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ABSTRACT  Mitochondrial DNA (mtDNA) is a 16.6 kb genome that encodes for 13 of the 100+

subunits of the electron transfer chain (ETC), whilst the other subunits are encoded by chromo-

somal DNA. The ETC is responsible for the generation of the majority of cellular ATP through the

process of oxidative phosphorylation (OXPHOS). mtDNA is normally inherited from the popula-

tion present in the mature oocyte just prior to fertilisation. However, following somatic cell

nuclear transfer (SCNT), mtDNA can be transmitted from both the donor cell and the recipient

oocyte. This heteroplasmic transmission of mtDNA is a random event and does not appear to be

related to the amount of mtDNA contributed by the donor cell. The distribution of mtDNA is

randomly segregated between blastomeres and differentiating tissues, and therefore the mtDNA

complement transmitted to offspring tissue cannot be predicted. mtDNA divergence between the

cytoplast and the donor cell in intra- and inter-specific crosses favours a slightly more diverse

mtDNA haplotype. However, this is limited as interspecies SCNT (iSCNT) genetic divergence

contributes to developmental failure. SCNT embryos demonstrate a plethora of aberrantly

reprogrammed characteristics including the uncoordinated regulation of the mtDNA replication

factors. This results in increased mtDNA copy number during preimplantation development and

propagates the replication of donor cell mtDNA. These failures are likely to be a consequence of

incompatible nuclear- and mtDNA -encoded proteins interacting within the ETC thus reducing

ATP production. The outcomes would be similar to the severely debilitating or even fatal mtDNA

diseases associated with genetic rearrangements to mtDNA or mtDNA depletion type syndromes

and have serious implications for any form of karyoplast transfer approach. The only method to

overcome the problems of heteroplasmy in SCNT embryos is to completely deplete the donor cell

of its mtDNA prior to SCNT.
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Introduction

Somatic cell nuclear transfer (SCNT) offers a technological
approach to studying the biochemical and molecular dynamics of
development as well as offering the propagation of desirable
genetic traits (Bowles et al. 2007a), preservation of endangered
species (Loi et al. 2001) and the derivation of patient specific stem
cells through intra- and interspecies SCNT (iSCNT; (St John and
Lovell-Badge 2007; St John et al. 2008). The development rates
for these SCNT embryos is extremely poor and many factors have
been attributed to developmental failures, most notably nuclear
reprogramming. Furthermore, the amalgamation of genetically
divergent mitochondria from different breeds or species may have
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deleterious implications and deserves extensive experimentation
considering the dynamic functions of mitochondria during devel-
opment as well as the implicated technological and therapeutic
applications of SCNT. To this extent, defective interactions be-
tween the donor chromosomally-encoded mitochondrial DNA
(mtDNA) transcriptional and replication factors with recipient
oocyte mtDNA would result in compromised expression of mito-
chondrial proteins and propagation of mitochondrial genes. This,
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energy demands, to mediate their complex cellular functions,
such as maintaining heartbeat through pacemaker cells or initiat-
ing and driving action potentials (Erecinska and Silver 1989;
Wong-Riley 1989; Heineman and Balaban 1990). The impor-
tance of these genes in maintaining vital cellular functions is
demonstrated by mutations and deletions, which can result in
severe cellular impairment or can be lethal (Wallace 1999).

mtDNA replication

Whilst the mitochondrial genome is not interspersed with
introns and exons as for the chromosomal genome, it has one
non-coding region, the displacement or D-Loop (see Fig. 1). This
is the site of interaction of several nuclear-encoded mtDNA-
specific transcription and replication factors that mediate mtDNA
replication (Anderson et al. 1981; Anderson et al. 1982; Shadel
and Clayton 1996; Shadel and Clayton 1997). Mitochondrial
transcription factor A (TFAM) binds to the enhancer of the Light
Strand Promoter within the D-Loop to induce structural changes
that expose the promoter region to the mitochondrial-specific
RNA polymerase (Falkenberg et al. 2007). This allows an RNA-
DNA hybrid primer to be generated, which is then used by the
mitochondrial specific DNA Polymerase Gamma (POLGA) to
initiate replication (Fisher and Clayton 1985; Xu and Clayton
1992). POLGA is supported by its accessory subunit, POLGB, the
mitochondrial single-stranded DNA-binding protein (mtSSB) and
the helicase, Twinkle (Korhonen et al. 2003). Decreased expres-
sion and mutation to the mtDNA replication factors result in fewer
genomes being available for transcription and mediate the onset
of mtDNA depletion syndromes (Copeland 2008).

