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ABSTRACT  Human pluripotent stem cells (PSCs) derived from a number of different sources,

including reprogrammed adult somatic cells, provide a powerful cellular system to study signaling

pathways implicated in cell fate decisions, and generate new sources of cells for regenerative

medicine. To realize this potential, it is essential to control the direction and efficiency of human

PSC differentiation. Although Notch, Wnt and Hedgehog (HH) signaling pathways have been

implicated in the self-renewal/proliferation of hematopoietic stem/progenitor cells, both in vitro

and in vivo, their roles in differentiation processes remain poorly explored. This review describes

the role(s) of these pathways in the adult and embryonic hematopoietic system of mice and

humans, with a particular emphasis on our recent studies on the hematopoietic development of

human embryonic stem cells (hESCs). Understanding the individual and collective contributions

of Notch, Wnt and HH signaling to the initial development of hematopoiesis is critical for achieving

successful ex vivo expansion and differentiation of hematopoietic stem cells (HSCs) from human

PSCs that will retain bona fide function comparable to adult-derived HSCs.

KEY WORDS: human pluripotent stem cell, hematopoiesis, Wnt, Notch, Hedgehog

Introduction

Hematopoietic stem cells (HSCs) are responsible for life-long
production of the blood system. To this end, HSCs must establish
a balance between the two opposing cell fates of self-renewal - for
maintenance of the HSC pool - and differentiation into terminally
mature progenies (reviewed in Giebel and Bruns, 2008). In
clinical therapy, HSCs are typically derived from adult tissues
[bone marrow (BM), umbilical cord blood (UCB), or mobilized
peripheral blood (MPB)] and have been successfully used to treat
a variety of acquired/genetic disorders and malignancies. How-
ever, the limited availability of adult-derived HSCs and their
compromised in vivo potential after ex vivo culture (Attar and
Scadden, 2004) have hampered their use in large-scale clinical
applications; therefore, calling for a more readily available and
renewable source of transplantable cells. In this regard, human
embryonic stem cells (hESCs) (Thomson et al., 1998; Reubinoff
et al., 2000) and the more recently derived induced pluripotent
stem cells (iPSCs) (Takahashi and Yamanaka, 2006; Park et al.,
2008; Yu et al., 2007) provide two alternative sources of pluripo-
tent stem cells (PSCs) that demonstrate both indefinite prolifera-
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tive capacity in vitro (Avery et al., 2006) and pluripotent differen-
tiation potential (Yu and Thomson, 2008), including the potential
to form blood.

HSCs are functionally defined by their ability to reconstitute the
hematopoietic system of immunodeficient animals, e.g. NOD/
SCID mice (Dick et al., 1997; Mazurier et al., 2003) and equally
contribute to functional reconstitution in human transplant set-
tings (Grewal et al., 2003). While ectopic transcription factors of
the Cdx/Hox pathway can modulate the functional behavior of
adult HSCs (reviewed in Klump et al., 2005) and confer HSC
properties to mouse ESCs (Kyba et al., 2002; Wang et al., 2005a),
this is not the case with hESCs where the generation of “putative”
HSCs, using various methodologies, animal recipients and injec-
tion routes has yielded significant lower levels of reconstitution, as
shown by our laboratory (Wang et al., 2005b; Ji et al., 2008) and
later others (Lu et al., 2007a; Lee et al., 2008; Narayan et al.,
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2006; Tian et al., 2006; Ledran et al., 2008).
In vitro, the hematopoietic potential of hESCs is routinely

assessed by two methodologies that are largely adapted from the
murine system: 1) coculture with stromal cells and 2) aggregation
into three-dimensional structures known as embryoid bodies
(EBs) (both reviewed in Tian and Kaufman, 2008). Both method-
ologies allow for the spontaneous differentiation of hESCs into
blood lineages, albeit at low efficiency. This efficiency can be
enhanced through manipulation of extracellular or intracellular
regulators (Wang et al., 2005c; Menendez et al., 2005). However,
the true contribution of extrinsic pathways that regulate this
complex and dynamic process needs to be adequately defined for
achieving controlled and efficient hematopoietic differentiation.
By providing access to isolated cell populations at different
developmental stages, human PSC cultures allow us to more
precisely dissect the signaling and timing requirements for early
hematopoiesis.

