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ABSTRACT  The lymphatic system, also named the second vascular system, plays a critical role 
in tissue homeostasis and immunosurveillance. The past two decades of intensive research have 
led to the identification and detailed understanding of many molecular players and mechanisms 
regulating the formation of the lymphatic vasculature during embryonic development. Furthermore, 
clinical and experimental data clearly demonstrate that the formation of new lymphatic vessels by 
sprouting lymphangiogenesis from pre-existing lymphatic vessels, or by the de novo  formation 
of lymphatic capillaries also occurs in various pathological conditions, such as cancer and organ 
transplant rejection, while lymphangiogenesis is non-functional in primary edema. In cancer, lympha-
tic vessels are one major gateway for invasive tumor cells to leave the primary tumor site and to 
establish distant organ metastasis. Therefore, the specific targeting of the lymphatic vasculature 
at the tumor site could be a promising approach to prevent metastasis formation.
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Introduction

The lymphatic system is composed of a network of lymphatic 
vessels and lymphoid organs and fulfils three principal roles (Figure 
1A). Firstly, it ensures the maintenance of the blood and tissue 
volume. For the supply of tissue and organs with nutrients and 
oxygen, fluid from the blood vasculature system constantly dischar-
ges into the surrounding tissue. Only 90% of this interstitial fluid is 
transported back via the venous system and, thus, the lymphatic 
vessel network is responsible for the drainage of most of the excess 
interstitial fluid back to the circulation (up to 2 liters daily). In doing 
so, it also removes catabolic products from tissue and organs. 
Secondly, the lymphatic system is also a pivotal component of the 
immune system. Lymphoid organs are the places where immune 
cells are generated, where they can monitor for the presence of 
pathogens, and where an immune response is initiated. Finally, 
the lymphatic system is responsible for the transport of dietary fat 
from the intestine to the liver. 

However, in pathological conditions, the functional role of the 
lymphatic system is often misused. In cancer patients, the lymphatic 
vessels provide conduits for metastazing cancer cells to leave the 
primary tumor site and to establish secondary tumors in regional 
lymph nodes and in distant organs. For long, the process of lympha-
tic metastasis has been considered a passive process based on 
the random existence of lymphatic vessels nearby the growing 
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tumor known (Sleeman et al., 2009; Tammela and Alitalo, 2010). 
Today, it is well established that tumors and the lymphatic vascu-
lature interact with each other in promoting metastasis formation. 
Therefore, understanding the molecular mechanisms underlying 
the development and the function of the lymphatic system may 
allow the design of novel therapeutic approaches to interfere with 
metastasis formation.

Structural composition of the lymphatic system

All vertebrates have a lymphatic system, yet with differing com-
plexities (Butler et al., 2009). In mammals, lymphatic vessels are 
found in all vascularized organs and tissues, with the exception 
of the brain and retina where drainage of interstitial fluid occurs 
perivascular or via a venous network (Fig. 1A). 

The lymphatic vasculature is formed by lymphatic endothelial 
cells (LEC), which are highly related to blood endothelial cells (BEC). 
Although BEC and LEC represent two distinct cell populations 
(Podgrabinska et al., 2002; Petrova et al., 2002; Hirakawa et al., 
2003; Nelson et al., 2007; Wick et al., 2007), they can under certain 
circumstances gain the characteristics of the other cell type. Until 
recently, the identification of lymphatic vessels was hampered by 
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the lack of specific LEC markers. With the discovery of proteins 
specifically expressed by LEC research on lymphangiogenesis and 
lymphatic vessel homeostasis and function has been impressively 
progressed. Specific markers for LEC include Lyve-1 (a lymphatic 
vessel endothelial hyaluronan receptor (Banerji et al., 1999), po-
doplanin (a type-1 transmembrane sialomucin-like glycoprotein; 
(Breiteneder-Geleff et al., 1999), the transcription factor Prox1 
(the orthologue of the Drosophila homeobox transcription factor 
prospero  (Wigle and Oliver, 1999; Wigle et al., 2002), and vascular 
endothelial growth factor receptor-3 (VEGFR3) (Kaipainen et al., 
1995). However, the identification of lymphatic vessels should not 
exclusively be based on only one of these markers, since they are 
also expressed by other cell types and their expression may vary 
among different LEC populations. 

The vascular network of the lymphatic system starts in the 
periphery with blind-ending lymphatic capillaries of a diameter 
between 30-80 mm (Fig. 1B). They are composed of a single layer 
of oak-leaf shaped LECs. The cells are loosely connected with each 
other by discontinuous “button-like structures” made of VE-cadherin 

Fig. 1. The lymphatic system. (A) Schematic illustration of the human lymphatic vascular 
system. (B) Structure of lymphatic vessels. Blind-ending lymphatic capillaries are the main 
entry site for interstitial fluid, macromolecules and cells into the lymphatic system. Capillaries 
consist of single endothelial cell layers and are anchored to the surrounding ECM by filaments. 
Capillaries descend into collecting lymphatic vessels that have a basement membrane, are 
covered by smooth muscle cells. Valves in the collecting vessels prevent fluid backflow. (C) 
Schematic representation of a lymph node. The lymph enters via afferent lymphatic vessels 
the lymph node and is drained through the subcapsular, trabecular and medullary sinus to the 
efferent lymphatic vessel as indicated by arrows. During passage through the lymph node, 
the lymph fluid is surveyed by immune cells for antigens. (D) Connection of the lymphatic 
system with the blood vasculature at the subclavian veins.
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A and other junctional proteins (Baluk et al., 2007). 
Lymphatic capillaries have no basement membrane 
and are not covered by smooth muscle cells. They 
are tethered by anchoring filaments composed 
mainly of emillin-1 and fibrillin to collagen fibers 
of the extracellular matrix (Danussi et al., 2008). 
Under low interstitial pressure (IFP) the vessels are 
normally collapsed. An increase in the amount of 
extracellular fluid leads to tissue swelling and, via 
tension on the anchoring filaments, to the forma-
tion of gaps in the lymphatic endothelial cell lining 
where fluid and cells can now enter. The lymphatic 
capillaries descend into collecting lymphatic vessels 
via so-called pre-collector vessels, which have only 
a sparse coverage with smooth muscle cells. In 
contrast, collecting lymphatic vessels structurally 
resemble veins with endothelial cells continuously 
connected to each other in a “zipper-like” structure, 
with a basement membrane and with a layer of 
smooth muscle cells (Baluk et al., 2007). In order 
to ensure a unidirectional flow of the lymph from 
the periphery towards the blood circulation, collec-
ting vessels contain bi-leaflet valves that consist 
of a matrix core anchored to the vessel wall and 
covered on both sides with LEC. In mammals the 
driving forces for the generation of lymph flow are 
not provided by a central pump but are generated 
both intrinsically by contractions of the lymph ves-
sel coat as well as extrinsically by skeletal muscle 
contractions and respiratory movements. The lymph 
of the body is drained into two main lymphatic ves-
sels, the right lymphatic duct and the thoracic duct. 
Both transport the lymph back into the circulation 
via connections with the right and left subclavian 
veins, respectively (Fig. 1D).

