A novel mutant allele of Ncx1: a single amino acid substitution leads to cardiac dysfunction

CAROLIEN WANSLEEBEN, HARMA FEITSMA#, LEON TERTOOLEN##, CARLA KROON, VICTOR GURYEV, EDWIN CUPPEN and FRITS MEIJLINK*

Hubrecht Institute, KNAW & University Medical Center Utrecht, Utrecht, The Netherlands

ABSTRACT The biological role and structure-function relationship of the Na⁺Ca²⁺ exchanger NCX1 have been the subject of much investigation. Subtle mutagenesis to study the function of a protein seems only feasible in in vitro systems, but genetic forward screens have the potential to provide in vivo models to study single amino acid substitutions. In a genetic screen in mouse, we have isolated a mutant line carrying a novel mutant allele of the mouse Ncx1 gene. In this allele, a point mutation causes the substitution of a highly conserved asparagine residue (N874) with lysine. Accepted models for NCX1 structure propose that the affected amino acid is located in one of the reentrant membrane loops and experiments in vitro have identified N874 as critical for the ion transport function of NCX1. We found severe circulation defects and defective placentation in homozygous Ncx1N87K4 mutant embryos, making the phenotype essentially indistinguishable from those of previously described null mutants. By ex vivo analysis, we demonstrated intrinsic functional abnormalities of cardiomyocytes. Western blot analysis and immunohistochemistry demonstrated normal levels and subcellular localization of the altered protein, ruling out the possibility that the abnormalities are a mere consequence of a major disturbance of protein structure. This study confirms and extends studies in vitro indicating the significance of amino acid N874 for the function of the NCX1 protein. It provides an in vivo model for this mutation and demonstrates the potential of forward genetic screens in a mammalian system.

KEY WORDS: forward screen, mouse, heart development, Na⁺Ca²⁺ exchanger

Introduction

Ca²⁺ flux is pivotal in excitation-contraction coupling in the heart and in other processes (Lytton, 2007). In cardiomyocytes, the sodium calcium exchanger NCX1 has an important role, particularly in extrusion of Ca²⁺ during relaxation, but also in Ca²⁺ entry during contraction. NCX1, also known as SLC8A1, is a member of the superfamily of solute carriers. Three Ncx genes encoding structurally highly similar Na⁺/Ca²⁺ exchanger proteins are present in the mouse genome. Ncx2 and Ncx3 are mainly expressed in the central nervous system and skeletal muscle, respectively (Quednau et al., 2004), while Ncx1 is expressed ubiquitously in adult animals, but at much higher levels in heart, brain and kidney. Expression analysis on embryos shows predominant expression in the developing heart as of approximately the 1-somite stage (Koushik et al., 1999). In four different laboratories knockout lines representing null alleles of Ncx1 were generated (Cho et al., 2000; Koushik et al., 2001; Reuter et al., 2002; Wakimoto et al., 2000). Mouse embryos lacking a functional Ncx1 gene were reported to die around embryonic day (E) 10.5 with striking cardiac abnormalities. Given Ncx1's assumed cardiac function, these data confirmed the expected phenotype, but some controversy regarding the cause of lethality arose when (i) it was reported that a 'cardiac-specific' Ncx1 knockout is viable into adulthood (Henderson et al., 2004); (ii) two groups showed that heart-specific Ncx1 expression in transgenic mice rescued the phenotype only to limited extent (Conway et al., 2002; Cho et al., 2003); (iii) Ncx1 was shown to be expressed in the normal...
placenta, and placental defects were seen in Ncx1 mutants (Cho et al., 2003).

The topology and the structure-function relationship of the NCX1 protein has been subject of much research. NCX1 is a plasma membrane protein containing nine transmembrane domains, a large intracellular loop that has been directly linked to Ca\(^{2+}\) binding, and two reentrant loops, the \(\alpha\)-1 and \(\alpha\)-2 repeats that have been linked to ion transport (Nicoll et al., 1996; Iwamoto et al., 1999; Ottolia et al., 2005).

