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ABSTRACT  Cloning efficiency has not been dramatically improved after the first success of

somatic cell nuclear transfer (SCNT) in sheep in 1997. The reasons for the low efficiency of SCNT

embryos must be attributed to the insufficient reprogramming of the donor nucleus in ooplasm.

It has been clarified that the methylation and acetylation status are disordered in SCNT embryos

and the gene expression pattern is different and widely varied in SCNT embryos, compared with

fertilized embryos. In this paper, we focused on the role of the donor nuclei in cloning efficiency,

and discuss whether ooplasm can reprogram any nucleus.
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Introduction

Despite several attempts to improve the cloning efficiency of
somatic cell nuclear transfer (SCNT) since the first successful
production of a sheep in 1997 (Wilmut et al., 1997), dramatic
improvements have not yet been realized. Reprogramming the
meiotic deacetylation process by inhibiting deacetylation with the
potent and specific histone deacetylase inhibitor trichostatin A
(TSA) has been effective for in vitro and in vivo cloning efficiency
(Rybouchkin et al., 2006; Tsuji et al., 2009; Kishigami et al., 2006),
but has not induced sufficiently dramatic improvement. Although
the low efficiency of SCNT embryos appears to be due to
insufficient reprogramming of the donor nucleus in the ooplasm,
this has not been clarified and overcoming this insufficient repro-
gramming presents several challenges. The nuclear reprogram-
ming process is likely to be very complex; upon nuclear transfer,
donor chromatin is exposed to the ooplasm (the first and most
important reprogramming step), and after artificial activation of
SCNT oocytes, reconstituted oocytes begin preimplantation de-
velopment (the second reprogramming process), including zy-
gotic genome activation, compaction, and the first differentiation
into ICM and TE cell lineages. Postimplantation development is
the last reprogramming step and is even more complex.

In the first reprogramming process, donor information should
be reprogrammed from the somatic type to the embryonic type.
Reprogramming factors in the ooplasm have also been exam-
ined, and several factors that promote cloning efficiency have
been identified (Miyamoto et al., 2007, 2009; Jullien et al., 2010).
In the second reprogramming process, SCNT embryos begin to
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cleave and develop to the blastocyst stage with a time schedule
similar to that of fertilized embryos. Although the gene expression
pattern of SCNT preimplantation embryos is largely different and
varies widely compared with fertilized embryos (Li et al., 2006a,b,
2008), it is not known whether the different gene expression
patterns are incompatible with successful SCNT cloning. The last
reprogramming process involves very complex fero-maternal
communication, an in vivo process that remains unclear. Admin-
istration of human chorionic gonadotrophin (hCG) to control the
physiology of recipient females was recently reported to improve
cloning efficiency (Tsuji et al., 2010).

Several studies have focused on determining which donor cell
type or donor cell status is best for successful cloning (Table 1).
The state of the donor cell is one of the most important factors for
cloning efficiency. In the present study, we discuss mainly the role
and effect of the donor nucleus type in cloning efficiency.

Cell cycle combination

For successful cloning, reconstituted oocytes must carry the
diploid DNA contents after artificial activation. In nuclear-trans-
ferred blastomeres of preimplantation embryos, donor blastomeres
at any cell cycle can be reprogrammed in MII ooplasm; G1 and M-
phase donor blastomeres can be reprogrammed in MII ooplasm,
and S-phase donor blastomeres can be reprogrammed in acti-
vated MII ooplasm, which might be because maturation promot-
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ing factor (MPF) activity is decreased during S-phase.
In contrast, when somatic cells are used as donors for nuclear

transfer, the cell cycle combination might be important for devel-
opment. The G0-phase was thought to be the most adequate cell
cycle for nuclear reprogramming of the donor nucleus (Campbell,
et al., 2006; Wilmut et al., 1997), but it was later clarified that the
G1-phase and M-phase are also reprogrammed in MII-phase
oocytes and can develop to full-term (Table 1). Even if cells are not

induced to the G0-phase by serum starvation or contact inhibition,
up to approximately 60% cells of cultured somatic cells are in the
G1 phase. When donor cells at the G0 and G1-phase are used,
emission of the first polar body in reconstituted oocytes must be
suppressed by cytochalasin B or a similar chemical to maintain
the diploid status of the donor cell in the ooplasm, as in blastomere
transfer. When M-phase cells are used as donor cells, as reported
in mouse (Ono, 2001a,b) and rat (Zhou, 2003), emission of the