Besides the lymph conducting system, the 
lymphatic system holds the lymphoid tissue, which 
is involved in immune surveillance and the genera-
tion of immune responses. Depending on the role, 
we distinguish between primary, secondary and 

tertiary lymphoid organs. Production and selection of lymphocytes 
from immature progenitor cells take place in the primary lymphoid 
organs, the thymus and bone marrow. The secondary lymphoid 
organs, including lymph nodes, spleen and mucosa-associated 
lymphoid tissue (MALT), such as tonsils and Peyer`s patches, 
provide an environment where lymphocytes can encounter foreign 
antigens and initiate a specific immune response (Fig. 1C). Tertiary 
lymphoid tissues are ectopic accumulations of immune cells formed 
randomly in the adult during chronic inflammation. Organogenesis 
of the lymphoid tissue is beyond the scope of this review and we 
refer the interested reader to the relevant literature.

Development of the lymphatic vasculature

Establishment of lymphatic endothelial cell identity
The lymphatic vessel network forms after the blood vascular 

system has been established. Shortly after the separation of arteries 
and veins, around embryonic day (E) 9.0 in mice (gestation week 6 
in humans), a distinct population of VEGFR3+ cells of the anterior 
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cardinal vein starts to express Lyve-1 (Fig. 2A). The signal driving 
Lyve-1 expression, possibly the first step in acquiring LEC identity, 
has not been identified yet. Also, Lyve-1’s functional contribution to 
lymphatic vasculature development remains obscure: Lyve-1 has 
been found to be non-functional in HA binding in LEC (Nightingale 
et al., 2009), and its ablation in Lyve-1-knockout mice has no dis-
cernable effect on the development of the lymphatic vasculature 
(Gale et al., 2007; Luong et al., 2009).

In contrast to Lyve-1, the transcription factor Prox1 is essential 
for the development of the lymphatic vasculature (Wigle and Oliver, 
1999; Wigle et al., 2002). Prox1 is expressed in the VEGFR3+/
Lyve-1+ cells of the cardinal vein before these cells sprout and 
bud off to form the primary lymphatic sacs (Fig. 2). Mice lacking 
Prox1 fail to develop primary lymphatic sacs and consequently a 
lymphatic vasculature and die before birth. The failure is due to the 
inability of the blood-endothelium-derived VEGFR3+/Lyve-1+ cells 
to upregulate LEC-specific genes and to acquire an LEC identity. 
Indeed, forced expression of Prox1 in blood endothelial cells in vitro 
and in vivo is sufficient to repress the expression of BEC-specific 
genes and to gain expression of LEC-specific markers (Hong et 
al., 2002, 2004; Petrova et al., 2002).

The transcriptional activity of Prox1 is partly co-regulated by 
COUP-TFII (chicken ovalbumin upstream promoter-transcription 
factor II), a transcription factor required for maintenance of venous 
endothelial cell identity. COUP-TFII directly interacts with Prox1 
thereby inducing the expression of genes, such as VEGFR3, Cyclin 
E1, and FGF3 (Yamazaki et al., 2009; Lee et al., 2009). Specific 
inactivation of COUP-TFII during early development of the lymphatic 
vasculature demonstrates its requirement for the establishment 
of LEC identity by ensuring the venous character of the cardinal 
vein. Interestingly, loss of COUP-TFII at later developmental sta-
ges correlates with the loss of LEC identity without altering Prox1 
expression, suggesting that COUP-TFII and Prox1 together are 
required to maintain LEC specification (Lin et al., 2010).

The regulation of Prox1 expression is not completely understood. 
Treatment of cultured endothelial cells with IL3 and IL7 is sufficient 
to induce Prox1 expression (Groger et al., 2004; Al-Rawi et al., 
2005). Recent results from mouse genetic experiments suggest 
that Prox1gene expression is directly induced by the transcription 
factor Sox18 (Francois et al., 2008). During mouse embryogenesis 
Sox18 is found to be expressed prior to Prox1 in VEGFR3+/Lyve-
1+ endothelial cell population of the cardinal vein committed to 
develop into LEC. Conversely, genetic ablation of Sox18 function 
in knockout mice or in the “ragged” mouse mutant results in a loss 
of Prox1 expression in these cells. As a result, similar to Prox1 
knockout mice, Sox18-deficient mice develop edema and die before 
birth. However, the signal driving Sox18 expression in VEGFR3+/
Lyve-1+ cells is not known and the “master switch” of lymphatic 
development still remains elusive.