Fig.1. The mammalian mtDNA genome encodes 13 of the subunits of the electron transfer

chain (ETC). For Complex I, these consists of ND 1, 2, 3, 4, 4L, 5 and 6); Complex III (CytB);
Complex IV (COX I, II and III); and Complex V (ATPase6 and ATPase8). mtDNA also encodes two
rRNAs (12S and 16S rRNAs) and 22 tRNAs. The D-loop is the main control region, which houses
the H-strand promoter region (HSP), the L-strand promoter region (LSP), and the origin of H-
strand replication (OH). A second control region, consisting of only 30 bp, is located between ND2
and COXI and is the site of the origin of L-strand replication (OL).

in turn, would compromise the given cellular demand for ATP
generated through oxidative phosphorylation (OXPHOS) thus
potentially triggering embryonic arrest or subsequent disease
phenotypes (Wallace 2005; Wallace et al. 2010). Ineffective
interactions of the chromosomally- and mtDNA-encoded com-
plexes of the electron transport chain (ETC) could also result in
deleterious phenotypes pre- and post-term. Indeed, SCNT em-
bryos (Alexopoulos et al. 2008), foetuses (Hiendleder et al. 2003;
Burgstaller et al. 2007) and offspring (Steinborn et al. 1998;
Hiendleder et al. 1999; Meirelles et al. 2001; Takeda et al. 2003)
can exhibit different mitochondrial profiles, which has been sug-
gested to be a common cause of premature death resulting from
reproductive cloning (St John 2002). The aim of this review is to
describe and discuss these outcomes.

Mitochondria

Along with energy production, mitochondria are involved in the
regulation of steroidogenesis (Bose et al. 2002), reactive oxygen
species (ROS; (Nemoto et al. 2000), nitric oxide (Dedkova et al.
2004), calcium signalling (Brini 2003; Dumollard et al. 2006); and
apoptosis (Joza et al. 2001). The eukaryotic mitochondrion most
likely originated from -protobacterium, an event that took place
approximately 1 to 2 billion years ago. Over hundreds of millions
of years, an endo-symbiotic relationship evolved, whereby key
proto-mitochondrial genes, located on a circular genome within
the mitochondria, were transferred to the eukaryotic chromo-
somal genome (Gray et al. 1999). As a result, the mammalian
chromosomal genome contains many of the genes encoding for
each of the complexes of the electron transfer chain (ETC) along
with nearly all the necessary proteins for
the transcription and replication of mtDNA,
along with numerous factors involved in
protein translation of the mitochondrial
genes (Lang et al. 1999; Andersson et al.
2003).

Mitochondrial DNA

The double stranded mammalian mtDNA
is between 16.2 and 16.7kb in size (see
F ig .F ig . 1) and encodes 13 of the 100+ sub-
units of the electron transfer chain (ETC;
See F ig .F ig . 2; Anderson et al. 1981; Bibb et al.
1981; Anderson et al. 1982; Ursing and
Arnason 1998) 2 rRNAs and 22 tRNAs that
flank most of the coding genes. The ETC is
an intra-mitochondrial apparatus that gen-
erates the vast majority of cellular ATP
through the process of OXPHOS (Wallace
et al. 2010). OXPHOS, an aerobic mecha-
nism, is by far the most efficient process for
generating ATP as it produces 32 mol-
ecules to every 2 generated through glyco-
lysis, an anaerobic form of metabolism
(Brown 1992; Pfeiffer et al. 2001). Conse-
quently, OXPHOS is essential for aerobic
cells, such as neurons, cardiomyocytes and
oxidative skeletal muscle, which have high
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after gastrulation (Shoubridge 2000; Shoubridge and Wai 2007).
Although this tends to be true for intra-specific crosses, sperm
mtDNA can be transmitted through inter-specific crosses gener-
ated with gametes from different breeds or strains (Lansman et al.
1983; Gyllensten et al. 1991). In intra-specific crosses, sperm
mitochondria are selectively ubiquitinated within the fertilized
oocyte just prior to the onset of embryonic genome activation
(EGA) demonstrating that this is an oocyte rather than embryo
mediated event. This prevents the potential transmission of
sperm mtDNA during subsequent development (Sutovsky et al.
1999; Sutovsky et al. 2000). This ubiquitinated-targetted process
does not regulate sperm mtDNA transmission in interspecific
crosses resulting in variable transmission to offspring. However,
sperm mtDNA does not appear to be fixed in the germ line, as
subsequent generations do not inherit this paternal source of
mtDNA.

mtDNA and developmental competence
The mitochondria of the mature metaphase II (MII) oocyte

contain only a single mtDNA copy (Satoh and Kuroiwa 1991), but
have significantly more mitochondria present meaning a total
mtDNA content that is at least a 10-fold higher than that of somatic
cells. Thus, mtDNA potentially contributes to ~50% of the total
DNA present in the oocyte at fertilization (Reynier et al. 2001). The
number of mtDNA copies present in mature mammalian oocytes
is on average greater than 1x105 copies although mtDNA copy
number varies dramatically between oocytes and between mam-
malian species. The mechanisms of these variations and the
purpose of high copy numbers at fertilization have been matters
of great debate recently.