TABLE 1

THE EFFECTS OF DONOR CELL TYPE AND CELL CYCLE COMBINATION BETWEEN DONORS
AND RECIPIENTS, ON DEVELOPMENTAL ABILITY OF NT EMBRYOS RECEIVING SOMATIC,

EMBRYONIC, ES, EG AND PGC CELLS

Donor cell type 
animal 
(donor-recipient) 

donor:recipient 
cell cycle(stage) 

morula-Bl 
/activated 

(%) 
live offspring 

/ET(%) Ref. 
mammary gland sheep ss1) 5 d:MII 11.7 3.4 Wilmut et al., 1997. 
oviduct bovine ss3:4d:MII 23 75 Kato et al., 1998. 
cumulus bovine ss3:4d:MII 49 83 Kato et al., 1998. 
cumulus mouse G0:MII 39.9-66.9 2-2.5 Wakayama et al., 1998. 
follicular epithelial cell mouse ss2:9d:MII 34 3 Kato et al., 1999a. 
tail tip mouse ss3:5d:MII 58.3 1 Wakayama and Yanagimachi, 1999a. 
tail tip mouse ?:MII 49.5 1.1 Wakayama and Yanagimachi, 1999a. 
derived from 11 kinds of tissue(fibroblast) bovine G0:MII 30-53 15 Kato et al., 2000. 
fibroblast gaur - bovine ?:MII 12 22) Lanza et al., 2000. 
granulosa cell pig ss48:72h:MII ? 7 Polejaeva et al., 2000. 
cumulus  mouse G0:M(zygote) 0(4-cell) 0 Wakayama et al., 2000. 
granulosa cells mouflon-sheep G0:MII 30 14 Loi et al., 2001. 
cumulus goat ss:MII 7,8 1 Zou et al., 2001 
cumulus rabbit ?:MII 47 1,6 Chesne et al., 2002. 
lymphocytes mouse ?:MII 5 7-673) Hochedlinger and Jaenisch, 2002. 
lymphocytes mouse ?:MII 5 1-104) Hochedlinger and Jaenisch, 2002. 
cumulus cat ?:MII ? 33 Shin et al., 2002. 
fibroblast from mucosa cat ?MII ? 0 Shin et al., 2002. 
fibroblast from heart pig MII 6 2 Yin et al., 2002.  
fibroblast horse ? : MII 7 6 Galli et al., 2003. 
anterior pituitary goat ss5:6d: MII 3 17 Ohkoshi et al., 2003. 
fetal fibroblast rat M:MII - 2 Zhou et al., 2003. 
fibroblast african wild cat-domestic cat ss 5d:MII - 3 Gomez et al., 2004. 
Bone marrow mesenchyma stem cell bovine G0:MII 24 8 Kato et al., 2004. 
natural killer T cell mouse ?:MII 71 1.1-1.6 Inoue et al., 2005. 
skin fibroblast dog ?:MII - 0,2 Lee et al., 2005. 
skin fibroblast wolf-dog ?:MII - 0,8 Kim et al., 2007. 
cultured cumulus  ferret ss24h:MII - 1.2-1.8 Li et al., 2006. 
fibroblast rabbit G0:S(2:cell) 24,5 1 Skrzyszowska et al., 2006. 
hematopoietic  stem cells mouse ?:MII 4.1-7.9 - Sung et al., 2006. 
hematopoietic progenitor cells mouse ?:MII 10.6 - Sung et al., 2006. 
hematopoietic granulocytes mouse ?:MII 34.5 1.1 Sung et al., 2006. 
antler stem cell red deer ss 4 d:MII 22 13 Berg et.al., 2007. 
tail tip mouse M:M(zygote) 3 - Egli et.al., 2007. 
fibroblast mouse M:M(zygote) - ?5) Egli et.al., 2007. 
keratinocytes mouse ?:MII 56 2 Li et al., 2007. 
cultured granulosa buffalo ss72h:MII 22,2 10 Shi et al., 2007. 
cumulus sand cat-domestic cat ?:MII 15-16 0.3-1.8 Gomez et al., 2008. 
fibroblast Pyrenean Ibex-domestic goat 72h:MII 65,3 0,6 Folch et al., 2009. 
cultured cumulus camel ss72h:MII 34-44 4 Wani et.al., 2010. 