Together, these results seem to settle a longstanding controver-
sy about the origin of LEC in mammals. In 1908, Huntington and 
McClure have proposed that the first arising lymphatic vessel is 
formed by mesenchymal cells (centripetal model) (Huntington and 
McClure, 1908), while Sabin has claimed in 1902 that the primary 
lymphatic sacs originate from venous cells, which then later, by 
budding and sprouting into the surrounding tissue, give raise to 
the lymphatic vasculature (centrifugal model) (Sabin, 1902). The 
complete failure in the formation of a lymphatic vasculature after 
preventing the establishment of an LEC identity in venous-derived 

BEC, clearly demonstrates that the mammalian lymphatic system 
has a venous origin. Nevertheless, in the developing embryo 
there seems to be mesenchymal cells expressing LEC markers. 
Whether and to which extent these cells contribute to the develo-

Fig. 2. Development of the murine lymphatic vascular network. (A) 
At embryonic day (E) 9.0, after arterial-venous separation, cells of the 
cardinal vein start to lose blood endothelial characteristics and acquire a 
lymphatic endothelial cell (LEC) identity. This process is controlled by the 
sequential expression of Lyve-1, Sox18 and Prox1. (B) At E10.5, LEC then 
bud off the cardinal vein, migrate into the surrounding tissue and form 
primary lymphatic sacs. This process is dependent on VEGF-C/VEGFR3/
Nrp2 signaling. Subsequently, the primary lymphatic sacs separate from the 
cardinal vein and by further growth and spreading into the tissue, gives rise 
to a primitive lymphatic plexus. (C) At E14.5, remodeling of the primitive 
lymphatic vasculature begins and lasts until after birth. During this period a 
hierarchical network consisting of collecting lymphatic vessels and lymphatic 
capillaries are formed. This maturation process involves changes in protein 
expression leading to a quiescent, non-growing vessel, the formation of 
lymphatic valves and the acquisition of a smooth muscle coat. In the figure, 
the molecules involved in the different steps of lymphatic vessel formation 
are displayed. Their functional contribution is described in the text. 
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ping lymphatic vasculature remains to be investigated (Buttler et 
al., 2006, 2008). In contrast to mammals, in lower vertebrates the 
origin of LEC seems more divers. In the zebra fish D. rerio, lineage 
tracing experiments suggest a venous origin of LEC (Yaniv et al., 
2006; Kuchler et al., 2006), while in X. laevis tadepoles and in 
chicken the mesenchyme contributes to the formation of lymphatic 
vasculature (Ny et al., 2005; Wilting et al., 2006). 

Formation of the primary lymphatic sacs and plexus
Lymphatic endothelial cell proliferation and migration

Around E10.5, when the cells have been committed to their LEC 
character, they bud off the cardinal vein, migrate in a polarized 
manner into the surrounding tissue, where they proliferate and 
form the primary lymphatic sacs (6 sacs in humans and 8 sacs in 
mice). Expansion of the lymphatic sacs by sprouting and prolife-
ration leads to the formation of the primitive lymphatic vasculature 
(Fig. 2B). Similar to the blood vasculature, sprouting lymphatic 
vessels contain specialized tip cells at their leading edge, which 
sense and respond to chemoattractants. One major attractant is 
VEGF-C, which is expressed by mesenchymal cells adjacent to 
the growing lymphatic vessels. 

VEGF-C, VEGF-D and their cognate receptor VEGFR3 are 
commonly regarded as the lymphangiogenic branch of the vas-
cular endothelial growth factor signaling axis (Lohela et al., 2009). 
VEGF-C and D promote migration and proliferation of LEC in vitro 
and adenoviral or transgenic expression of these VEGFR3 ligands 
induced lymphangiogenesis in vivo (Jeltsch et al., 1997; Enholm 
et al., 2001; Byzova et al., 2002). During development, allelic 
lose of VEGF-C is sufficient to cause severe lymphedema, and 
homozygous VEGF-C deletion results in the complete loss of the 
lymphatic vasculature. Apparently, despite correct LEC specifica-
tion, in VEGF-C-deficient mice the committed cells fail to sprout 
from the cardinal vein (Karkkainen et al., 2004). In contrast to 
VEGF-C, genetic ablation of VEGF-D has no discernable effect on 
the development of the lymphatic vasculature (Baldwin et al., 2005). 

In their unprocessed form VEGF-C and VEGF-D bind exclusively 
VEGFR3 (Lohela et al., 2009). In the early stages of development 
all endothelial cells express VEGFR3. Loss of VEGFR3 signaling 
in this period results in embryonic lethality due to vascular failure 
before the lymphatic vascular development has started (Dumont 
et al., 1998). At E12.5 VEGFR3 expression becomes restricted to 
LEC (Kaipainen et al., 1995), when defective VEFGR3 signaling 
interferes with the development of a proper lymphatic vasculature. 
Mutations in the tyrosine kinase domain of VEGFR3 results in a 
loss of signaling activity and leads to lymphatic hypoplasia and 
lymphedema in patients (Milroy Disease) and in mice (Chy mutant 
mice) (Irrthum et al., 2000; Karkkainen et al., 2001). 

An integral part of the VEGF-VEGFR signaling complexes are 
neuropilins (Nrp), which were first identified as axon guidance 
molecules in the central nervous system. Nrp do not possess an 
own enzymatic signaling activity, yet they function as co-receptors 
of VEGF receptors by modulating the ligand binding to the receptor 
(Karpanen et al., 2006a). Nrp1 is expressed by arterial BEC, while 
Nrp2 is expressed by venous BEC and by LEC. Genetic deletion 
of Nrp2 or its neutralization by specific anti-Nrp2 antibody reduces 
the number of small lymphatic vessels and capillaries (Yuan et al., 
2002). Blocking of Nrp2 function affects outgrowth of lymphatic 
sprouts by inhibiting tip cell migration (Xu et al., 2010). Nrp2 gene 
expression in LEC is at least in part regulated by COUP-TFII, and 

silencing of COUP-TFII during embryogenesis reduces Nrp2 ex-
pression and blocks lymphatic sprout formation (Lin et al., 2010). 