Here we report a novel mutant allele of Ncx1 that we found in a genetic screen for mutations that disturb early mouse development. We show that a point mutation leading to the substitution of one of the conserved asparagines in the \(\alpha\)-2 repeat is sufficient to produce an essentially complete loss-of-function phenotype, as compared to published knockout studies. In addition, we demonstrate intrinsic defects of mutant cardiomyocytes, by studying Ca\(^{2+}\) homeostasis and action potential in isolated cardiomyocytes.

Results

Identification of a mutant line with early-embryonic heart defects

In the course of an ENU-mediated, phenotype-driven screen for recessive mutations leading to developmental defects (manuscript in preparation), we identified a mutant line that was designated HI-07. Affected mutant embryos of this line displayed extreme thoracic oedema, inflated branchial arches and abnormal folding of the heart tube (see Fig. 1). Embryos collected at E9.5 or E10.5 had similar morphology and size, but while a heart beat could usually be observed at E9.5, E10.5 embryos never had a beating heart. Yolk sacs of mutant embryos lacked a blood-filled vasculature. Mutant embryos at these stages were obtained with a frequency as expected for an autosomal recessive mutation.

Mapping

We designed a panel of 192 single nucleotide polymorphisms (SNPs), distinguishing FVB/NJ from C57Bl/6 DNA. These SNPs are dispersed evenly over the genome, allowing initial crude mapping. Analysis of DNA from 25 mutant embryos and some of their littermates indicated that the gene was located on Chromosome 17, between 75.8-86.1 Mbp. Further mapping using different SNPs in this region (http://phenome.jax.org/pub-cgi/phenome/mpdcgi?rtn=docs/home) reduced the candidate region to 78.0-84.5 Mbp. Among the approximately 55 genes located within this segment is the Ncx1 gene. Since descriptions of homozygous mutant mouse embryos obtained through gene targeting appeared to match the HI-07 mutant, we sequenced the coding regions of Ncx1 in genomic DNA from mutant embryos. This demonstrated a T>A transversion of nucleotide 86 of exon 9 (Fig. 2A) that correlated completely with the phenotype. Because of the mutation, the asparagine residue at position 874 is substituted by a lysine (numbering according to the Ensembl database (www.ensembl.org), Ensembl peptide ID ENSMUSP00000083725). The occurrence of this mutation in combination with a very strong resemblance of the HI-07 mutant phenotype to the described Ncx1 phenotype basically excludes a noncausal relation between the two. Functional relevance of N874 emerged previously from site-directed mutagenesis studies followed by in vitro assays (Nicoll et al., 1999). From modelling studies, it has been proposed that N874 is located in the membrane as part of the second of two re-entry loops present in the protein (Nicoll et al., 1996, 1999; Iwamoto et al., 1999, 2000; Ottolia et al., 2005; see Fig. 2B).

Ncx1 expression in embryos

Reports of expression analysis of Ncx1 at early embryonic stages are not entirely consistent, but agree on predominant expression in the heart (Koushik et al., 1999; Wakimoto et al., 2001). Our analyses confirmed expression in the heart at E10.5, which was essentially unchanged in mutant embryos (Fig. 1 D,E).

It is hypothetically possible that the mutation we observed in the Ncx1N874K mutant affects the protein in a way that destabilizes it, and/or upsets its targeting to the cell membrane. To address this, we analyzed by Western blot analysis the presence of Ncx1 in embryonic hearts. As shown in Fig. 3A, similar levels of 120- and 160-kD Ncx1-specific bands were detected in pools of dissected wildtype, heterozygous and homozygous mutant embryos. We also compared expression and subcellular localization in wildtype vs. mutant embryos by immunofluorescence (Fig. 3 B-G). Fig. 3 B,C shows presence of Ncx1 protein in the heart of an E9.0 wildtype embryo and similarly in an Ncx1 mutant embryo. Fig. 3 D,F shows the plasma membrane localization of Ncx1 in wildtype embryos. In mutant cells (Fig. 3 E,G) this localization is unchanged. Therefore, the N874K mutation does not bring about a general, unspecific disorder of the Ncx1 protein organization. Our attempts to demonstrate expression of Ncx1 in the embryonic vasculature of the placenta were unsuccessful, as the use of the R3F1 antibody led to artefacts in this tissue.

