Butz et 
al., 1998; Dejana, 2004).

 Alternativey, we should not exclude that the vascular system 

embraces processes unknown at this time or underestimated in 
their complexity. As a matter of fact blood vessels are highly he-
terogeneous (Aird, 2006) and perform a multitude of tasks, some 
of which require fine cell-to-cell recognition events (e.g. leukocyte 
extravasation (Vestweber, 2002)). In conclusion, it is very likely that 
the discovery of neurexin and neuroligin in the vascular system 
will fuel new concepts into the field. 
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