VEGF-C/VEGFR3 signaling is also controlled by the action of 
Spred (Sprouty-related) proteins, negative regulators of growth 
factor-induced MAP kinase signaling. Spred 1 and 2 suppress 
LEC proliferation and differentiation by blocking VEGF-C/VEGFR3 
signaling. Spred1/2 double-knockout mice exhibit subcutaneous 
hemorrhages, edema and blood-filled dilated lymphatic vessel 
and die at E12.5-15.5 (Taniguchi et al., 2007). Another negative 
regulator of the VEGF-C/VEGFR3 signaling is TGFb. TGFb sig-
naling blocks proliferation, migration and expression of lymphatic 
markers in LEC stimulated with VEGF-C. Conversely, loss of TGFb 
signaling enhances lymphangiogenesis (Clavin et al., 2008; Oka 
et al., 2008). Whether TGF-b also modulates VEGF-C/VEGFR3 
signaling in the early stages of lymphatic vasculogenesis has to be 
investigated. In contrast, blockage of TGF-b signaling at late stages 
of development severely affects the maturation and remodeling of 
the lymphatic vasculature indicating that TGF-b might also regulate 
other signaling pathways (Niessen et al., 2010).

Besides VEGFR3-mediated signal transduction, other signaling 
pathways have also been implicated in lymphatic vessel develo-
pment. Blockade of adrenomedullin (AM) signaling achieved by 
genetic ablation of either the AM ligand, the AM receptor (CALCRL), 
the intracellular receptor-activity modifiying protein (RAMP2), or the 
AM processing enzyme (PAM) leads to decreased LEC proliferation, 
to the occurrence of smaller lymphatic sacs and to the development 
of interstitial lymphedema (Fritz-Six et al., 2008; Czyzyk et al., 
2005). Conversely, treatment with AM induces lymphangiogenesis 
and can resolve lymphendema (Jin et al., 2008). 

A complete loss of the lymphatic vasculature has been recently 
reported to occur in Zebrafish upon genetic ablation of CCBE1 
(collagen and calcium binding EGF-domain-1 protein). CCBE1 
is a secreted protein that is not expressed by LEC. However, 
similar to VEGF-C, it is essential for LEC in order to sprout from 
the veins and to form the primary lymphatic sacs (Hogan et al., 
2009). In humans, mutations in CCBE1 are found to cause a form 
of congenital lymphedema (Hennekam syndrome) (Alders et al., 
2009). Whether CCBE1 only functions as a guidance molecule for 
growing lymphatics or whether it also promotes LEC proliferation 
awaits further analysis. 

Finally, a number of growth factors display lymphangiogenic 
properties in vitro and in vivo, including VEGF-A (Nagy et al., 2002), 
IGF1/2 (Bjorndahl et al., 2005a), PDGF-BB (Cao et al., 2004), 
HGF (Kajiya et al., 2005), GH (Banziger-Tobler et al., 2008), and 
FGF2 (Kubo et al., 2002; Chang et al., 2004; Shin et al., 2006). 
However, the extent and mode of action by which these growth 
factors contribute to the formation of the lymphatic system warrants 
further investigations. 

Separation of blood and lymphatic vasculature
Except for the two connections between the veins in the neck 

region and the right lymphatic and thoracic duct, the lymphatic 
system is completely separated from the blood vasculature. The 
molecular mechanisms underlying this separation seem to involve 
the function of podoplanin, the tyrosine kinase Syk, phospholipase-
Cg2 (PLCg2), and the signaling adaptor SLP-76: knockout of either 
of these genes in mice results in blood filled lymphatic vessels 
(Abtahian et al., 2003; Uhrin et al., 2010; Ichise et al., 2009). The 
defect in lympho-venous separation in these mice is likely based 
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on a defect in platelet aggregation, which is required for constriction 
of the opening between the cardinal vein and the lymphatic sacs. 
Platelet aggregation at the separation zone is induced by LEC via 
binding of podoplanin to CLEC-2 (C-type lectin-like protein) expres-
sed on the surface of platelets. Binding of podoplanin to CLEC-2 
triggers an intracellular signaling cascade, which is dependent on 
Syk, SLP-76 and PLCg2 (Fig. 2B).

Maturation of the lymphatic system
Maturation of the lymphatic system begins at around E14.5 and 

lasts until birth. During this time period, the primitive lymphatic 
plexus develops into a hierarchical network of collecting lymphatic 
vessels and lymphatic capillaries. The structural remodeling of 
collecting vessels involves the formation of intraluminal valves 
and the attainment of smooth muscle coverage. This maturation 
steps are in parts accompanied by reduced expression of LEC 
markers implicated in actively growing vessels, including Lyve-1, 
Prox1 and VEGFR3 (Fig. 2C).

One major regulator for the establishment of the collecting vessel 
phenotype is the forkhead transcription factor FoxC2. Mutations 
in the FoxC2 gene were identified as the cause for the human 
hereditary lymphedema-distichiasis syndrome of puberty onset 
limb edema (Fang et al., 2000). Inactivation of FoxC2 in mice 
phenocopies the human disease with impaired development of 
lymphatic vessel valves and an increased coverage of capillaries 
with smooth muscle cells (Petrova et al., 2004). During develop-
ment, FoxC2 expression is upregulated between E14.5 and E15.5 
by a thus far unknown mechanism in maturing lymphatic vessels. 
The transcription factor NFATc1, whose expression is controlled 
by VEGF-C/VEGFR3 signaling, cooperates with FoxC2 to trigger 
the genetic program involved in the maturation process (Norrmen 
et al., 2009).