adult 

iPS mouse M:MII 77.7 3.5 Kou et al., 2010. 
        

derived from 16 kinds of tissue(fibroblast) bovine G0:MII 25-47 14 Kato et al., 2000. 
Sertoli mouse ?:MII 23-60 1.2-4.5 Ogura et al., 2000. 

newborn/y
oung 

neural stem cell mouse ?:MII - 0.5-1.1 Mizutani et al., 2006. 
        

fetal fibroblast goat ss 7d:MII ? 2,1 Baguisi et al., 1999. 
fetal fibroblast goat ss 7d:TeloII ? 5,2 Baguisi et al., 1999. 
genital ridge cells pig 0:4d:MII 4-8 0,7 Betthauser, 2000. 
fibroblast pig 0:4d:MII 4-8 0,3 Betthauser, 2000. 
fetal fibroblast pig 16d:MII 1-31.2 0,9 Onishi et al., 2000. 
10 kinds of tissue(fibroblast) bovine G0:MII 23-46 8 Kato et al., 2000 
fibroblast mouse M:MII 29-37 0.7-3 Ono et al.,, 2001b. 
neural cells mouse ?:MII 37 5.5 Yamazaki et al., 2001. 
neural cells, premature-early differentiated mouse ?:MII 36 12 Yamazaki et al., 2001. 
neural cells, differentiated mouse ?:MII 23 5 Yamazaki et al., 2001. 
fetal fibroblast mule-horse ?:MII - 0,3 Woods et al., 2003. 

Somatic cells 

fetus 

keratinocytes mouse ?:MII 54 2 Li et al., 2007. 
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inner cell mass (ICM) cells  mouse G16):MII 23-64 8 Tsunoda and Kato, 1998. 
mural trophectoderm (TE) cells mouse G16):MI 32-62 11 Tsunoda and Kato, 1998. 
embryonic disc sheep ss 5 d:MII 6.7-21 11 Campbell et al., 1996. 

blastocyst 
  

cultured embyonic disc (TNT4) sheep ss 2d : MII 9.2-50 15 Campbell et al., 1996. 
mouse small size:MII 16.5 5 Wakayama et al., 1999b. 
mouse large size:MII 36.8 3 Wakayama et al., 1999b. 
mouse M:MII 34-88 2-6 Amano et al., 2001. 
mouse M:MII 70 10 Ono et al., 2001a. 
mouse M:MII 517) 167) Ono et al., 2001a. 

ES-cell  

mouse M:M(zygote) 10 5 Egli et.al., 2007. 
EC-cell  mouse ?:MII 0-29.7 08) Chang et.al., 2010. 

mouse G1:M - 0.4 Miki et al., 2005. 
day 10.5 

mouse M:M - 0.4 Miki et al., 2005. 
day 11.5 mouse G0:M(zygote) 14 - Kato and Tsunoda, 1995a. 
day 12.5 male mouse G0:S(2:cell) 2 - Kato and Tsunoda, 1992. 

mouse G0:S(2:cell) 7 - Kato and Tsunoda, 1992. 
mouse G0:M(zygote) 57 - Kato and Tsunoda, 1995a. 

mouse G0:MII 58 (3)10) Kato and Tsunoda, 1995b.,  
Tsunoda and Kato, 1995. 