Placental phenotype in Ncx1 mutant embryos

To investigate the possibility that placentation is disturbed in
Subtle mutation inactivates Ncx1

homozygous mutant Ncx1N874K embryos, as was reported for Ncx1 knockout embryos (Cho et al., 2000), we analyzed a time series of mutants between E9.0, E9.5 and E10.5. This suggested normal development of the allantois, prior to and including attachment to the chorion. Upon attachment of the allantois, in normal embryos the labyrinth develops because of invasion of the trophoderm layer by allantois-derived vasculature. The labyrinth layer enables exchange of nutrients and gases between the foetal and maternal circulation (Rossant and Cross, 2001). Comparison of sections of E9.5 placenta from wildtype and mutants revealed that while in the placenta of wildtype embryos the labyrinth could easily be distinguished; in the mutant placenta it had not developed (Fig. 4 A-D). Furthermore, the haemotrichorial layer that separates embryonic and maternal circulation (yellow arrow in Fig. 4B) is seen in wildtype (yellow arrow in Fig. 4C) but not in mutant placenta (Fig. 4D).

To analyze the vasculature of the placenta, we used antibodies against PECAM that specifically label the endothelial lining of the vessels. The results confirm the defective labyrinth development, but do not suggest that vascular endothelium is specifically affected (Fig. 4 E,F).

To better understand the nature of the placenta phenotype, we analyzed expression of a number of markers by in situ hybridization on sections of E9.5 placentas. Expression of eHAND as a trophoblast giant cell marker (Cserjesi et al., 1995), Cdx2 as a trophoblast lineage marker (Beck et al., 1995), and Mash2 as a spongiotrophoblast marker (Guillemot et al., 1994) was essentially normal compared to the wildtype placenta, apart from differences that are evidently a direct consequence of the abnormal morphology of the mutant placenta (see Supplementary Fig. 1). These results suggest that derivatives of these lineages are present in essentially normal amounts.

Intrinsically affected properties of Ncx1 mutant cardiomyocytes

The occurrence of extra-embryonic defects in this Ncx1 mutant opens the possibility that cardiac failure might not be the only or even primary cause of embryonic lethality. We therefore set out to compare intrinsic properties of cardiomyocytes isolated from mutant embryos and their wildtype litter mates. Two key components of excitation contraction coupling were studied, the action potential (AP) and the Ca\(^{2+}\) homeostasis. Hearts from E9.5 normal and mutant embryos were isolated, dissected into small pieces, dissociated enzymatically and replated. After one day of culture, cardiomyocytes from wildtype embryos were contracting regularly and synchronously in small clusters. In contrast, cardiomyocytes derived from mutant embryos were fibrillating and
contracting randomly (see supplementary videos). The \(\text{Ca}^{2+} \) transients of \(\text{Ncx1N874K} \) cardiomyocytes were smaller in amplitude and had a lower frequency (0.53 Hz) than their wild-type counterparts (1.06 Hz) (Fig. 5A). Although small \(\text{Ca}^{2+} \) transients were found, very rarely action potentials were detected, which were never repetitive. In the mutant cells we were able to measure only two prolonged action potentials out of ten recordings (Fig. 5B). These results are consistent with the notion that the \(\text{Ncx1N874K} \) mutation causes intrinsic abnormalities in embryonic cardiomyocytes. Clearly, these malfunctions would be sufficient to explain the embryonic phenotype including early lethality.

Discussion

In addition to identifying novel roles of genes in an unbiased way, a phenotype-based approach involving generation of point mutations is also expected to yield subtly altered mutant alleles of genes. Such mutants may be of interest if they represent hypomorphic alleles, providing novel opportunities to study gene function. In addition, if a single amino acid substitution leads to a strong phenotype, as in the present study, the results may provide insight in the biochemistry and structure-function relation of the protein in question.