With the accumulation of basement membrane proteins at E16.5 
recruitment of NG2-positive mural cells begins to finally generate 
the smooth muscle cell coverage observed in major lymphatic ves-
sels (Norrmen et al., 2009). Similar to the remodeling of the blood 
vasculature, angiopoetins (Ang) are implicated in lymphatic vessel 
maturation by binding to their bona fide tyrosine kinase receptor Tie2 
(Augustin et al., 2009). Besides defects in the vascular remodeling 
process, Ang2 knockout mice exhibit a lymphatic phenotype with 
edema formation, abnormal patterning of lymphatic vessels, and 
a block in lymphatic vessel maturation. Furthermore, lymphatic 
capillaries in Ang2-deficient mice are covered with periendothelial 
cells, suggesting that Ang2 may be necessary to prevent premature 
coverage of lymphatic vessels with smooth muscle cells (Gale et 
al., 2002; Shimoda et al., 2007; Dellinger et al., 2008). During the 
maturation process, FoxC2 and NFATc1 repress Ang2 expression, 
thus initiating the recruitment of pericytes and smooth muscle cells 
to the maturing vessels (Norrmen et al., 2009). Ang1, although 
reported to promote lymphangiogenesis in a mouse cornea assay, 
is dispensable for lymphatic development (Morisada et al., 2005). 
On the contrary, loss of Tie1 leads to edema and abnormal patter-
ning of the lymphatic sac, suggesting a role of this thus far poorly 
understood receptor in lymphatic vessel formation (Sato et al., 
1995; Puri et al., 1995; D’Amico et al., 2010). Defects in lymphatic 
vessel maturation were also reported in mice with inactive EphrinB2 
and in Aspp1 (apoptosis-stimulating protein of p53) knockout mice 
(Makinen et al., 2005; Hirashima et al., 2008). 

The formation of lymphatic valves is dependent on the presence 

of a9-integrin. Expression of a9-integrin is increased in Prox1+/
FoxC2+ LEC during the maturation process and later becomes 
restricted to LEC located on valves. Loss of a9-integrin results in 
abnormal valve formation similar to that seen in fibronectin-EIIIA 
knockout mice (Bazigou et al., 2009; Muro et al., 2003). Apparently, 
the interaction between a9-integrin and fibronectin-EIIIA induces 
fibronectin fibril assembly, which is essential for the proper assembly 
of the extracellular matrix and lymphatic valves.

In the adult, the lymphatic vasculature is rather quiescent, and 
survival of LEC is no longer dependent on VEGFR3 signaling 
(Karpanen et al., 2006b). Under normal physiological conditions 
the de novo formation of lymphatic vasculature is restricted to the 
endometrium during pregnancy. However, in several pathological 
situations, including wound healing, tissue repair, inflammation, 
organ transplant rejection and cancer, new lymphatic vasculature 
is generated.

Lymphangiogenesis in cancer

In a number of cancer types, including breast cancer, me-
lanoma, prostate cancer, gastric cancer and colon cancer, the 
occurrence of metastasis in the tumor draining lymph node (the 
“sentinel” lymph node) is commonly regarded the first step in 
metastatic cancer cell dissemination. This notion is based on 
the observation that cancer cells access the lymphatic vascula-
ture at the tumor site from where they spread via the lymphatic 
system first to draining regional lymph nodes and further on to 
the blood stream and to distant organs (Fig. 3D). Therefore, 
the examination of sentinel lymph nodes for metastasis is part 
of the regular clinical routine and is critical to stage disease 
progression, to determine patient prognosis and to select the 
appropriate treatment strategies. Yet, parameters associated 
with lymphatic vessels growth and with tumor cell invasion into 
the lymphatic vasculature also hold predictive weight. In cancer 
patients, an increase in these “lymphatic parameters”, including 
lymphatic vessel density (LVD), lymphovascular invasion (LVI), 
and lymphangiogenic growth factor levels, generally correlates 
with tumor recurrence and increased regional and distant organ 
metastasis (Tammela and Alitalo, 2010; Sleeman et al., 2009). 

Animal models have been instrumental in demonstrating that 
active lymphangiogenesis at the tumor site is sufficient to promo-
te lymphatic metastasis. For example, the forced expression of 
the lymphangiogenic factors VEGF-C and VEGF-D in tumors of 
xenograft-transplanted or of transgenic mice has lead to activated 
lymphangiogenesis, the formation of tumoral lymphatic vessels 
and increased lymph node and distant organ metastasis (Stacker 
et al., 2001; Kopfstein et al., 2007; Mandriota et al., 2001; Skobe 
et al., 2001; Karpanen et al., 2001; Yanai et al., 2001; He et al., 
2002; Padera et al., 2002). Lymphangiogenesis and subsequent 
lymphatic metastasis has also been seen in a mouse model of skin 
cancer upon transgenic expression of VEGF-A and in a murine 
fibrosarcoma model by the forced expression of PDGF-BB (Cao et 
al., 2004; Hirakawa et al., 2005; Bjorndahl et al., 2005b). Notably, 
while PDGF-BB-mediated lymphangiogenesis seems independent 
of VEGFR3 signaling, VEGF-A exhibits its lymphangiogenic action 
mainly by attracting macrophages which are known to express 
VEGF-C and D and thus promote lymphangiogenesis. Moreover, 
VEGF-A may also induce VEGF-C expression in LEC. 

Besides overexpression of lymphangiogenic factors, tissue re-
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modeling can also contribute to lymphangiogenesis. For example, 
the deletion of the neuronal cell adhesion molecule (NCAM) in 
a mouse model of pancreatic insulinoma (Rip1Tag2 mouse mo-
del) causes loss of b1-integrin-mediated adhesion of tumor cells 
and results in upregulated expression of VEGF-C and VEGF-D 
and thus promotes lymphangiogenesis (Crnic et al., 2004; Kren 
et al., 2007). However, an increase in proliferating LEC and in 
lymphatic vessel density at the tumor site is not always detected 
in the presence of lymph node metastasis. Rather then inducing 
lymphangiogenesis, tumors can also co-opt existing lymphatic 
vessels, especially when they are located in a tissue with high 
lymphatic vessel density (Sleeman et al., 2009).