It has been demonstrated that oocytes with higher copy num-
bers of mtDNA are thought to be associated with higher fertilisation
rates. Glucose-6-phosphate dehydrogenase (G6PD) is a meta-
bolic enzyme involved in the pentose phosphate pathway, and is

Fig. 2. The electron transfer chain (ETC). The ETC is the major generator of cellular ATP through
OXPHOS. Electrons are derived from NADH and FADH2 and transferred into Complexes I and II,
respectively. Following transfer into coenzyme Q (Co Q), electrons are transferred to Complex III.
In turn, Cytochrome c (Cyt C) accepts electrons and then donates them to Complex IV.  The energy
released as electrons is used by Complexes I, III and IV to generate an electrochemical gradient
by pumping protons across the mitochondrial inner membrane. Complex V utilises this membrane
potential to produce ATP from adenosine diphosphate (ADP) and inorganic phosphate.

Two methods have been described to
explain mtDNA replication. The assymetric
model proposes that replication is initiated
from the origin of H-strand replication, lo-
cated within the D-Loop region, and contin-
ues two-thirds round the genome to the
origin of L-strand replication (Shadel and
Clayton 1997). L-strand synthesis then pro-
ceeds in the opposite direction. The coupled
leading- and lagging-strand synthesis model
suggests that both H and L strands are
replicated bidirectionally from the same ini-
tiation cluster site (Yasukawa et al. 2005;
Yasukawa et al. 2006). This mechanism is
proposed to occur in addition to the asym-
metric model, but is typical of cells repopu-
lating mtDNA.

Maternal inheritance of mtDNA
Mitochondrial DNA (mtDNA) is normally

inherited unimaternally with all copies being
identical (homoplasmy; Birky, 1995; Birky,
2001). This population originates from ap-
proximately 200 copies present in each pri-
mordial germ cell (PGC), which are laid just

essential for cellular growth (Tian et al. 1998). G6PD breaks down
Brilliant cresyl blue (BCB) dye, which has been applied in the
determination of oocyte developmental competence (Rodriguez-
Gonzalez et al. 2002; El Shourbagy et al. 2006). Fully matured
oocytes have decreased G6PD activity and stain blue (BCB+),
suggesting developmental competence. Increased G6PD activity
reduces BCB to a colourless compound (BCB-) and has been
associated with reduced fertilisation rates (Rodriguez-Gonzalez
et al. 2002). In the pig, competent BCB+ oocytes contain more
copies of mtDNA, and are more likely to fertilize than incompetent
BCB- oocytes (El Shourbagy et al. 2006). In addition, supplemen-
tation of BCB- oocytes with purified populations of mitochondria
from BCB+ oocytes improved subsequent developmental compe-
tence post-fertilization (El Shourbagy et al. 2006). Indeed, human
(Reynier et al. 2001; Santos et al. 2006) and bovine (May-Panloup
et al. 2005a; Hua et al. 2007) oocytes with higher copy numbers
are associated with increased in vitro developmental rates. Pre-
viously, a threshold of 100,000 mtDNA copies was hypothesised
for developmental competence (Piko and Taylor 1987; Reynier et
al. 2001). However, a recent report by Wai et al. (2010) demon-
strated through heterozygous Tfam knockout mice that oocytes
with as few as 4,000 mtDNA copies could be fertilized and develop
to the blastocyst stage, although a minimum of 50,000 copies in
mature oocytes was a critical threshold for subsequent post-
implantation development (Wai et al. 2010). Nevertheless, Tfam
heterozygous offspring display respiratory chain deficiency in the
heart resulting in a cardiomyopathy phenotype (Larsson et al.
1998; Wredenberg et al. 2002). Their homozygous counterparts
die prior to embryonic day (E)10.5, which clearly suggests that
high numbers of mtDNA copy in the MII oocyte represent an
investment in the long term survival of the subsequent offspring
(Larsson et al. 1998). Furthermore, the considerable increase in
mtDNA copy number as oocytes mature to MII indicates that an
increase in mitochondria is required to provide sufficient energy
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resource to support the multiple intracellular events that take
place as fertilisation is initiated and ensues.

MtDNA present in MII occytes is believed to support embryo
development to cavitation, after which glycolysis becomes in-
creasingly important in many species (Leese and Lenton 1990;
Brison and Leese 1991; Leese et al. 1993; Brison et al. 1993;
Houghton et al. 1996; Thompson et al. 1996; Sturmey and Leese
2003; Houghton 2006). Furthermore, the 100,000 minimum copy
number may be essential as it has been hypothesised that a
threshold level of ATP is required which will synchronise mito-
chondrial events that support cell division (van Blerkom, 2000;
van Blerkom et al. 2000). To this extent, following fertilisation, the
totipotent zygote undergoes numerous cell divisions to form the
pluripotent blastocyst, randomly segregating the maternal inher-
ited genome between blastomeres with a progressive reduction in
mitochondrial content per blastomere. This pattern is observed in
all mammalian species so far studied until mtDNA replication is
initiated at the blastocyst stage (Shoubridge 2000; Thundathil et
al. 2005; May-Panloup et al. 2005b; Spikings et al. 2007). This
replication event is most probably restricted to the trophectoderm
cells whilst the inner cell mass (ICM) cells have very few mtDNA
copies per cell (Cao et al. 2007) and exhibit little expression for
POLGA (Spikings et al. 2007; Bowles et al. 2007b). Indeed, during
the early cleavage stages, mammalian embryos express very low
levels of or no mtDNA replication factor activity (Thundathil et al.
2005; May-Panloup et al. 2005b; Spikings et al. 2007; Bowles et
al. 2007b). A small replication event has been described between
the pronuclear and the 2-cell stage in mouse embryos, indicating
replenishment rather than an increase in mtDNA copies as there
was no significant change in mtDNA copy number (McConnell
and Petrie 2004). Similar outcomes have been identified in
porcine (Spikings et al. 2007) and ovine (Bowles et al. 2007b)
embryos. Interestingly, mouse preimplantation development up
to the morula stage is characterised by consistent levels of
mtDNA copy number (Thundathil et al. 2005). However, porcine
(Spikings et al. 2007) and bovine embryos (May-Panloup et al.
2005b) demonstrate a reduction in total embryo mtDNA copy
number, suggesting a programmed elimination of mtDNA and/or
mitochondria.