Embryonic 
cells 

PGCs 

day 15.5 male 

mouse G0:MII 47-66 (57)11) Kato et al., 1999b. 

1) serum starved; d: days, h: hours, 2)  later-term abortion at day 202, 3) ntES cells were injected into 2n host blastocysts, 4) ntES-cells were injected into 4n blastocysts, 5) 5 chimeras after injection
of ntES-cells into blastocysts. 6) ICM and TE cell were isolated from blastocysts previously treated with nocodazole followed by achidicolin. 7) serial nuclear transferred at 1-cell stage, 8) ntES-cells
were injected into 4n bl;astocysts, 10) day 10.5 chimera after serial nuclear trasnfer at the 2-cell stage, 11) day10.5 fetuses.

second polar body after artificial activation is essential to maintain
the diploid status in the ooplasm. This differs from blastomere
transfer, because somatic cells at the S-phase do not develop in
activated ooplasm. Also, when G0/G1-phase and M-phase donor
cells are transferred to activated ooplasm, the in vitro develop-
mental ability of reconstituted oocytes is significantly decreased
(Tani et al., 2003).

The Table summarizes the effect of the cell cycle of the donor
and recipient and of the donor cell types on the development of
manipulated embryos. The first report of each animal species and
the specific cell cycle combination of the donor and recipient was
selected from the vast literature. As shown in Table, a G0/G1
donor with MII recipient ooplasm was used in almost all success-
ful reports.

There have been some attempts to use fertilized oocytes such
as zygotes and 2-cell embryos as SCNT recipients, but the
success has been limited. Zygotes at the S-phase seem to
support the development of SCNT up to the 4-cell stage and then
development stops (Wakayama et al., 2000). Zygotes at the M-
phase seem to support the development of SCNT to the blasto-
cyst stage (Egli et al., 2007), but if embryonic stem (ES) cells are
used, zygotes at the M-phase can develop to full term after
embryo transfer to foster mothers (Egli et al., 2007).

When primordial germ cells at the arrested stage obtained from
day 15.5 fetuses or at the mitotic phase obtained from day 11.5
fetuses were fused with enucleated zygotes at the M-phase (Kato
and Tsunoda, 1995a) and/or enucleated blastomeres of one of
the 2-cell embryos at the late S-phase (Kato and Tsunoda, 1992),
reconstituted zygotes or chimeric 2-cell embryos(Kato and
Tsunoda, 1992) developed to the blastocyst stage. Moreover, in
rabbit, chimeric embryos, i.e., adult fibroblast cells fused with one
enucleated blastomere of a 2-cell embryo, develop to chimeric
offspring (Skrzyszowska et al., 2006).

Based on these studies, MII oocytes might possess some
reprogramming factors in the ooplasm (Miyamoto et al., 2009),
but gradually lose these reprogramming factors in the cytoplasm
after fertilization or artificial activation (Tani et al., 2003). We
examined the effect of ooplasm aging on the developmental
potential of SCNT embryos in bovine (Tani et al., 2003) and in
mouse (Liu et al., 2007). When bovine cumulus cells at the G0-

phase and M-phase are fused every hour after activation for 6 h,
the potential to develop into blastocysts after SCNT gradually
decreased with time after activation. Ooplasm 2 h and more after
activation did not support the development of G0-phase cumulus
nuclei to blastocysts. When M-phase cumulus cells were fused,
the ability to develop into blastocysts dramatically decreased
beginning at 6h postactivation. These findings clearly demon-
strate that some reprogramming factors present in the ooplasm
decrease after artificial activation. We isolated some reprogram-
ming factors in the ooplasm before activation, and identified one
of the candidate reprogramming factors as TCTP (Tani et al.,
2007), which expressed in ooplasm, but is no longer present in
activated ooplasm as the same type. Although, oocytes injected
with TCTP peptide after SCNT produce much healthier offspring
in bovine than in non-injected oocytes, (Tani et al., 2007), the role
played by TCTP in the whole reprogramming process remains
unclear.