We have characterized a novel mouse mutant, carrying a missense mutation of the \(\text{Ncx1} \) gene. Our data show that homozygous \(\text{Ncx1N874K} \) embryos exhibit a wide-ranging set of abnormalities similar to published knock-out models, including defective placentation, lack of yolk sac vascularization and abnormalities of heart development leading to impaired blood circulation. The early lethality of the \(\text{Ncx1} \) mutants precludes analysis of possible other functions of the gene. For instance, \(\text{Ncx1} \) is highly expressed in adult brain and kidney (Wakimoto et al., 2001), but the study of its function in those tissues would require the use of conditional mutants. Assessing whether the \(\text{Ncx1N874K} \) allele is hypomorph or a null mutation is complicated by certain discrepancies in the phenotypes described for the existing presumed null
Subtle mutation inactivates Ncx1

mutants. Koushik et al. (2001) reported total absence of heartbeat in homozygous mutant embryos at all stages (see also Lux et al., 2008 and Rhodes et al., 2008) whereas others (Cho et al., 2000 and Wakimoto et al., 2000) observed at least some contractility in all or some of the mutant embryo hearts. Our observation that mouse embryos homozygous for the mutation retain a heartbeat at E9.5 therefore does not resolve the question as to remaining functionality of the NCX1N874K protein.

Our ex vivo analyses of mutant cardiomyocytes demonstrate major functional deficits of mutant E9.5 cells that are sufficient to explain early lethality. The essential physiological role of NCX1 in the heart is further emphasized by reports of arrhythmias in zebrafish Ncx1 mutants (Ebert et al., 2005; Langenbacher et al., 2005) where complications of extra-embryonic development do not apply. The doubts that have arisen as to the question whether heart failure is the primary cause of embryonic lethality around E10 were based on survival of a ‘heart-specific’ knock-out in which, however, only 80-90% of the cells had lost Ncx1 activity (Henderson et al., 2004). In addition, attempts to rescue the Ncx1 phenotype by expressing Ncx1 under control of an αMHC promoter failed to compensate more than marginally (Conway et al., 2002; Cho et al., 2003). Although efficacy of the expression construct at the relevant embryonic stages was not demonstrated by these authors, this suggests a potential role of Ncx1 in placental development. On the other hand, since heart failure in the Ncx1N874K mutant is already evident at E9.5, and our analyses of cell-specific markers in mutant placenta (Supplementary Fig. 1) showed essentially normal patterns, it is possible that the placental defect we observe is a mere secondary consequence of it, for instance as consequence of delayed development, as has been suggested for a number of mutants (Conway et al., 2003). The lack of vascularization of the yolk sac may also be a consequence of impaired cardiac function. It was recently reported that haemodynamic force is necessary and sufficient to induce vessel remodeling in the mouse yolk sac. The manifestation of the Ncx1 deficiency in our Hi-07 mutant in appearance of the yolk sac phenotype strongly resembles what these authors show for Mlc2a knockout embryos, an immature appearance and failure of remodelling of the capillary plexus. Interestingly however, no labyrinth phenotype has been reported for the Mlc2a mutant (Lucitti et al., 2007).

Iwamoto and co-workers (Iwamoto et al., 1999, 2000) and others studied the structure of dog NCX1 protein. On the topological disposition of N842 (corresponding to mouse N874), these authors concluded that it is located in the membrane as part of a reentrant loop. Replacement of N842 by cysteine allowed examining its accessibility. It was demonstrated to be chemically accessible from the intracellular membrane surface and possibly also from the outside (Iwamoto et al., 2000). Earlier, functional importance of this amino acid had been revealed by demonstrating that its mutation to aspartate or valine led to decreased exchange activity (Nicoll et al., 1996). Mouse Ncx1 N847 is therefore likely to be a part of the mechanism responsible for ion transport. Interestingly, Iwamoto et al. (2000) showed that replacement of N874 with cysteine did not affect NCX1 performance, whereas subsequent treatment with methanethiosulfonate ethylammonium (MTSEA) did inhibit its activity. MTSEA is a sulfhydryl reagent that converts the neutral cysteine side-chain to a positively charged group resembling a lysine side-chain; therefore this in vitro experiment resembled the situation resulting from the point mutation in the Ncx1N874K mutant.