Some mtDNA and mitochondria during development will be
lost through the occurrence of apoptosis in individual blastomeres.
Apoptosis in embryonic cells is a potential indicator of a cellular
response to suboptimal conditions, although chromosomal ab-
normalities, imbalance of growth factors, reactive oxygen species
(ROS) and other damaging factors cause cell death (reviewed in
Fabian et al. 2005). Apoptosis is normally first observed post-
compaction in human embryos (Hardy 1999), at the blastocyst
stage in mouse (Kamjoo et al. 2002) and porcine embryos (Hao
et al. 2003; Hao et al. 2004), whilst in bovine embryos the first
occurrence is at the 8-16 cell stage (Matwee et al. 2000; Gjorret
et al. 2007). The apoptotic process can be triggered by
staurosporine treatment in murine (Weil et al. 1996) and bovine
(Matwee et al. 2000) embryos during early cleavage stages prior
to EGA. In SCNT and iSCNT embryos, the incidence of apoptosis
is increased compared to their in vitro fertilised and in vivo
counterparts (Maddox-Hyttell et al. 2003), which could be a result
of the heightened sensitivity of SCNT embryos to suboptimal
culture conditions (reviewed in Campbell et al. 2007) along with
the mixing of somatic and oocyte mitochondria within the oocyte’s

cytoplasm. Therefore, programmed cell death (PCD) events
during development have the potential to eliminate blastomeres
at varying stages, which could potentially result in reduced total
embryo mtDNA copy number. However, this is unlikely to be the
active mechanism for reducing mtDNA copy number in bovine
and porcine embryos as the apoptotic events occur post-16 cell
stage at which point copy number has already significantly de-
creased. As discussed earlier, the embryo does have the capacity
to target mitochondria for destruction as evidenced by sperm-
mitochondrial specific elimination. The programmed elimination
of mtDNA during preimplantation, either recipient or donor in
origin, is a mechanism which has yet to be described.

Mixing of somatic and oocyte mitochondria: implica-
tions for development

A mitochondrial morphological-functional relationship in pre-
implantation embryos has yet to be fully explored although an
elongated phenotype and developed transverse cristae are con-
sidered to be characteristic of fully functional mature mitochondria
capable of producing ATP through the oxidation of various sub-
strates (Mannella 2006). Ultrastructural analysis of mammalian
oocytes and embryos has identified numerous mitochondrial
morphologies with some differences observed between species.
However, mammalian oocytes generally contain spherical imma-
ture mitochondria, which are characterised by electron dense
matrices with few or no cristae (Hillman and Tasca 1969; Hillman
and Hillman 1975; King et al. 1996). As development progresses
mitochondrial differentiation is observed during progressive cleav-
ages to an elongated shape, with reduced electron density and
transverse cristae observed at the blastocyst stage (Van et al.
1990; Plante and King 1994; King et al. 1996; Crosier et al. 2000;
Crosier et al. 2001; Tao et al. 2008). These structural changes are
associated with increased metabolic activity, oxygen consump-
tion and CO2 production observed in the blastocyst (Thompson et
al. 1996; Barnett and Bavister 1996).