Donor cell type

After the first report in which mammary gland cells were used
as the donor cells, cumulus cells have been the most popular
donor cell type in SCNT because of the experimental conve-
nience (Table 1). Many attempts have been made to determine
the most efficient donor cell types, especially for bovine and
mouse. To examine which cell types are the most successful for
SCNT in bovine, we compared the development potential of 39
cell types from adults, newborns, and fetuses of both sexes, but
there was no big difference (Kato et al., 2000). When tissue or
biopsy samples were used for the cell culture, fibroblast cells were
the most common cell type to easily increase. Cells that were not
identified as a specific cell before nuclear transfer were catego-
rized as fibroblast cells. As shown in the table, although the
developmental potential was higher in bovine compared with
mice, the overall conclusion is that cloning efficiency is similar
among somatic cell types. Although some types of stem cell, such
as bone marrow mesenchymal stem cells (Kato et al., 2004),
neural stem cells (Mizutani et al., 2006), and hematopoietic stem
cells (Sung et al., 2006), might be adequate for cloning, the results
do not indicate equivalent efficiency suggesting that the low
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efficiency of SCNT must not depend on the cell type, but that
ooplasm alone is also not sufficient for complete reprogramming
of the somatic nucleus. To improve the efficiency of SCNT
cloning, several possibilities are considered.

When male primordial germ cells on day 15.5 arrested at the
G0-phase of the cell cycle were used as donor cells, nuclear-
transferred oocytes developed to blastocysts, but after their
transfer to recipient mice, they stopped developing at around day
10.5 due to the lack of a proper imprint (Tsunoda and Kato, 1995;
Kato and Tsunoda, 1999b; Kato et al., 1999b). Later, Miki et
al.,2005) demonstrated that PGCs on day 10.5 developed to term
after nuclear transfer.

Based on these results, epigenetic modification of DNA such
as methylation in imprinted genes might not be reprogrammed by
the ooplasmic factor(s) alone. If donor cell chromatin undergoes
epigenetic modification in genes important for development, such
as imprinting before nuclear transfer, nuclear-transferred oocytes
must be very difficult to completely reprogram. It might be sug-
gested that imprinting status is more important for the success of
cloning than the origin of the donor cells. It is possible that
successful cloning requires the use of donor cells with an ad-
equate methylation pattern that are then reprogrammed in the
ooplasm and develop to term.

Cytoplasmic factors

In conducting nuclear transfer, cytoplasmic factors of donor
cells often contaminate the recipient ooplasm. Somatic cytoplas-
mic factors affect the developmental potential of not only nuclear-
transferred embryos but also parthenogenetic oocytes (Takeda et
al., 2005, 2010) and fertilized oocytes (Thuan et al., 2006). Thuan
et al. (2006) also demonstrated that the injection of cumulus
cytoplasm into oocytes before fertilization induced a decrease in
preimplantation development and impaired full-term develop-
ment. When isolated mitochondria from ear epithelial cells in the
G0-phase were injected into mouse oocytes, the developmental
potential of parthenogenones into blastocysts was significantly
decreased (Takeda et al., 2010), suggesting that mitochondrial
heteroplasmy or foreign mitochondria introduction affects the
developmental potential of parthenogenetic oocytes.

In SCNT, donor mitochondria comprise only about 1%, which
is difficult to detect. In some cases, however, the amount of
mitochondria from donor somatic cells increased and survived to
become clones (Takeda et al., 2003). It has remained unclear how
mitochondria heteroplasmy affects SCNT development.

In nuclear transfer, serial nuclear transfer at the late pro-
nucleus (Ono et al., 2001b) or 2-cell stages in the mouse (Kato et
al., 1999a), during which zygotic genome activation has occurred
in the mouse, improves the development of SCNT embryos. The
serial nuclear transfer has mainly two effective meanings; dilution
of the donor cytoplasmic factors incorporated in the ooplasm, and
fertilized cytoplasm after zygotic genome activation must be
much better than parthenogenetic ooplasm (Kato et al., 1999a).