Based on the differentiation procedures outlined above, a
series of studies (Chadwick et al., 2003; Cerdan et al., 2004;
Chadwick et al., 2003; Wang et al., 2005d; Wang et al., 2004; Ji
et al., 2008) from our laboratory have provided a detailed pheno-
typic and temporal roadmap of hESC-derived hematopoietic
development towards myeloid/erythroid lineages. This work dem-
onstrated that cells developing within EBs treated with hemato-
poietic cytokines (mainly SCF and FLT3L) and the ventral meso-
derm inducer BMP-4 remain uncommitted to the hematopoietic
cell fate up to 10 days of development, as defined by the lack of
CD45 expression and colony forming unit (CFU) activity (Chadwick
et al., 2003). During this developmental window, a subset of
endothelial-like cells expressing PECAM-1, Flk-1/KDR and VE-
cadherin, but not CD45 (termed CD45negPFV) develops, which
following clonal isolation and differentiation in culture, gives rise
to both endothelial and hematopoietic progenies (Wang et al.,
2004); therefore, representing the equivalent of the
“hemangioblast” or “hemogenic endothelial” precursor identified
across species and hematopoietic sites (Huber et al., 2004; Choi
et al., 1998; Nishikawa et al., 1998; Jaffredo et al., 2000; Zambidis
et al., 2005; Kennedy et al., 2007; Lu et al., 2007b).

The hematopoietic system is believed to arise from common
progenitor cells of mesodermal origin and to proceed through an
initial “primitive/yolk sac” stage comprising mostly erythrocytes
and macrophages, followed by “definitive” hematopoiesis encom-
passing the full range of blood cells encountered in the adult
organism, including HSCs. Signaling from critical growth/mor-
phogenetic factors that are shared between vertebrates influ-
ences both primitive and definitive hematopoiesis. Contrary to
hematopoietic cytokines such as FLT3L, SCF and TPO that can
promote HSC survival but not expansion (Murdoch et al., 2002),
bone morphogenetic proteins (BMP) (Sadlon et al., 2004), Notch
(Radtke et al., 2005), Wnt (Wodarz and Nusse, 1998) and Hedge-
hog (HH) (Baron, 2001) have been established as key stem cell
signaling pathways involved in fate specification, self-renewal,
and differentiation. With the exception of BMP signaling similarly
required for hematopoietic differentiation of mouse and human
ESCs (reviewed in McKinney-Freeman and Daley, 2007), none of
the Notch, Wnt and HH pathways have been explored with
respect to their ability to regulate early human hematopoiesis.

Accordingly, this review summarizes our current knowledge
about the roles of Notch, Wnt and HH pathways in the regulation

of adult and embryonic hematopoiesis with a particular emphasis
on recent progress of our laboratory on the hematopoietic devel-
opment of hESCs in the context of these pathways and compari-
son with the mouse system.

The Notch pathway

The Notch signaling pathway regulates a broad spectrum of
stem cell fate decisions such as neurogenesis, myogenesis and
hematopoiesis (Chiba, 2006). Notch signaling is activated through
four receptors (Notch1-4) that can interact in a redundant manner
with five ligands of the Delta/Jagged family (Bray, 2006). Ligand
binding triggers a γ-secretase-dependent proteolytic cleavage of
Notch receptor and the release of Notch intracellular domain
(NICD) to the nucleus (De Strooper et al., 1999), which in turn
displaces the co-receptors associated with CSL transcription
factors (CBF1 in humans; RBPJ in mice). Activating transcription
factors are then recruited and expression of target genes such as
Hairy and Enhancer of Split HES1, HES5 and Deltex1 is induced
(Bray, 2006; Davis and Turner, 2001).