Nuclear transfer embryos display numerous ultrastructural
changes compared to in vitro produced (IVP) and in vivo embryos
(King et al. 1996). Nuclear transfer embryos produced using
embryonic (King et al. 1996), foetal (Zhong et al. 2007; Zhong et
al. 2008) or adult (Tao et al. 2008; Han et al. 2008) donor cells
demonstrate heterogenous morphologies not seen in IVP or in
vivo embryos that persist for several cleavages. The dynamic
changes of mitochondrial structure, typical of preimplantation
development, is maintained in nuclear transfer embryos. In hu-
man (Motta et al. 2000), pig (Katayama et al. 2006), primate
(Squirrell et al. 2003) and hamster IVF embryos (Bavister and
Squirrell 2000), perinuclear aggregation of mitochondrial is ob-
served during early cleavage stages and this may be associated
with developmental competence (Au et al. 2005). This cellular
ability to translocate to perinuclear regions is reduced in porcine
SCNT embryos due to the absence of factors derived from the
sperm and oocyte spindles (Katayama et al. 2006). Mixing of
mature somatic and immature oocyte mitochondria at reconstruc-
tion may be deleterious to successful development, although
more sophisticated analysis is required. The additional dysfunc-
tional translocation of mitochondria during early cleavage stages
could also contribute to the subsequent failures that are charac-
teristic of SCNT.
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Although oxygen consumption remains relatively constant
until an increase at the blastocyst stage, in general embryos
throughout mammalian preimplantation development are reliant
on OXPHOS for the generation of ATP, most probably to fuel
cellular proliferation (Houghton et al. 1996; Thompson et al. 1996;
Sturmey and Leese 2003). Mouse embryos depend entirely on
OXPHOS until the blastocyst stage at which embryos start to
metabolise glucose (Houghton et al. 1996). Glucose is however
metabolised in human (Gott et al. 1990), ovine (Thompson et al.
1991; Thompson et al. 1992; Thompson et al. 1993), porcine
(Sturmey and Leese 2003) and bovine (Thompson et al. 2000)
embryos pre-compaction suggesting that they are not entirely
reliant on OXPHOS. Furthermore, there is a metabolic switch to
increase ATP production from glycolysis during compaction and
blastulation (reviewed in Barnett and Bavister 1996). Cloned
mouse embryos display irregular substrate requirements com-
pared to IVF and in vivo embryos (Heindryckx et al. 2001; Chung
et al. 2002; Gao et al. 2003; Han et al. 2008). Cumulus cell clones
(Chung et al. 2002; Han et al. 2008) have a preference for glucose
containing media as early as the 1-cell stage, which enhances
development to the blastocyst stage. In addition, SCNT embryos
produced using myoblast donor cells fail to thrive in standard
embryo culture media, but flourish in somatic media favoured by
the original donor cells (Gao et al. 2003). These cloned embryos
continued to express the somatic glucose transporter Glut-4,
indicating inadequate reprogramming of the somatic genome and
that the somatic genome significantly modifies the embryos
metabolic phenotype. These findings highlight the essential re-
quirement for nuclear-cytoplasmic compatibility during develop-
ment, which in some cases seems to be absent in cloned em-
bryos. However, any links between developmental competence,
perturbed metabolic output and disrupted phenotypes character-
istic of SCNT embryos have yet to be elucidated.

Transmission of mtDNA following SCNT: homoplasmy or
heteroplasmy

Somatic cells contain from a few hundred up to several thou-
sand mitochondria each containing between two and ten copies
of mtDNA (Michaels et al. 1982) reflecting the cells requirement
for ATP (Moyes et al. 1998; Moyes 2003). Indeed, fully differen-
tiated cells, such as skeletal and cardiac muscle cells possess
3,650  620 and 6,790  920 mtDNA copies/cell, respectively
(Miller et al. 2003), whilst sheep fetal fibroblasts (SFF; (Bowles et
al. 2007b) and mouse embryonic fibroblasts (MEFs; Kelly et al.
Manuscript in preparation) contain 4241  411 and 807  21.8
copies per cell, respectively. Oocyte mitochondria contain very
few cristae, which are the inner membrane invaginations that
harbour the five multimeric protein complexes of the ETC. Cristae
increase the surface area of the inner mitochondrial membrane
and are therefore abundant in mitochondria from highly aerobic
and energy-demanding somatic tissues. Ultrastructural analysis
of MII oocyte mitochondria shows an immature spherical struc-
ture of arched cristae and a dense matrix, suggesting a restricted
capacity for ATP production via OXPHOS (Wassarman and
Josefowicz 1978; Au et al. 2005; Ramalho-Santos et al. 2009).
Somatic mitochondria are highly metabolically active and
proactively undergo mitochondrial biogenesis (Moyes 2003; Nisoli
et al. 2004). Thus, the introduction of mature somatic mitochon-
dria into a mitochondrial quiescent environment has the potential

to influence cellular metabolic function and subsequent develop-
mental competence. Following fusion and activation, the recon-
structed embryo is heteroplasmic for two mitochondria haplotypes,
although the somatic-oocyte ratio at reconstruction is less than
0.01%. Paternal mitochondria are normally degraded during
preimplantation development, although one exception has been
documented in a male patient suffering from a mitochondrial
myopathy, originating from a 2bp deletion in his father’s sperm. In
this instance, at fertilisation, heteroplasmy of less 0.005% contrib-
uted to a muscle disease phenotype with 90% mutant mitochon-
drial loading in adult tissue (Schwartz and Vissing 2002). Indeed,
a similar outcome can take place when karyoplasts are trans-
ferred to mammalian oocytes, whether using somatic cells, pro-
nuclei or MII spindles, with the potential transfer of mitochondria
above threshold levels for the elimination of subsequent disease
phenotypes in cloned foetuses and offspring (St John and Campbell
2010).