Direct reprogramming of somatic cells into pluripotency

The term “reprogramming” may be used to refer to either the
induction of totipotency(Tsunoda and Kato, 2002), leading to
successful cloning or the induction of pluripotent capabilities.

Tada et al.,2001) demonstrated that somatic cells such as lym-
phocytes fused with ES cells become pluripotent. Activation of the
Oct4 gene and reactivation of the X chromosome in lymphocyte
nuclei in hybrid cells results in chimeric fetuses. These acquired
characteristics in the lymphocytes are very similar to that of ES
cells. Tada et al. (1997, 2001) also demonstrated that embryonic
germ cells have more developmental potential than ES cells; the
methylation status of embryonic germ cells is downregulated
compared to that of ES cells and therefore the imprint of ES cells
is erased after fusion in the hybrid cells. Although, it is not clear
which factors contribute to controlling the methylation pattern and
to erasing the imprint from ES cells, factor(s) including imprint
status, in EG-cells and PGCs seemed to be dominant compared
with that from ooplasm and ES-cells.

Somatic cells were recently directly reprogrammed (Mitalipov
and Wolf, 2009) to induce pluripotency in cells in vitro, termed
induced pluripotent stem (iPS) cells (Takahashi and Yamanaka,
2006) and MUSE cells (Kuroda et al., 2010). When iPS cells were
used as donor cells, the cloning efficiency was slightly improved
to a level between that of somatic cells and ES cells (Kou et
al.,2010). MUSE cells can be isolated from cultured skin fibro-
blasts and bone marrow stromal cells, or directly from bone
marrow aspirates. MUSE cells can be produced without gene
transfer and are capable of self-renewal and expression of a set
of genes associated with pluripotency. Moreover, they are
nontumorigenic stem cells with the ability to generate multiple cell
types of the three germ layers. At present, MUSE cells show low
proliferation activity, but will be useful as candidate SCNT donors,
especially in domestic animals, because the produced cloned
animals are not transgenic.

One possibility is that clones are produced via nuclear transfer
of ES cells (ntES-cells). Although ES cells have varied gene
expression patterns (Furusawa et al., 2006), the cloning effi-
ciency of ES cells is higher (12.3%-33%) than that of somatic cells
(1.1%-3.4%, Mizutani et al., 2008; Amano et al., 2001), and may
be useful for improving SCNT efficiency. But, three steps are
needed for using ntES cells as donors for the second NT; first, NT
with somatic cells, then ES cell establishment from SCNT blasto-
cysts, and last, the second NT.

Because the direct reprogramming of somatic cells induces
pluripotency, such as in ES cells or somatic cells in vitro, direct
reprogrammed somatic cells might be interesting SCNT donor
candidates.

Pre- and post-treatment of SCNT embryos

Treatment of reconstituted oocytes with TSA, which inhibits the
activity of classical histone deacetylases, improves the potential
of young to develop into mice. TSA treatment might also stimulate
DNA demethylation (Cervoni & Szyf, 2001; Geiman & Robertson,
2002; Kishigami et al., 2006), leading to improved reprogram-
ming.

The DNA methyltransferase inhibitor 5-aza-2‘-deoxycytidine
(5-aza-dC) relaxes epigenetic marks of differentiated somatic
cells. Pretreatment of somatic cells with 5-aza-dC, however, does
not increase but rather decreases development potential due to
its toxicity (Jones et al., 2001; Viggnon et al., 2002; Enright et al.,
2003; 2005; Shi et al., 2003). Moreover, treatment of reconsti-
tuted oocytes with 5-aza-dC does not improve the developmental
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potential of SCNT embryos. 5-aza-dC might be too toxic for cells
and long-term culture is not adequate for cells and embryos (Tsuji
et al.2009).