Although recently extended to the regulation of
megakaryopoiesis (Mercher et al., 2008), the role of Notch signal-
ing has been best characterized in T cell lineage specification
(reviewed in Radtke et al., 2004) and its deregulation found
associated with leukemia (mainly T-ALL) in humans (Grabher et
al., 2006). In adult hematopoiesis, activation of Notch signaling
has been reported to promote HSC expansion/self-renewal in
both mice and humans (Karanu et al., 2000; Karanu et al., 2001;
Karanu et al., 2003; Varnum-Finney et al., 1998; Ohishi et al.,
2002; Carlesso et al., 1999; Dando et al., 2005); however, loss-
of-function studies in mice have not clearly supported this conclu-
sion (Radtke et al., 1999; Saito et al., 2003; Mancini et al., 2005;
Maillard et al., 2008). In particular, inactivation of Notch receptors
(Notch1, Notch2), ligands (Jagged-1) or downstream effectors
(CSL/RBPJ, Mastermind-like1) does not impair HSC function. In
mouse embryonic hematopoiesis, gene ablation strategies have
revealed non overlapping roles for Notch1 and Notch2 in defini-
tive hematopoiesis and B cell development, respectively (Hadland
et al., 2004; Robert-Moreno et al., 2008; Huppert et al., 2000;
Krebs et al., 2004; Kumano et al., 2003; Xue et al., 1999).
However, while Notch seems essential for the establishment of
definitive HSCs in the embryo, it inhibits the generation of meso-
dermal and subsequent hematopoietic and endothelial lineages
from mouse ESCs (Schroeder et al., 2006), leaving the role(s) of
Notch signaling unclear during the earliest stages of hematopoi-
etic development.

Corroborating the lack of convincing evidence that Notch
pathway is involved in the maintenance of undifferentiated mouse
ESCs (Nemir et al., 2006), several laboratories (Noggle et al.,
2006; Fox et al., 2008; Yu et al., 2008), including ours (Lee, 2008),
have confirmed the lack or minimal contribution of Notch signaling
to the undifferentiated state of hESCs. Activation of Notch signal-
ing by exogenous Jagged-1 promoted hESC hematopoiesis at
greater levels than induced by any previously cytokine- or mor-
phogen-mediated stimulation, thereby providing ready access to
larger numbers of hematopoietic cells. Interestingly, knockdown
of HES1 within the CD45negPFV subset resulted in reduced
hematopoietic but enhanced endothelial output, suggesting that
the commitment of bipotent precursors can be controlled by



Notch, Wnt and HH regulate hematopoiesis of pluripotent stem cells    957

regulation of HES1 (Lee, 2008)). This preliminary finding sug-
gests that Notch signaling may function in an analogous manner
to the “lateral inhibition” model of cellular control first observed in
Drosophila (reviewed in Radtke et al., 2005). This role of Notch
may be of great value for directing human PSC specification into
hematopoietic or endothelial fate exclusively. In this regard, our
observation of a similar Notch-dependent regulation of hemato-
poietic development of human iPSCs indicates that the two cell
types are similar with respect to their ability to respond to Notch
signals. Since the biological effects of Notch activation are highly
context-dependent, it is crucial to ascertain whether Notch-de-
pendent promotion of hematopoiesis in human PSCs relies upon
the presence of BMP-4 used in our differentiation system, which
will likely provide a significant control over the biological functions
of Notch and BMP within the endothelial/hematopoietic compart-
ments. Although the role of Notch in the generation of bona fide
HSCs from human PSCs remains to be assessed, our findings
(Lee, 2008)) may have important implications as they suggest the
possibility that activation of the Notch pathway may aid in stimu-
lating the production of hematopoietic stem/progenitor or endot-
helial cells for both experimental and clinical applications.

The Hedgehog pathway

Conserved from Drosophila to humans, the Hedgehog (HH)
pathway has a central role in embryonic development and adult
tissue homeostasis by controlling cell fate specification and
pattern formation (reviewed in McMahon et al., 2003). The func-
tional importance of this pathway is illustrated by the multiple birth
defects and malignancies (notably leukemia) (Bai et al., 2008)
associated with mutations and/or aberrant activation of the path-
way (Villavicencio et al., 2000). Three HH ligands Sonic (SHH),
Indian (IHH) and Desert (DHH) have been identified in mammals
that can bind interchangeably to two related twelve-pass mem-
brane Patched (Ptc) receptors (reviewed in Ingham and McMahon,
2001). In the absence of ligand, Ptc antagonizes the pathway by
preventing the activity of another transmembrane protein Smooth-
ened (Smo) (Lum and Beachy, 2004; Alcedo and Noll, 1997;
Taipale et al., 2002). Binding of HH ligands to Ptc relieves this
inhibition, which activates target gene transcription through the
regulation of Glioblastoma (Gli) family of transcription factors (Gli-
1, Gli-2, Gli-3) (reviewed in Koebernick and Pieler, 2002; Aza-
Blanc and Kornberg, 1999). The different Gli proteins exhibit
activating or repressing transcriptional activities depending on
proteolytic processing of the full-length proteins. Gli-1 and Gli-2
mainly act as transcriptional activators, while Gli-3 generates a
repressor form (Gli3R) in the absence or inhibition of HH signaling
(Dai et al., 1999; Wang et al., 2000; Ingham and McMahon, 2001).
Although functional significance of Gli-3 has been demonstrated
by genetic inactivation (Litingtung et al., 2002), the molecular
mechanisms that control Gli-3 interactions and targets are largely
undefined, whereas the dynamic interplay between Gli-1 and Gli-
2 signaling is well documented. Activation and repression of HH
pathway, through interference with Smo activity, can be achieved
with synthetic agonists (purmorphamine) (Sinha and Chen, 2006)
and antagonists (cyclopamine) (Taipale et al., 2000), respec-
tively.