Following reconstruction during NT, the resultant embryo is
potentially heteroplasmic (St John et al. 2005) for donor (somatic
or embryonic) and recipient (oocyte) mtDNA. The genetic profiles
of such clones results in either the elimination of donor mtDNA
during gestation leading to offspring being homoplasmic (Evans
et al. 1999) or the persistence of donor mtDNA and then being
heteroplasmic for the transmission of both donor and recipient
oocyte mtDNA (Hiendleder et al. 1999; Takeda et al. 1999;
Meirelles et al. 2001; Steinborn et al. 2002; Takeda et al. 2003; St
John et al. 2005). Thus, the offspring are authentic nuclear clones
but genetic hybrids. The generation of heteroplasmic offspring
may also be true for assisted reproductive techniques such as
cytoplasmic transfer (St John and Barratt 1997; Brenner et al.
2000; St John 2002; St 2002), embryonic cell NT (ECNT; (Steinborn
et al. 1998; St John and Schatten 2004), MII spindle transfer (St
John and Campbell 2010) and pronuclear transfer (Craven et al.
2010). Application of these techniques for improved reproductive
success or for the prevention of disease transmission to offspring
requires vigilant analysis of the transferred genetic material, since
heteroplasmy of 0.01% at the pronuclear stage could result in (an)
adult disease phenotype(s) (Schwartz and Vissing 2002).

Numerous studies have analysed the heteroplasmic nature of
cloned embryos during preimplantation development. Persis-
tence of donor mtDNA is observed in SCNT (Do et al. 2002;
Bowles et al. 2008) and interspecies SCNT (iSCNT; (Yang et al.
2003; Hua et al. 2008; Ma et al. 2008) and ranges from 0% to 69%
during preimplantation development. Transmission of mtDNA to
cloned offspring is extremely important for the production of
interspecies SCNT embryos and the derivation of patient specific
embryonic stem cells (ESCs; (St. John and Lovell-Badge 2007).
The contributions of donor and recipient DNA detected in indi-
vidual offspring derived by nuclear transfer varies considerably
with reported contributions of donor mtDNA ranging from 0% in
ovine (Evans et al. 1999) to 59% in cattle (Steinborn et al. 1998;
Hiendleder et al. 1999; Meirelles et al. 2001; Takeda et al. 2003).

Genetic diversity

Differences in mtDNA sequence between donor cell and recipi-
ent oocyte are likely to give rise to proteins with slight differences
in their respective amino acid sequences (St John et al. 2005).
This is likely to result in inadequate interaction between the
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individual ETC subunits, which might lead to reduced oxidative
capacity and consequently embryonic or foetal death due to the
failure to maintain the symbiotic relationship between the nucleus
and the mitochondria (see F ig .F ig . 3). Studies have demonstrated
the effects of mtDNA haplotypes between different breeds of
cattle where they have the potential to produce greater numbers
of blastocysts following SCNT (Bruggerhoff et al. 2002) and
improve developmental competence of IVF embryos (Tamassia
et al. 2004), possibly via epigenetic mechanisms (Yan et al.
2010). The degree of genetic divergence between recipient and
donor cell mtDNA permitted for ovine blastocyst development is
0.0391% (Loi et al. 1998) whilst for the production of cloned cattle
up to 0.0787% is tolerable (Bowles et al. 2008). However, a 4-fold
increase (mean = 0.4114%) in genetic divergence, by generating
caprine-ovine clones, has demonstrated the failure of such em-
bryos to develop to the blastocyst stage (Bowles et al. 2007b).
Interestingly, the donor cell favours a genetically more diverse
mtDNA haplotype to that of its own with the most divergent genetic
distance being at 0.0787%. Fusion between very close genetic
partners appears to hinder development. F ig .F ig . 4 demonstrates
the potential relationship between the mtDNA genetic donor cells
and recipient oocytes.

Lessons from genetic diversity in somatic-cell fusions

The effects of diverse nuclear-mitochondrial communication
are demonstrated by interspecies cybrid fusion models of human
disease. Fusion of Orang-utan (Pongo pygmaeus) with human

mtDNA-less cells (Kenyon and Moraes, 1997), Chimpanzee (Pan
troglodytes) with gorilla (Gorilla-gorilla) cells (Barrientos et al.
1998) or rat (Rattus rattus) with mtDNA-less mouse (Mus muscu-
lus) cells results in compromised respiratory capacity due to
inadequate interaction of the ETC subunits. Although the direct
role of mitochondrial-nuclear dysfunction in SCNT embryos re-
mains to be elucidated, there is some evidence to demonstrate
that somatic cell mitochondria adversely affect embryonic devel-
opment. For example, development rates to blastocyst of parthe-
nogenetically activated oocytes supplemented with somatic mito-
chondria are lower compared to non-supplemented controls
(Takeda et al. 2005). Heteroplasmic mice produced by cytoplas-
mic transfer, where two distant populations of mtDNA are present,
demonstrate numerous physiological abnormalities including sys-
temic and pulmonary hypertension, increased body mass and
abnormalities associated with electrolytes and haematological
parameters (Acton et al. 2007). The increased genetic distance
between the two populations of mtDNA would result in different
amino acids being encoded thus mimicking mtDNA type disease.