The morphology of SCNT blastocysts is not a criteria of embryo
quality, because even SCNT embryos with a visually-perfect
morphology under a microscope develop at a very low rate to full-
term. The developmental ability of SCNT embryos and ES cell
nuclear-transferred embryos gradually decreases in vivo (Amano
et al., 2001; Yabuuchi et al., 2001) Many attempts to improve the
potential of SCNT have focused mainly on the preimplantation
stages, and not focused on the postimplantation stages. Ewes
carrying SCNT clone pregnancies have significantly lower serum
progesterone levels than ewes carrying control pregnancies,
suggesting that a low serum P4 level is one reason for the low
potential of SCNT embryos to reach full term (Alexander et al.,
2008). Enhancement of the recipient by daily injection of hCG
from day 3.5 to day 6.5 of pregnancy after embryo transfer of
SCNT significantly increases the implantation and fetal develop-
ment rates compared to controls (Tsuji et al., 2010). The potential
of SCNT embryos to develop to full term, however, was not
greater than that of controls, even if hCG administration was
continued to day 11.5 or day 17.5 and progesterone was admin-
istered from day 7.5 to day 17.5 after hCG injection. These
findings demonstrated that injection of hCG to recipients protects
the in vivo development of SCNT embryos until day 10.5, but other
treatment is necessary to support the progression of the embryos
to full-term development.

Selection of SCNT embryos before transfer

Although the morphologic appearance of SCNT embryos does
not differ from that of in vitro-fertilized embryos, the potential to
develop to term dramatically differs between SCNT and IVF
embryos (Li et al., 2005, 2006a, b, 2008; Kato et al., 2007.).
Markers that will be useful for predicting the potential of NT
embryos to develop into young are needed. We examined the
relation between the morphology of embryos with gene expres-
sion of development-related genes, such as Oct 4, Nanog, Stat3,
FGF4, Stella, and Sox2 (Li et al., 2006a,b). In that study, six kinds
of blastocysts were produced; in vivo fertilized/in vivo-developed,
in vivo fertilized/in vitro-developed, pronuclear exchanged, morula
blastomere NT, ES-NT, and cumulus cell NT. Based on the small
variations in the gene expression levels among the in vivo-
developed blastocysts, and the significant differences in gene
expression between in vivo-developed (high developmental po-
tential), and ES cell and cumulus cell NT blastocysts (low devel-
opmental potential), the downregulation of Sox2 and Oct4 genes
is considered to be a candidate marker for the low potential of NT
embryos to develop into young. A method of preselecting donor
cells before SCNT is needed (Furusawa et al., 2006)

Interspecies nuclear transfer

The use of SCNT methods has been extended to a wide variety
of fields. Interspecies nuclear transfer of endangered species is
a new purpose for SCNT (Beyhan et al., 2007). Many attempts
have been taken to produce animals by interspecies nuclear
transfer, developmental potential of interspecies nuclear-trans-
ferred embryos was very low, and full-term development was very

limited (Beyhan et al., 2007). The interactions between the donor
nucleus and recipient ooplasm should be matched for develop-
ment. Mitochondrial interaction, transcription, and translation,
which occur in reconstituted ooplasm, must be overcome. As
shown in the table, several experiments using interspecies SCNT
have succeeded.

Conclusion

Despite continuing problems with SCNT, it is also clear that
SCNT can be used to produce healthy cloned animals. After the
first successful SCNT more than 10 years ago, researchers have
tried several methods to improve the efficiency of SCNT. Never-
theless, the efficiency remains low. It is still unclear if the success-
ful cloning was derived from the elite donor cells were happened
to be selected as nuclear donor, or some kinds of donor nucleus
happened to be reprogrammed in ooplasm. Ooplasm reprogram-
ming should be further investigated as a factor in the direct
reprogramming of somatic cells to become pluripotent. If ooplasm
which can reprogram any donor nucleus, it will be much useful for
extended to a wide variety of fields more than expection, although
it is still in the beginning.
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