Phenotype of tumor-derived lymphatic vessels
Tumor lymphatics can be found intratumoral as well as peritu-

moral. Similar to tumor blood vessels, tumor-associated lymphatic 
vessels are structurally different from their quiescent counterparts 
in healthy tissue. In particular, intratumoral lymphatic vessels are 
usually disorganized and are in most cases non-functional as they 
are collapsed due to the high intratumoral pressure to which they 
are exposed. They may not contribute to lymphogenic metastasis 
(Padera et al., 2002). However in some cancer types, such as 
gastric, ovarian and renal cancer, intratumoral lymphatic density 
positively correlates with lymph node metastasis (Lee et al., 2010; 
Li et al., 2009; Horiguchi et al., 2008).

Fig 3. Tumor lymphangiogenesis and its contribution to metastastic spreading. (A) Induced by hypoxia and other signals, tumor cells, stromal 
cells and tumor-infiltrating cells secrete angiogenic and lymphangiogenic factors, such as VEGF-C, VEGF-D, VEGF-A, PDGF-BB, Angiopoietin-1 and 2 and 
PlGF, which all can contribute to tumor lymphangiogenesis. (B) Secreted lymphangiogenic factors act on existing lymphatic vessels at the tumor site 
inducing vessel sprouting, LEC proliferation and subsequent formation of intra and peritumoral lymphatic vessels (lymphangiogenesis). Bone-marrow-
derived LEC precursor cells and myeloid lineage cells directly integrate into newly formed tumor lymphatics. Finally, lymphangiogenic factors draining 
from the tumor to neighboring lymph nodes, induce lymphangiogenesis in the lymph nodes prior to the onset of metastasis. Besides inducing the 
formation of new lymphatic vessels, tumors can co-opt existing lymphatics at the tumor site. (C) The lymphatic vasculature contributes to metastasis 
formation in several ways. The entry of the tumor cells into lymphatic vessels is promoted by increased fluid drainage due to high intratumoral interstitial 
fluid pressure (IFP). LECs can secrete chemokines (CCL21, CXCL12), which actively recruit tumor cells expressing the cognate chemokine receptors 
(CCR7, CXCR4) to lymphatic vessels. Secreted growth factors and chemokines can also increase tumor cell migration. Adhesion of tumor cells to the 
lymphatic vessels is in part mediated by MR1 and CLEVER-1. Lymph node lymphangiogenesis as well as changes in the lymph nodes’  immune cell 
composition promotes survival of disseminated tumor cells and outgrowth of metastases in lymph nodes. (D) Lymphogenic vs. hematogenic tumor 
cell dissemination. Tumor cells gain access to tumoral lymphatic vessels (grey) from where they are transported to the blood circulation (lymphogenic 
dissemination). Establishment of sentinel lymph node metastasis is the first sign of metastatic spreading. Invasive cancer cells can also reach the blood 
circulation (blue, red) directly at the primary tumor site and disseminate via the blood circulation to distant organs where they induce the formation of 
secondary tumors (hematogenic dissemination).
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Genome-wide transcriptional profiling analysis reveals that 
tumor-derived LEC are different from LEC isolated from normal 
tissue (Clasper et al., 2008; Wu et al., 2010). Tumor-derived 
lymphatic vessels resemble activated, growing vessels and, 
thus, tumor-derived LEC express many factors implicated in 
lymphangiogenesis. For example, VEGFR3 and Nrp2, known to 
be functional during embryonic lymphangiogenesis, are specifically 
expressed by tumor-associated lymphatic vessels (Caunt et al., 
2008). Lymphatics at the tumor site are also exposed to a variety 
of inflammatory molecules and, due to increased intratumoral IFP, 
exhibit increased lymph flow. Together these pathophysiological 
changes in the tumor microenvironment alter LEC gene expres-
sion and cell-cell and cell-matrix interactions (Miteva et al., 2010; 
Clasper et al., 2008).

Mechanisms of tumor lymphangiogenesis
Tumor lymphangiogenesis is mainly based on sprouting 

lymphangiogenesis and thereby mainly observed in tumors that are 
growing in lymphatic-rich tissue. In response to lymphangiogenic 
factors, lymphatic vessels start to form sprouts and, driven by LEC 
proliferation, new lymphatic vessels are formed in the periphery or 
within the tumor. The hypoxic conditions and the growth stimulatory 
environment in a growing tumor instigate tumor cells, cells of the 
tumor stroma, and tumor-infiltrating inflammatory cells to express 
a variety of growth factors, including VEGFs, FGFs, PDGFs, An-
giopoietins, HGF, GH and IGFs, and thus inducing the formation 
of new blood vessels in the tumor (referred to as the angiogenic 
switch). Furthermore, the presence of the classical lymphangiogenic 
factors VEGF-C and VEGF-D at the tumor site induces the formation 
of tumor lymphatic vessels. To which degree the other angiogenic 
factors, which in many cases are also lymphangiogenic, contribute 
to tumor lymphangiogenesis remains to be determined (Fig. 3A).

In addition to sprouting lymphangiogenesis, precursor LEC 
and bone marrow-derived cells can also directly contribute to the 
formation of lymphatic vessels during cancer and other, mainly 
inflammatory pathological conditions. For example, after transplan-
tation of GFP+ hematopoetic stem cells (HSC) into tumor-bearing 
mice, 1-3% of the cells of tumor lymphatics express GFP. This 
result indicates that HSC can give rise to LEC, which integrate into 
tumor –associated lymphatic vessels (Jiang et al., 2008). Moreover, 
in a mouse model of fibrosarcoma, the presence of bone-marrow-
derived cells in newly formed tumor lymphatics has been detected 
(Religa et al., 2005). Besides LEC precursor cells, which thus far 
have not been well characterized, also differentiated cells of bone 
marrow origin are able to become part of the lymphatic endothelium. 
For example, in human renal transplants, in a cornea inflammation 
model, and in two mouse models of cancer (the Rip1Tag2 transge-
nic model of pancreatic b cell carcinogenesis and the TRAMP-C 
syngeneic transplantation model of prostate cancer) approximately 
3% of all cells found in newly formed lymphatic vasculature are 
derived from the myeloid-monocyte lineage (Kerjaschki et al., 
2006; Maruyama et al., 2005; Zumsteg et al., 2009). Apparently, 
the integrated, bone marrow-derived cells lose expression of their 
macrophage markers and gain the expression of all LEC markers. 
Notably, this transdifferentation process can be recapitulated in 
vitro and seems to depend on FGF signaling (Zumsteg et al., 
2009). Whether these integrated macrophages provide special 
functions to ongoing pathological lymphangiogenesis remains to 
be determined. However, there are also reports failing to detect 