In conclusion, our analysis of a novel loss-of-function mutant allele encoding an abnormal NCX1N874K protein substantiates the importance of the conserved asparagine at position 874. By extrapolation of published work in vitro, it is likely that the NCX1N874K protein is specifically defective in ion transport. While protein levels and subcellular location of the protein remained unaffected, a strong embryonic phenotype was observed in homozygous mutants. Our data establish for the first time in vivo the essential role of this residue and demonstrate the potential power of phenotype-driven genetic screen as an intermediate between gene targeting studies and studies in vitro.

Materials & Methods

Identification of mutant

We identified the Hi-07 mutant in the course of a genetic screen for recessive mutations affecting development. This screen will be described in more detail elsewhere. Briefly, C57BL/6 mice were injected three times with one-week intervals with 60-80 mg/kg bodyweight of N-ethyl-N-nitrosourea and crossed with FVB/N mice. Founders were crossed with their daughters and embryos, which were potentially homozygous for ENU-induced mutations, were examined at E10.5.

Mapping procedures

We designed a SNP panel for approximate mapping of mutations from our screen. SNPs were chosen to be equally spread along all chromosomes excluding Y and to be polymorphic between C57BL/6 and FVB/N. 10 μl of PCR product was diluted with 25 μl water and 1 μl was used as template for the sequencing reactions. Sequencing reactions, containing 0.25 μl BigDYE (v1.1; Applied Biosystems), 3.75 μl 2.5x dilution buffer (Applied Biosystems), and 0.4 μM gene-specific primers in a total volume of 10 μl, were performed using cycling conditions recommended by the manufacturer. Sequencing products were purified by ethanol precipitation in the presence of 40 mM sodium acetate and analyzed on a 96-capillary 3730XL DNA analyzer (Applied Biosystems). Sequences were analyzed for the presence of polymorphisms using Polyphred (Thurneysen et al., 2002). Primers for PCR amplification and sequencing were designed using the Ensembl genome database (http://www.ensembl.org).

Western blot analysis

E9.5 mouse embryos were harvested in PBS; hearts were dissected and separately lysed in 5μl RIPA buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP40, 0.5% DOC, 0.1% SDS) including protease inhibitors. After genotyping, 11 or 12 hearts of every genotype were pooled, and protein concentrations of the pools were determined using the Bicinchoninic assay Kit (Sigma-Aldrich). 2x Laemmli sample buffer was added to 25 μg protein and the mixture was heated at 70°C before loading. Polycrylaldehyde gel electrophoresis (PAGE) and Western blotting were performed according to standard procedures, including use of the ECL system for luminescence detection. Mouse-anti-Ncx1 (R3F1, Swant, Bellinzona, Switzerland) was diluted 1:500 in 5% milk powder in TBS-Tween blocking solution to 100% for storage at -20°C. Embryos were dissected and separately lysed in 5μl RIPA buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP40, 0.5% DOC, 0.1% SDS) including protease inhibitors. After genotyping, 11 or 12 hearts of every genotype were pooled, and protein concentrations of the pools were determined using the Bicinchoninic assay Kit (Sigma-Aldrich). 2x Laemmli sample buffer was added to 25μg protein and the mixture was heated at 70°C before loading. Polycrylaldehyde gel electrophoresis (PAGE) and Western blotting were performed according to standard procedures, including use of the ECL system for luminescence detection. Mouse-anti-Ncx1 (R3F1, Swant, Bellinzona, Switzerland) was diluted 1:500 in 5% milk powder in TBS-Tween blocking solution. The NCX1-specificity of this antibody has been described (Van Nes et al., 2006). After stripping, the blot was incubated with mouse-anti-α-tubulin (1:2000 in TBS-Tween, 16199, clone DM1A, Sigma-Aldrich). The secondary antibody used was HRPO-coupled anti-mouse (BDbiosciences).

