The expression of Stra6 and Rdh10 in the avian embryo and their contribution to the generation of retinoid signatures

SUSAN REIJNTJES1, MAIJA H. ZILE2 and MALCOLM MADEN3,*

1Institute of Medical Sciences, University of Aberdeen, Scotland, UK, 2Dept. Food Science & Human Nutrition, Michigan State University, East Lansing, MI, USA and 3Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA

ABSTRACT Two new components of the retinoic acid (RA) synthetic pathway, the cell surface receptor for retinol, Stra6, and the enzyme converting retinol into retinal, Rdh10, have recently been described. To understand how different tissues of the chick embryo generate different retinoid signatures, we describe the expression patterns of these two genes and ask whether they are altered by RA levels. We performed wholemount in situ hybridisation and altered RA levels by applying RA soaked beads and used vitamin A-deficient quail embryos. In some areas of the embryo, these two genes co-localised with a retinaldehyde dehydrogenase (Raldh), as might be expected allowing retinol to be taken into the cell and converted into RA. In other areas of the embryo, the domain of expression of Rdh10 was much smaller than that of the corresponding Raldh, suggesting that retinal is transferred between cells. In yet other areas, only one of the cytochrome P450 enzymes co-localises with Stra6. In the case of co-localisation with Cyp1B1 in the hindbrain mesenchyme, this reveals that retinol is taken up into the cells for conversion to RA by Cyp1B1 and used in establishing ventral progenitor domains in the hindbrain. In the case of co-localisation with a Cyp26, it suggests that other retinol dehydrogenases (Rdhs) have yet to be discovered. We propose that in certain regions of the embryo, there are new Rdhs and Raldhs yet to be discovered and that RA is not a major regulator of its synthetic enzymes.

KEY WORDS: Stra6, Rdh10, chick embryo, retinoic acid, VAD embryo

Introduction

Regulation of the appropriate level of retinoic acid (RA), an important developmental signaling molecule, is crucial for its precise action in the embryo. This regulation is tissue specific because different tissues of the embryo have different levels and types of retinoids present, or ‘retinoid signatures’ as measured by HPLC (Horton and Maden 1995; Maden et al. 1998). Thus when RA is applied to the embryo in excess, the retinoid signature of individual organ systems is disturbed and characteristic defects arise in the central nervous system, heart, urogenital system, limbs, pharyngeal arches, lung, eye and craniofacial structures (Fantel et al. 1977; Shenfelt 1972; McCaffery et al. 2003). Similarly when retinoid levels are lowered by a deficiency of precursors, the same organ systems are adversely affected (Clagett-Dame and DeLuca 2002; Kalter and Warkany 1959; Maden 2002; Dersch and Zile 1993; Zile 2004). Since RA controls the pattern of organ specific gene transcription the understanding of how RA levels are regulated in the embryo is of considerable significance.

There are multiple points at which the endogenous levels of RA could be controlled during embryogenesis. These include: retinol release into the blood from maternal stores (mammals) or from yolk stores in the egg (other vertebrates); uptake of retinol through the cell membrane into embryonic cells; enzymatic conversion of retinol into retinal and RA in the cell cytoplasm; activation of the retinoic acid receptors (RARs) by RA in the nucleus; and removal of RA so that gene activation no longer occurs. We know a good deal about many of these steps. For example, the distributions of the enzymes which convert retinal into RA, namely, RALDH1,
RALDH2 and RALDH3 are well characterized (Berggren et al. 1999; Blentic et al. 2003; Grun et al. 2000; McCaffery et al. 1999; Mic et al. 2000; Niederreither et al. 1997; Swindell et al. 1999; Molotkova et al. 2007) as are those of the enzymes which further metabolize RA, namely CYP26A1, CYP26B1 and CYP26C1 (Abu-Abed et al. 2002; Blentic et al. 2003; de Roos et al. 1999; Hollemann et al. 1998; MacLean et al. 2001; Reijntjes et al. 2003; Reijntjes et al. 2004; Swindell et al. 1999; Tahayato et al. 2003). The spatial relationships between these two classes of enzymes have been carefully mapped in many vertebrate embryos giving valuable insights into the action of RA as a paracrine signaling molecule (Reijntjes et al. 2004; White and Schilling 2008) which acts in the form of a gradient within, for example, the developing hindbrain (White et al. 2007). The distribution and function of the individual RARs has also been extensively documented (Dolle et al. 1989; Dolle et al. 1990; Ruberte et al. 1990; Ruberte et al. 1991).

Until recently, however, little was known about how retinol is taken up into the cell or which enzyme converts retinol into retinal and so knowledge of this upstream part of the pathway within the embryo is severely lacking. Stra6 was recently identified as the cell surface receptor for retinol (Kawaguchi et al. 2007) and a mutation in this gene in humans causes anophthalmia, heart defects, diaphragmatic hernia, lung hypoplasia and mental retardation (Pasutto et al. 2007), a spectrum known as Matthew-Wood syndrome and a spectrum which is characteristic of vitamin A deficiency. Stra6 seems to be widely distributed in the mouse embryo (Bouillet et al. 1997), but little is known about its precise relationship to the other components of the RA synthetic pathway and here we describe this in the early chick embryo and ask whether it is regulated by RA.