any contribution of bone-marrow-derived cells to tumor lymphatic 
vessels (He et al., 2004), raising the possibility that such contri-
bution may depend on specific, possibly inflammatory conditions 
in the tumor microenvironment. 

Contribution of tumor-associated lymphatics to metastatic 
spreading

Tumor associated lymphatic vessels can support metastatic 
spreading in several ways. Firstly, the lymphatic vasculature 
provides both the conduits (lymphatic vessels) as well as the 
means of transport (lymph flow) allowing the invasive cancer cell 
to leave the primary tumor site and to travel to distant organ sites. 
In general, tumor blood vessels are immature and leaky which 
results in a high IFP in tumors. As a consequence, drainage of the 
tumor is increased and high IFP and high fluid flow facilitate the 
entry of tumor cells into lymphatic vessels. In particular, lymphatic 
capillaries are easily accessible with their discontinuous cell-cell 
contacts and the lack of a basement membrane and of smooth 
muscle cell coverage. 

Secondly, lymphatic vessels also express a variety of molecules 
involved in attraction, adhesion and homing of peripheral-tissue-
residing immune cells, such as macrophages and dendritic cells, 
to lymphoid organs. Tumor cells can hijack these molecular me-
chanisms in order to promote their escape from the primary tumor 
site (Fig. 3C). Secondary lymphoid cytokine (SLC, CCL21) is se-
creted by LEC and is involved in homing of CCR7+ dendritic cells 
to lymph nodes. In cancer it serves as chemoattractant for tumor 
cells thus promoting metastasis formation. For example, CCR7-
expressing melanoma cells migrate towards CCL21-expressing 
LEC and metastasize at a higher frequency to the draining lymph 
node (Shields et al., 2007a; Wiley et al., 2001). Notably, CCR7-
expressing tumor cells that also secrete CCL21 can migrate in an 
autocrine chemotatic manner towards lymphatics. Thereby the 
CCL21 gradient is generated by the interstitial fluid flow around the 
tumor cells (Shields et al., 2007b). In patients, CCR7 expression 
correlates with lymph node metastasis in a variety of cancers, in-
cluding gastric cancer, breast cancer, pancreatic cancer, colorectal 
cancer, NSLC and squamous cell carcinoma (Mashino et al., 2002; 
Cabioglu et al., 2005; Nakata et al., 2008; Schimanski et al., 2005; 
Takanami, 2003; Ding et al., 2003). Interestingly, VEGF-C as well 
as increased lymph flow upregulates CCL21 expression in LEC 
(Issa et al., 2009; Miteva et al., 2010).

The chemokine stromal-cell derived factor 1 (SDF-1, CXCL12) 
and its receptors (CXCR4 and CXCR7) also play an important role 
in metastasis. It has been shown that CXCR4-expressing cancer 
cells preferentially home to organs with high CXCL12 expression, 
such as lung, liver and bone marrow via the blood and lymphatic 
systems. Similarly to the CCL21/CCR7 signaling axis, CXCL12 and 
CXCR4 can facilitate the entry of cancer cells into the lymphatics 
by tumor-associated LEC expressing CXCL12. The expression 
of CXCL12 by LEC can be induced by hypoxia, which also leads 
to upregulated expression of CXCR4 on cancer cells (Irigoyen et 
al., 2007; Hirakawa et al., 2009). 

Besides chemoattraction, enhanced adhesion to the lymphatic 
vasculature also seems to improve the entry of cancer cells into 
the lymphatic vasculature. Two molecules, macrophage mannose 
receptor 1 (MR1) and CLEVER-1 (stabilin1) have been implicated 
in this process (Fig. 3C). MR1 is expressed on lymphatic vessels 
where it is involved in leukocyte trafficking. Loss of MR compromises 
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the ability of tumor cells to metastasize to regional lymph nodes. 
This decrease in metastasis is due to altered adhesion of cancer 
cells to lymphatic vessels, as no change in tumor cell chemoat-
traction and motility and lymphatic vessel density has been found 
(Marttila-Ichihara et al., 2008). In patients, the expression of MR in 
intratumoral lymphatics of breast cancer correlates with increased 
lymph node metastasis (Irjala et al., 2003). Also, CLEVER-1 is 
involved in the regulation of leukocyte trafficking in the lymphatic 
system. It is expressed in tumor-associated lymphatic vessels and 
may also play a role in cancer cell adhesion (Irjala et al., 2003).

Finally, tumors may actively contribute to increased lymph flow 
by inducing lymphatic vessel hyperplasia in draining lymph nodes, 
and such premetastatic changes in lymphatic vessels as well as 
in lymph nodes could support metastasis by ensuring tumor cell 
survival and promoting tumor cell growth in the lymphatic system 
(Fig. 3B) (Harrell et al., 2007; Ruddell et al., 2008a; Hoshida et al., 
2006). Proliferation of LEC in the tumor draining lymph node has 
been first reported in chemically induced skin tumors expressing 
VEGF-C or VEGF-A (Hirakawa et al., 2005, 2007). Lymph node 
lymphangiogenesis, as this process is called, begins even before 
the arrival of metastasizing tumor cells and is independent of 
the lymphangiogenesis induced at the tumor site (Harrell et al., 
2007; Ruddell et al., 2008b). Lymph node lymphangiogenesis can 
also be promoted by VEGF-A secreted by B-cells accumulating 
in tumor-draining lymph nodes (Harrell et al., 2007; Shrestha et 
al., 2010). Lymph node lymphangiogenesis increases lymph flow 
to the draining lymph node and in doing so, facilitates entry of 
metastazing cancer cells into lymphatics. Moreover, the modified 
microenvironment in the tumor draining lymph node might pro-
vide favorable conditions for the survival and growth of arriving 
tumor cells. 