Studies using mouse embryos and ESCs have implicated the
HH pathway (IHH) in early hemato-vascular development (Dyer et

al., 2001; Byrd et al., 2002; Baron, 2003). However, in vivo genetic
studies have been of limited utility in dissecting the role of the
pathway due to either embryonic lethality induced by the targeted
components (Chiang et al., 1996) or the implication of other
pathways (for example, Wnt or BMP).

In humans, our laboratory has been the first to reveal a role for
HH pathway (SHH) in the regulation of adult HSCs (Bhardwaj et
al., 2001). Upon investigation of the role of this pathway in hESC-
derived hematopoiesis, we found that hESCs activated by exog-
enous SHH or purmorphamine responded by a reduction in the
size of the committed hematopoietic but not the hemogenic
endothelial cell compartment. Conversely, antagonism of HH
signaling with cyclopamine or siRNA against Smo increased
blood development and was associated with the processing of
Gli-3 into its repressor form (Ramos-Mejia, 2008). This effect was
found to be BMP-4-dependent, in agreement with the established
connection between HH and BMP pathways in adult HSC biology
(reviewed in Baron, 2003). More importantly, cyclopamine fa-
vored the development of definitive erythropoiesis from hESCs as
judged by adult β globin expression, providing circumstantial
evidence of the potential to generate definitive hematopoietic
lineages. Although the role of HH signaling in hESCs may seem
contradictory to prior evidence in other species where HH has
been established as a positive regulator of primitive or definitive
hematopoiesis (Maye et al., 2000; Dyer et al., 2001; Byrd et al.,
2002; Gering and Patient, 2005), it is consistent with our previous
report implicating activation of HH signaling in the exhaustion of
mouse adult HSCs (Trowbridge et al., 2006a).

Taken together, our findings indicate that inhibition of HH
signaling in hESCs may be important for inducing definitive
hematopoiesis, thereby raising the possibility to generate bona
fide HSCs from hESCs. Assessing this possibility in vivo is key as
it has been hypothesized that the compromised reconstituting
capacity of HSCs derived from ESCs may be accounted for by
their resemblance with cells derived from the yolk sac (reviewed
in Palis and Yoder, 2001).

The Wnt pathway

The evolutionary conserved Wnt pathway diversifies into two
main branches, e.g. canonical (β-catenin-dependent) and non-
canonical (β-catenin-independent) that play critical roles in speci-
fying cellular fates and movements, respectively, during both
embryonic development and adult tissue regeneration (reviewed
in Logan and Nusse, 2004; Reya and Clevers, 2005; Uusitalo et
al., 1999). Wnt ligands signal through binding to seven transmem-
brane Frizzled (Fzd) receptors and single transmembrane lipo-
protein receptor-related protein (LRP) 5 or 6 co-receptors (Wu
and Nusse, 2002). Canonical signaling mediated by ligands such
as Wnt3a inhibits a multiprotein degradation complex consisting
minimally of axin, adenomatous polyposis coli (APC) and glyco-
gen synthase kinase 3 beta (GSK3β). This inhibition culminates
in nuclear translocation of β-catenin, enabling it to interact with T-
cell factor (TCF)/lymphoid enhancer factor (LEF) transciption
factors to regulate gene expression (Khon and Moon, 2005). Non-
canonical signaling, which is much less defined, is mediated by
ligands such as Wnt11 that use the same Fzd receptors but
ROR2/RYK as co-receptors (Nusse, 2008; Lu et al., 2004). This
pathway stimulates the Jun NH2-terminal kinase (JNK), Ca2+/
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CaMKII and PKC pathways (reviewed in Kohn and Moon, 2005).
Both pathways interact with each other, and in some cases, non-
canonical signaling antagonizes the canonical pathway (Kuhl,
2002).