Lessons from mitochondrial haplotypes and disease

Many mitochondrial diseases are caused by genetic defects to
the mitochondrial genome, which can be either spontaneous or
maternally inherited. On the other hand, mutations to chromo-
somally-encoded ETC genes are inherited in Mendelian fashion.
In both cases, these result in the disruption of protein complexes
involved in mitochondrial transcription, replication and energetics
(DiMauro and Schon 2001; Copeland 2008; DiMauro and Schon
2008). Mitochondrial disorders preferentially affect tissues with
high energy demands and thus have been implicated in forms of
blindness, deafness, movement disorders, dementias,
cardiomyography, myopathy, renal dysfunction and aging (Wallace
and Murdock 1999). The epidemiological frequency of disease
phenotypes is believed to be approximately 1 in 5000 although
mutations have been detected at 1 in 200 in newborn umbilical
cords (Schaefer et al. 2004; Schaefer et al. 2008). The conse-

Fig. 3. Nucleo-mitochondrial interactions. The mitochondrial genome
is dependent on nuclear-encoded transcription, replication and transla-
tion factors for its propagation and to generate proteins, which contribute
to the ETC. The contribution of proteins to the ETC provides cellular
energy to ensure that nuclear DNA can be replicated and transcribed and
mediates its epigenetic regulation, thus ensuring lineage specific gene
expression.

Fig. 4. The role of mitochondrial genetic distance in SCNT outcome.

The degree of genetic distance between the donor cell and recipient
oocyte is a key determiner for successful preimplantation development
and to term. Increasing the genetic distance between two genetic
sources enhances developmental outcome. Whilst the optimal genetic
distance is within the same species, once the species barrier is crossed,
there is significantly reduced developmental outcome. Red represents
same species.
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quence of these defects uncouples the ETC, altering energy
production, production of ROS, modulation of calcium ion uptake
and tendency to apoptosis. MtDNA is more susceptible to muta-
tion than genomic DNA most likely due to the lack of histone
packaging and the proximity to ROS (Nachman et al. 1996;
Schriner et al. 2000; Wiesner et al. 2006). This is, however,
contentious as TFAM is presumed to have a DNA packaging role
also (Kaufman et al. 2007). Upon mutation of mtDNA, cells
become heteroplasmic containing two types of mtDNA which are
randomly segregated at mitosis, resulting in genetic drift towards
mutated or wild type molecules. A threshold for cellular mutant
loading exists which, once crossed, reduces energy output,
disease phenotype prevails and the onset of necrosis or apopto-
sis is more likely. Interestingly, due to the random segregation to
daughter cells, different phenotypes are observed for the same
mutation (See F ig .F ig . 5; Wallace and Fan 2010). Variations of
mitochondrial proteins can uncouple ATP production and influ-
ence the amount of calories used by the respiring mitochondria.

In humans, mitochondrial haplotypes are generally associated
with specific populations and geographic regions, and permitted
our ancestors to adapt to a range of new environments. Specific
haplogroups predispose individuals to a wide range of metabolic
and degenerative diseases as well as to cancer and longevity
(Wallace et al. 2010; Wallace and Fan 2010). Cattle haplotypes
can influence the ATP content of in vitro produced embryos
(Bruggerhoff et al. 2002; Tamassia et al. 2004) and the compat-
ibility of mtDNA haplotypes between donor cells and recipient
cells in SCNT can influence developmental outcome and the
epigenetic status of such embryos. Indeed, it has been
hypothesised that the energetic state of a particular cell is commu-
nicated to the nucleus by modifications of nuclear chromatin via
phosphorylation and acetylation mechanisms (Wallace et al.
2010; Wallace and Fan 2010).