Following the uptake of retinol into the cell by STRA6, its conversion to retinal was originally though to be performed by alcohol dehydrogenases (ADHs) or short-chain dehydrogenase/reductases (SDRs). But these enzymes are ubiquitous in their embryonic distribution and null mutants for the ADHs generate no embryonic phenotypes (Duester 2001). Recently, a short chain dehydrogenase, RDH10, which converts all-trans-retinol into all-trans-retinaldehyde was identified in a mouse mutagenesis screen (Sandell et al. 2007). The mutant has defects in the limbs, craniofacial structures, branchial arches, eyes, ears, cranial ganglia, lungs, urogenital system, all of which are characteristic of vitamin A deficiency. Its distribution in the mouse embryo (Cammas et al. 2007; Romand et al. 2008; Sandell et al. 2007) is very

Fig. 1. Expression domains of Stra6 in the stage 4 – 13 chick embryo. (A) Stage 4 showing expression in and around Hensen’s node. (B) Stage 5, lines mark the plane of section in (C,D,E). (C) Section anterior to the node. (D) Section through the node. Star marks expression in the mesoderm of the node, red arrow shows the direction of movement of ingressing mesodermal cells which cease expression. (E) Section posterior to the node across the primitive streak showing lack of expression. (F) Stage 7 showing expression in a cup shape around the regressing node. (G) Stage 8, red arrows mark the first formed somites and the posterior cup shape persists. (H) Stage 9 showing expression now within the regressing node at the posterior of the embryo (arrow) and most strongly in the first formed somite. (I) Stage 10, close-up of the somite expression showing the initial expression throughout the first 1 or 2 somites and then it narrows down to the medial edge in the more mature, anterior somites. (J) Stage 11, showing expression in the somites, regressing node and beginning in the cranial mesenchyme (arrow). Lines mark the plane of section in (K,L,M,N). (K) Section anterior to the node showing no expression. (L) Section at the anterior end of the node showing expression in the forming notochord and floorplate (arrow) of the neural tube. (M) Section through the node showing expression ventral to the neural tube. (N) Section at the posterior end of the node showing no expression. (O-Q) Expression through the somites at different AP levels. (O) Anterior somites near the head show sclerotomal expression. (P) Mid-level somites show medial expression. (Q) Posterior somites show expression throughout. (R) At stage 13 the hindbrain mesenchyme expression has become intense (arrow) and eclipses that in the somites.
precise and overlaps with many sites of RALDH expression but also has some unique localisations such as the floorplate of the neural tube and the zone of polarizing activity in the forelimb bud, sites of no known Raldh expression. Rdh10 has also been described in the Xenopus embryo (Strate et al. 2009) where its expression shows differences from the mouse and its levels are regulated by excess RA and reduced RA concentrations. Here we describe the expression and regulation by RA of Rdh10 in the early chick embryo and vitamin A-deficient (VAD) quail embryo along with that of Stra6 and ask whether they are coordinated together with the Raldhs in RA-responsive developing fields. Thus we can put together all the components of the metabolic pathway of RA in the different regions of the avian embryo and reveal how different retinoid signatures come about in different embryonic fields.

Results

Stra6 expression

Expression of Stra6 began at stage 4 around and within Hensen’s node and in a zone spreading anterior to the node (Fig. 1A). This zone enlarged over the next stage as the node started to regress (Fig 1B). Transverse sections through the embryo showed that Stra6 was expressed in both the epiblast and mesoderm layers anterior to the node (Fig. 1C). It was expressed in the mesoderm of the node itself (star in Fig. 1D) and was then down-regulated in laterally migrating mesodermal cells after a certain distance from the node (arrow in Fig. 1D). There was no expression posterior to the node or in the primitive streak at this stage (Fig. 1E). This is a different pattern from the other RA pathways enzymes that we have seen before at gastrulation stages (Maden 2004). It is co-expressed with Cyp26A1 in the epiblast anterior to the node and in the mesoderm of the node; with Cyp26C1 in the mesoderm anterior to the node; but it is not co-expressed with Raldh3 which is in the epiblast of the node nor Raldh2 or Rdh10 in the mesoderm posterior to the node (summary in Fig. 5A). Therefore it is not co-expressed with a Rdh or a Raldh.

The expression of Stra6 continued in a cup shape around the node as it regressed (Fig. 1F, G) and then entered the node itself by stage 9 (arrow in Fig. 1H) where it remained (Fig. 1J). Sections through this region at stage 11 showed a very precise expression in the anterior part of the node and forming notochord (Fig. 1N, M) and also in the floor plate of the neural tube for a brief period (Fig. L arrow, K). This expression domain of Stra6 is very unusual from the point of view of other RA metabolising enzymes and the only co-expression in this region is with Cyp26A1 (Blentic et al. 2003).