Even though the role of canonical signaling on the regulation
of adult hematopoiesis has been studied in great detail, contro-
versy remains, possibly explained by differences in strength and
duration of Wnt signaling or redundancy with other pathways
(Reya et al., 2003; Willert et al., 2003; Trowbridge et al., 2006b;
Kirstetter et al., 2006; Scheller et al., 2006; Qian et al., 2008; Koch
et al., 2008). In the context of development, genetic studies have
demonstrated the requirement for canonical signaling in the
formation of mesoderm (Liu et al., 1999; Lako et al., 2001; Kelly
et al., 2004; Huelsken et al., 2000; Gadue et al., 2006). However,
studies using mouse ESCs have failed to assign specific roles for
this pathway during commitment of mesoderm to the hematopoi-
etic lineage (Naito et al., 2006; Wang et al., 2007; Nostro et al.,
2008), thus precluding tangible extrapolations from mouse to
human. The role of non-canonical signaling on human hemato-
poiesis has been far less characterized as only one study by our
laboratory has implicated the pathway in the regulation of adult
HSCs in vivo (Murdoch et al., 2003).

In hESCs, the role of Wnt pathways was thought to be irrel-
evant to hematopoiesis until the demonstration that canonical but
not non-canonical signaling could support bipotent hemogenic
cell development (Woll et al., 2008). Since this study, recent
advances from our laboratory have provided insights into the
uniqueness of the biological functions of the two pathways. We
found that non-canonical (Wnt11) and canonical (Wnt3A) Wnts
affected different target populations and stages of hematopoietic
development (Vijayaragavan et al., 2009). Consistent with its
previously defined role in human adult cells (Van Den Berg et al.,
1998) and mouse ESCs (Lako et al., 2001; Lengerke et al., 2008),
canonical signaling increased proliferation of blood committed
progenitors when administered during the proper window of time
during EB development (Vijayaragavan et al., 2009). However,
we did not observe any positive influence of canonical Wnt
signaling on mesoderm specification of hESCs as the work with
mouse ESCs indicates (Lako et al., 2001; Wang et al., 2007). A
short pulse of non-canonical signaling was necessary and suffi-
cient to control exit of hESCs from the pluripotent state and
subsequent entry into the mesendoderm/mesoderm lineages as
mapped by the expression of representative markers and the
induction of a unique cell population co-expressing Brachyury,
Fzd7 and E-cadherin (Brachyury+/Fzd7+/E-cadherin+). SiRNA-
mediated knockdown of Fzd7 decreased the size of Brachyury+/
Fzd7+/E-cadherin+ population and subsequent hematopoietic
compartments (Vijayaragavan et al., 2009). In addition, the gen-
eration of this population was dependent upon EB formation and
lost in monolayer cultures of hESCs, illustrating the importance of
three-dimensional structures that more closely mimic gastrulation
organization.

Taken together, our findings (Vijayaragavan et al., 2009)
provide the first evidence of a unique role for non-canonical
signaling in early specification of hematopoiesis from hESCs,
whereas canonical signaling affects the proliferation of cells
already fated to blood. These studies provide a valuable model
system for examining the possibility of chronological activation
and interaction between non-canonical and canonical signaling in

the cellular progression from mesoderm to blood. Furthermore,
the non-canonical induced Brachyury+/Fzd7+/E-cadherin+ popu-
lation also provides the opportunity for addressing the relation-
ship between this subset and the putative “mesendodermal”
precursor described in zebrafish and Xenopus (Kimelman and
Griffin, 2000; Rodaway and Patient, 2001), for which evidence is
lacking in humans. As recently outlined in mouse ESCs (Lengerke
et al., 2008), the specific functions of both Wnt pathways will have
to be revisited in the context of their cross talk with known
hematopoietic regulators such as BMP and Cdx/Hox. The contro-
versial function of canonical signaling on the reconstituting capac-
ity of adult HSCs (Reya et al., 2003; Kirstetter et al., 2006; Scheller
et al., 2006; Koch et al., 2008), combined with our present findings
in hESCs, underscores the importance of fine tuning the strength
and duration of Wnt signaling towards therapeutically exploiting
the balance between self-renewal and lineage commitment of
HSCs.