mtDNA copy number set point

At fertilisation, the mitochondria present in mature oocytes are
thought to be derived from a finite pool within PGCs (reviewed in
Jansen and de Boer, 1998; Shoubridge and Wai, 2007). Random
segregation within post-mitotic cells excludes predicting mitochon-
drial allele frequency in heteroplasmic individuals. The restoration
of homoplasmy over a few generations in bovine (Hauswirth and
Laipis 1982; Laipis et al. 1988; Ashley et al. 1989), human (Blok et
al. 1997) and mouse (Meirelles and Smith 1997) progeny imply that
during oogenesis a mtDNA bottleneck minimises heteroplasmic
inheritance, maintaining homoplasmy perhaps due to a female
germ line selection mechanism (Fan et al. 2008). PGCs are
thought to contain approximately 10-200 copies of mtDNA and
maintain relatively low numbers during the early stages of oogen-
esis (Smith and Alcivar 1993). During oogenesis, the expansion of
the differentiating PGCs is accompanied by the clonal expansion
of mtDNA (Chen et al., 1995; Poulton et al., 1998; Smith and Alcivar
1993). However, recent concordant studies have proposed alter-
native mechanisms for mtDNA segregation during PGC differen-
tiation into a mature oocyte. It has been proposed that the mito-
chondrial bottleneck occurs without reduction of mtDNA content in
mouse female germ cells (Cao et al. 2007; Cao et al. 2009) whilst
others demonstrated mtDNA reduction during embryogenesis at
7.5 dpc in PGCs (Cree et al. 2008). In addition, Wai et al. (2008)
concluded that the bottleneck is a result of replication of a subpopu-
lation, not during embryogenesis but during postnatal oocyte
maturation (Wai et al. 2008). Moreover, large levels of mtDNA
replication have been shown to take place during the final stages
of oocyte maturation (Jansen and de Boer, 1998; Spikings et al.,
2007). These studies suggest further examination is required into
the precise mechanism behind the bottleneck, although they
highlight that the expansion of mtDNA copy number during oogen-
esis is an essential genetic mechanism.

Increased oxygen consumption, CO2 production and ATP out-
put at the blastocyst stage occur in the differentiating
trophectodermal cells (Houghton 2006; Spikings et al. 2007).
Pluripotent embryonic stem cells derived from the inner cell mass
(ICM) express numerous markers of pluripotency, such as Oct4
Sox2 and Nanog. Mouse ESCs (Facucho-Oliveira et al. 2007) and
human ESCs (Cho et al. 2006; Prigione et al. 2010) contain low
mtDNA copy numbers and structurally immature mitochondria
(Kelly et al. submitted) compared to somatic cells. In addition,
induced pluripotent stem cells (iPSC) display similar copy numbers
and morphological characteristics to ESCs (Kelly et al. submitted).
Therefore, it appears that the expression of pluripotent genes
influences the levels of mtDNA copy number and mitochondrial
function. Indeed, this association permits the developing embryo to
establish the mtDNA ‘set point’ prior to gastrulation or cellular
differentiation so that once a pathway of differentiation is initiated
the progenitor cell may proliferate the mitochondrial complement in
accordance with the precise cellular demands of its mature, adult
form (See F ig .F ig . 6).

Generating homoplasmic offspring and iSCNT embry-
onic stem cells

Prior to reconstruction, donor cells and/or recipient oocytes can
be depleted of their mtDNA using various chemical reagents.

Fig. 5. mtDNA segregation during development. The mitochondrial
genome is randomly segregated during early development. Consequently,
the degree of heteroplasmy, where cells will possess mutant and WT
mtDNA (natural fertilisation) or possess donor cell and recipient oocyte
mtDNA (all forms of nuclear transfer), or homoplasmy can not be
predicted in any particular tissue. Additionally, during development, one
molecule may be preferentially selected for replication over another,
potentially increasing nucleo-cytoplsmic dysfunction.
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Donor cells containing all their mtDNA complement (mtDNA+) and
cells depleted to residual levels of mtDNA (mtDNAR) both transmit
their mtDNA to the blastocyst stage (Lloyd et al. 2006; Bowles et
al. 2008). The advantage of depleting cells is, that following fusion
of the somatic cell with the enucleated oocyte, the mtDNA
replication factors, which are up-regulated, would be unable to
replicate any persisting donor cell mtDNA thus ensuring transmis-
sion of mtDNA in a manner similar to natural fertilisation. Never-
theless, these depleted cells can support development to term
and produce live lambs in which no donor somatic mtDNA is
transmitted with the resultant offspring being homoplasmic for
recipient oocyte mtDNA-only whilst mtDNA+ fetuses possessed
donor cell mtDNA (Lee et al. 2010). Whilst SCNT protocols have
concentrated on reprogramming and the effects of aberrant
epigenetic regulation, it is important to note that homoplasmy,
rather than heteroplasmy is a tightly regulated developmental
process that ensures, in nearly all cases, the healthy status of the
offspring is maintained. Not only is heteroplasmy with mutant
mtDNA disadvantageous to the offspring but mixing of mtDNA
haplotypes has similar outcomes (Barritt et al. 2001; Acton et al.
2007).

In iSCNT embryos donor cell mtDNA has been detected at the
16-cell stage in human-bovine crosses (Chang et al. 2003), the
blastocysts stage in macaque-rabbit (Yang et al. 2003) and in a
small majority of caprine-ovine embryos (Bowles et al. 2007b). In
the small number of heteroplasmic embryos, significant increases
in donor cell mtDNA were observed again indicating that donor
mtDNA was preferentially replicated. The production of live
interspecies offspring is extremely unlikely, however, for the
generation of embryonic stem cells, nuclear cytoplasmic regula-
tion is paramount for any clinical applications. Thus, the genera-
tion of iSCNT embryos and stem cells requires the elimination of

recipient oocyte mtDNA as opposed to normal SCNT so that
respiratory function, subsequent mitochondrial proliferation and
differentiation are appropriate for cell function.
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