Immunohistochemistry

Embryos were dissected in PBS and fixed overnight in 4% paraformaldehyde (PFA) and dehydrated by increasing Methanol concentration to 100% for storage at -20°C. After rehydration, embryos where
blocked in PBS, 0.1% Triton X-100-1% BSA for 1h and incubated with 1:500 mouse-anti-NCX1 (R3F1, Swant, Bellinzona, Switzerland). After washing with PBS containing 0.1% Triton X-100, embryos were incubated with the secondary antibody (Cy3-goat-anti-mouse 1:250; Jackson Immunomunological). Nuclei were stained with DAPI (Invitrogen). Fluorescence was analyzed by using a Leica TCS SPE confocal microscope and the Leica Application Suite software. PECAM-staining has been described (Van Nes et al., 2006).

Preparation of dispersed cardiomyocytes

Single cardiomyocytes were prepared essentially as described (Maltsev et al., 1994). In brief, embryonic hearts were dissected, washed and then transferred to collagenase-containing buffer and incubated for 45 at 37°C. Tissue was then transferred to KB buffer (Maltsev et al., 1994) and shaken at room temperature for 1 hour at 100 rpm. Small amounts of tissue were dispersed by pipetting up and down and transferred to 12-well plates containing gelatin coated cover slips and hES medium (Braam et al., 2005). In situ hybridization on whole mounts or sections was as described (Maltsev et al., 2006) except for Ncx1. In this case, two different probes of 689 and 693 bp, were made by PCR from partially overlapping parts of exon 1 using primers: Ncx1F1, AGACTGTTGCGAAGCTGACC; Ncx1R1, TGCTGTGGACTTAGACCTG, and Ncx1F2, GATGGGAAAGTGCTGTCCTC; Ncx1R2, CCCAAGACAGACAGATGGAG, respectively. Both probes gave identical results.

To ensure specificity of probes, experiments were combined with parallel hybridizations using probes detecting known expression patterns.

Acknowledgements

We are very grateful to Andrei Vacaru for help with Western blotting and gifts of materials. We also thank Bart M. Smits for help in the initial setting up of the screen, Doreen Ward-Van Oostwaard for help with cardiomyocyte culture and Johan van Nes for discussions. We thank Antje Brouwer for technical assistance and Jacqueline Deschamps for discussions, and the Hubrecht Imaging Center for supporting the imaging. This work was supported by a grant from the Netherlands government (BSIK program 03038, Stem Cells in Development and Disease).

References

Further Related Reading, published previously in the *Int. J. Dev. Biol.*

Creating frog heart as an organ: in vitro-induced heart functions as a circulatory organ in vivo
Masayoshi Kinoshita, Takashi Arizumi, Shinsuke Yuasa, Shunichirou Miyoshi, Shinji Komazaki, Keiichi Fukuda and Makoto Asashima

Movement and commitment of primitive streak precardiac cells during cardiogenesis
Carmen Lopez-Sanchez, Natividad Garcia-Masa, Carlos M. Gañan and Virginio Garcia-Martinez
Int. J. Dev. Biol. (2009) 53: 1445-1455

In vivo forced expression of myocardin in ventricular myocardium transiently impairs systolic performance in early neonatal pig heart
Mario Torrado, Alberto Centeno, Eduardo López and Alexander T. Mikhailov
Int. J. Dev. Biol. (2009) 53: 1457-1467

Lessons from a search for leaf mutants in Arabidopsis thaliana
José Manuel Pérez-Pérez, Héctor Candela, Pedro Robles, Víctor Quesada, María Rosa Ponce and José Luis Micol
Int. J. Dev. Biol. (2009) 53: 1623-1634

The heart forming region of early chick embryo is an alternative source of embryonic stem cells
Seema Borgave, Kirti Ghodke and Surendra Ghaskadbi
Int. J. Dev. Biol. (2009) 53: 91-99

The enigmatic role of the ankyrin repeat domain 1 gene in heart development and disease
Alexander T. Mikhailov and Mario Torrado
Int. J. Dev. Biol. (2008) 52: 811-821

Pathways in blood and vessel development revealed through zebrafish genetics.
Philip S Crosier, Maggie L Kalev-Zylinska, Christopher J Hall, Maria Vega C Flores, Julia A Horsfield and Kathryn E Crosier

5 yr ISI Impact Factor (2009) = 3.253