Towards an integrated view of HH, Wnt and Notch
signaling in hematopoiesis

Multiple studies have suggested that Notch, Wnt and HH
pathways can network together and with other signaling path-
ways to establish or regulate biological processes during embryo-
genesis and throughout adulthood (Hing et al., 1994; Maloof et al.,
1999; Hooper, 1994). Despite the established connection be-
tween BMP and Notch, Wnt and HH pathways (Dahlqvist et al.,
2003; Itoh et al., 2004; Nobta et al., 2005; Takizawa et al., 2003;
Sumi et al., 2008; Lengerke et al., 2008; Baron, 2003), it remains
unclear whether these pathways operate in direct network with
one another in the context of the hematopoietic system. However,
the importance of concerted regulation of hematopoiesis by
distinct signaling pathways has been largely illustrated in the
mouse (Pearson et al., 2008). For example, interplay between
Notch and cytokine-activated pathways such as FGF, PDGF,
TGFβ, VEGF, G-CSF or GM-CSF has been found to modulate
expression of Notch components (Bigas et al., 1998; Reya et al.,
2003). Notch and Wnt signaling synergize to maintain the HSC/
multipotent progenitor pool, which is likely accomplished through
the regulation of expression of Notch target genes, and Notch-
dependent inhibition of HSC differentiation by Wnt signaling
(Duncan et al., 2005; Trowbridge et al., 2006b). Canonical Wnt
and Notch signaling, which independently promote primitive eryth-
ropoiesis and cardiogenesis in mouse ESCs, respectively, set
connections through reciprocal regulation of Notch (Numb) and
Wnt (Sfrp1, Sfrp5, Dkk1, Wnt5a) pathway inhibitors to drive
cellular differentiation specifically towards erythropoiesis (Cheng
et al., 2008). In addition to cooperating with Notch, Wnt signaling
has been shown to work in concert with other pathways at different
stages of mouse or human hematopoiesis. For instance, the
induction of mesendodermal precursors seems to require coop-
erative interactions between canonical Wnt and TGFβ signaling in
both mouse and human ESCs (Gadue et al., 2006; Sumi et al.,
2008; Nostro et al., 2008), although the balance between these
pathways plays crucial roles in the ultimate decision of lineage
specification. In addition, the connection of HH pathway with
Notch and Wnt, as well as with proliferative/anti-apoptotic signal-
ing pathways (FGF, IGF) regulates hematopoiesis. However,
these connections have been best described in malignant he-
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matopoiesis (Sengupta et al., 2007) and poorly explored in normal
development.

In addition to signaling cues, intrinsic determinants known to
be involved in hematopoiesis engage with Notch and HH signal-
ing. Of interest, hematopoietic transcription factors (SCL/TAL-1,
RUNX1, HOXB4) (Orkin and Zon, 2002; Hochman et al., 2006)
and chromatin regulators (Palaparti et al., 1997) suggest the
participation of these pathways in the regulation of complex
regulatory networks. Undoubtedly, further research is required to
elucidate the integration of major extrinsic pathways into tran-
scriptional and epigenetic regulatory networks. As recently ex-
plored during the undifferentiated state of mouse ESCs with
respect to LIF and BMP pathways (Chen et al., 2008), elucidation
of the integration of HH, Notch and Wnt signals with core genetic
and epigenetic networks during hematopoietic development of
human PSCs should provide a strong foundation for more con-
trolled manipulation of these pathways.

Concluding remarks

Capitalizing on insights gained from studies using vertebrate
embryos, mouse ESCs, and most importantly adult-derived hu-
man HSCs, our findings have begun to unravel novel and distinct
roles for Notch, Wnt and HH pathways in the regulation of hESC-
derived hematopoiesis (see Fig. 1). Further work is needed to
ascertain whether the increased “quantity” of hematopoietic cells
derived from hESCs that we observed in response to the manipu-
lation of Notch, Wnt and HH pathways can amount to a better
“quality” of cells that possess bona fide HSC function.

These studies illustrate the value of (i) cell culture systems

(EBs) and soluble growth/morphogenetic factors as a means to
regulate the sequence of events and cell populations developing
from the exit of pluripotent state to blood commitment and differ-
entiation, (ii) Notch, Wnt and HH as important candidate pathways
for regulating distinct and critical aspects of this development, (iii)
temporal and stage specific manipulation of these pathways. This
latter notion, which speaks to the invaluable contribution of
concepts learned from developmental biology, is only beginning
to be exploited in the hESC field. Although it is tempting to
speculate that hESCs will behave more like mESCs as both
systems share critical transcriptional pathways and pose a chal-
lenge for the generation of bona fide HSCs, our work underscores
the existence of differences between the species through their
disparate responsiveness to HH pathway or single-gene (HOXB4)
reconstitution strategies. In light of these observations, it seems
important to examine the situation in other model systems such as
non-human primates, as divergent views remain on the origin of
human definitive hematopoiesis between the epiblast-derived
splanchnopleural mesoderm (Tavian et al., 2001) and hypoblast
(Bianchi et al., 1993).