Tumor-induced changes in the sentinel lymph node also inclu-
de changes in the immune cell composition of the lymph node. 
Comparison of the immune repertoire of sentinel lymph nodes with 
non-sentinel lymph nodes in melanoma and breast cancer patients 
revealed significant changes in the density and maturation state 
of dendritic cells and T-cells, in the cytokine composition, and the 
ability of the immune cells to generate a specific immune response 
(Cochran et al., 2006). Altogether these changes contribute to the 
generation of an immunosuppressive environment in the sentinel 
lymph node, again favoring tumor cell survival and growth. 

These results clearly show that lymphatic metastasis is an 
active process promoted by the interaction of tumor-associated 
lymphatic vessels with tumor cells. Nevertheless, VEGF-C at 
the tumor site does not only bind to VEGFR3 on LEC to activate 
lymphangiogenesis, but also stimulates VEGFR3 on cancer cells 
themselves, thus promoting tumor cell proliferation and tumor cell 
motility (Su et al., 2006; Issa et al., 2009).

Towards anti-lymphangiogenic therapy
The involvement of tumor-associated lymphatic vessels in me-

tastasis makes the lymphatic vasculature an attractive target for 
interfering with metastasis formation. Due to its major contribution 
to the formation of a new tumor lymphatic vasculature, the VEGF-
C/VEGF-D/VEGFR3 signaling axis has received major attention in 
the search for anti-lymphangiogenic therapy. Furthermore, survival 
of quiescent lymphatic vessels in healthy tissue does not depend 
on VEGFR3 function, indicating that growing lymphatic vessels 
at the tumor site can be selectively targeted (Karpanen et al., 

2006b). Silencing of the VEGF-C/VEGF-D/VEGFR3 signaling axis 
is achieved either through ligand sequestration by soluble receptor 
constructs (trap constructs), small molecular weight inhibitors and 
monoclonal antibodies against VEGFR3, or through repression of 
ligand expression by RNAi-technology (Sleeman et al., 2009). In 
most of these experimental approaches, blockade of the VEGFR3 
signaling axis has efficiently repressed tumor lymphangiogenesis 
and with it metastasis to regional lymph nodes and distant organs. 
As discussed above, the contribution of the VEGF-A/VEGFR2 
signaling axis to tumor lymphangiogenesis is less well defined. 
Blockade of VEGFR2 signaling activities in the tumor context 
substantially represses tumor angiogenesis, yet inhibits lympha-
tic metastasis only in combination with anti-VEGFR3 treatment 
(Burton et al., 2008; Roberts et al., 2006; Shibata et al., 2008). 
From animal experiments, targeting the VEGFR3 axis seems to 
be the most promising approach. However the failure in blocking 
tumor lymphangiogenesis by VEGFR3 inhibition in some mouse 
models indicates that tumor lymphangiogenesis may also rely on 
other signaling pathways and can become independent of VEGFR3 
signaling (Schomber et al., 2009; Cao et al., 2004).

Tumor lymphangiogenesis can also be targeted indirectly by 
interfering with the infiltration and function of tumor-associated 
macrophages, which are a major source of tumoral VEGF-C. 
Treatment with an anti-PlGF antibody diminishes the recruitment of 
VEGFR1+ macrophages into tumors resulting in reduced tumoral 
VEGF-C levels, lymphatic vessel density and lymph node metastasis 
(Fischer et al., 2007). Moreover, in several human malignancies, 
the expression of cyclooxygenase-2 (Cox-2) correlates with tumor 
lymphangiogenesis and lymph node metastasis. In a mouse model 
of gastric cancer, Cox-2 inhibition reduces VEGF-C expression 
in the tumor-infiltrating macrophages and thus represses tumor 
lymphangiogenesis and lymph node metastasis (Iwata et al., 2007). 
Finally, inhibition of Nrp2 ligand binding with an anti-Nrp2 antibody 
effectively reduced tumor lymphangiogenesis and lymph node 
and lung metastasis in glioma and breast cancer, and repression 
of PDGF-BB signaling blocked lymphangiogenesis (Caunt et al., 
2008; Cao et al., 2004). 

In conclusion, first data into the therapeutic potential of interfering 
with tumor lymphangiogenesis reveal that by targeting growing 
lymphatic vessels at the tumor site, lymphatic metastasis can be 
decreased or prevented. Whether or not this holds true in cancer 
patients awaits the results of relevant clinical trials. Furthermore, 
active lymphangiogenesis may not always be the basis for the 
lymphogenic spreading of metastatic cancer cells; treatment re-
gimen targeting lymphatic function rather then lymphatic growth 
may be warranted. To this end, future investigations are required 
to identify suitable therapeutic target molecules that are specific 
for tumor-associated lymphatics. Besides, blocking lymphatic 
drainage may lead to accumulation of tissue fluid and cause lym-
phedema, an unwanted adverse side-effect. Another open question 
relates to the timing when anti-lymphangiogenic therapy may be 
applied. Should it be preventive to avoid pre-metastatic lymph 
node lymphangiogenesis or should it be interventional to interfere 
with ongoing lymphangiogenesis and metastasis? Clinical studies 
comparing the survival rates of patients undergoing regional lymph 
node dissection with patients without lymph node dissection has 
generated controversial results, indicating that further efforts are 
needed to completely understand the contribution of the lymphatic 
vasculature to metastatic spreading.
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