While the individual contributions of Notch, Wnt and HH path-
ways to the hematopoietic development of hESCs are only
beginning to be investigated as outlined by our studies, the impact
of their collective contribution should help determine whether
combinatorial manipulation of these pathways may prove more
powerful than single manipulation strategies towards influencing
the development of hematopoietic lineages. However, the mecha-
nistic complexity by which these pathways transmit intercellular
and/or intracellular signals complicates the situation and raises a
critical issue of selectivity. This is exemplified by (i) the growing

Fig. 1. Cellular and temporal roadmap of hematopoietic development of human embryonic stem cells (hESCs). Undifferentiated hESC colonies
were differentiated into embryoid bodies (EBs) in differentiation medium supplemented with SCF, FLT3L and BMP-4 for the duration (days 1 - 15-
22) of EB development. Based on our previous studies (Wang et al., 2004), this developmental scheme can be divided in two phases. Days 0-10
delineate the specification phase that is characterized by the emergence of the CD45negPFV hemogenic endothelial precursor and the lack of
committed hematopoietic (CD34+CD45+) and endothelial cells. These latter populations emerge during the commitment phase from day 10 onwards.
Different colors refer to activation of the different pathways as well as inhibition of the hedgehog (HH) pathway (cyclopamine). + and - signs indicate
enhanced and decreased hematopoietic (or endothelial) output, respectively, as determined at days 15-22 of EB differentiation in response to
manipulation of each pathway for the indicated time window. Question marks refer to unknown data.
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number of negative or positive regulatory loops within these
pathways, (ii) the interrelationships with hematopoietic “niches”,
and (iii) the promiscuous receptor/ligand interactions, along with
post-translational modifications of functional significance. In ad-
dition, the heterogeneous nature of ESC cultures, as demon-
strated for human (Stewart et al., 2006; Bendall et al., 2007) and
mouse (Hayashi et al., 2008) ESC self-renewal, will need to be
accounted for as the functional consequences of such heteroge-
neity extend to our ability to understand and control lineage
specification of human PSCs. Notwithstanding the complexity of
PSC cultures and Notch, Wnt and HH signaling, these issues are
essential to better address in the context of hematopoietic devel-
opment towards achieving signal specificity and unlocking the
potential of these pathways.

Stem cell manipulation strategies using synthetic regulators
may be of great value for specifically targeting the activation or
inhibition of these pathways. However, this raises concerns
towards therapeutic applications given the implication of these
pathways in hematopoietic malignancies (Grabher et al., 2006;
Sengupta et al., 2007; Aster et al., 2008; Deshpande and Buske,
2007; Petropoulos et al., 2008), and the exhaustion of HSC
potential upon sustained activation (Trowbridge et al., 2006b).
Although the use of synthetic regulators of HH signaling has been
encouraging in many systems (Stecca and Ruiz i Altaba, 2002),
this will be more challenging for Wnt due to the intricate interplay
of both pathways and the involvement of GSK3 in multiple
pathways such as HH (Jia et al., 2002). While our more advanced
knowledge of the hESC biology sets the stage for characterizing
the cell populations and developmental stages targeted by Notch,
Wnt and HH signaling, the iPSC technology offers the attractive
possibility of initiating a stepwise “dedifferentiation” of mature
blood cells from somatic sources to multipotent HSCs without first
passing through a pluripotent cell state. If true, manipulation of
specific sets of extrinsic and intrinsic hematopoietic regulators
may be facilitated by a more permissive epigenetic state of adult
blood cells compared to PSCs, which may lead to in vitro genera-
tion of blood cells representing the multiples branches of the
hematopoietic hierarchy. Moreover, the experimental model sys-
tem of iPSCs provides a more relevant testing platform for in vitro
models of hematological abnormalities, which is likely to contrib-
ute to a better understanding of how deregulation of these
pathways could result in malignant hematopoiesis.
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