As the first somites formed they expressed Stra6 (Fig. 1G, arrows) and it remained most strongly expressed in the anterior somites which will disperse to become cranial mesenchyme (Fig. 1H). From stage 10 onwards there was a developmental progres-

Fig. 2. Expression domains of Stra6 in the stage 16 – 23 chick embryo and their alteration in VAD quails. (A) Stage 16 chick. Arrow points to the hindbrain mesenchymal expression. (B) Section through the posterior hindbrain of a stage 16 chick showing intense expression in the mesenchyme surrounding the hindbrain. (C) Close-up of the stage 16 hindbrain showing the AP extent of the mesenchymal expression. White numbers mark the rhombomeres and the arrow marks the anterior extent of the expression in the mesenchyme. Just posterior to rhombomere 7 expression ceases. The otic vesicle is to the right of the image. (D) Section through the diencephalon of a stage 19 embryo showing a stripe of Stra6 expression in the mid-region (arrow) and weaker expression ventrally. (E) Section through the stage 19 eye showing expression in the retinal pigmented epithelium (arrow). (F) Stage 21 chick embryo. Arrow points to the hindbrain mesenchymal expression. (G) Section through a stage 18 embryo showing expression in the medial edge of the somite and weaker expression in the mesonephric mesenchyme (arrow). (H) Expression in the mesonephros of the stage 21 embryo (arrow). (I) Section showing expression in the hindgut mesenchyme (arrow) and coelomic epithelium. (J) Section through a stage 23 limb bud with a domain of expression on the proximodorsal region. (K) Section through the dorsal neural tube showing expression in the roof plate (arrow). (L) Expression in a normal stage 10 quail embryo. (M) Up-regulation of Stra6 expression in the newly-formed notochord of a stage 10 VAD quail embryo. The arrow marks the ectopic expression. (N) The head of a normal stage 14 quail embryo showing ectopic expression in the nasal pit (red arrow) and much stronger expression in the eye and surrounding tissue.
In the somitic expression of *Stra6* whereby the first one or two newly formed somites expressed it throughout compared to the older somites where expression narrowed down to the medial half which can be seen in Fig. 11. Sections showed expression throughout the somite at the posterior end of the stage 11 embryo (Fig. 1Q) which localised to the medial half in more anterior somites (Fig. 1P). Later, in more mature somites, for example at stage 16 in rostral somites (Fig. 2A) and by stage 20 in all somites (Fig. 2F) the expression became restricted to the posterior halves of the medial edge of the somites. The somites are a site of several RA metabolising genes in addition to *Stra6*, namely *Cyp1B1*, *Rdh10* and *Raldh2*, but each is in slightly different domains within the somite (see Discussion).

Anterior to the somites *Stra6* started to become expressed in the cranial mesenchyme (Fig. 1J red arrow) and by stage 13 it had become the strongest domain of expression, eclipsing the somites (Fig. 1R arrow). It remained expressed in the cranial mesenchyme throughout the subsequent period of observations (Fig. 2A arrow, Fig. 2F arrow). Sections through the posterior hindbrain showed its intense expression in the mesenchyme surrounding the ventral two thirds of the hindbrain neuroepithelium (Fig. 2B). The expression domain extended from the level of rhombomere 3 posteriorly to rhombomere 7 between the neuroepithelium and the otic vesicle (Fig. 2C). This is another very unusual region of RA metabolising gene expression and the only other gene expressed there is *Cyp1B1* (Chambers et al. 2007) which can generate RA from retinol. We have previously proposed that RA generated in this location is involved in dorsoventral patterning of the chick hindbrain (Chambers et al. 2007) and now we can see that retinol is taken up by these mesenchyme cells.

As development continued from stage 16 to stage 18 several new domains of *Stra6* expression appeared. At the anterior end of the embryo (Fig. 2A) two regions around the eye began to express *Stra6*. One region was in the mid-diencephalon between the eyes (Fig. 2D arrow) where a clear stripe appeared and the ventral diencephalon showed a low level of expression. This region seems to be unique to *Stra6* in terms of RA enzyme expression. The second region was the eye itself where *Stra6* was expressed throughout the pigmented retinal epithelium (Fig. 2E arrow).

The other regions of expression which appeared between stages 16 and 18 were in the posterior of the embryo, one of which was the mesonephros (Fig 2G & H, arrows) and expression continued there throughout the remaining period of observation. Like the somites, the mesonephros is a site of several RA enzyme expressions, namely *Rdh10* (Fig. 4C), *Raldh1* and *Raldh2* (Blentic et al., 2003). Another region of expression was the hindgut mesenchyme and associated coelomic epithelium (Fig. 2I arrow) and a further region was the roof plate (Fig. 2J arrow). Emerging limb buds do not express *Stra6*, but by stage 23 a domain of expression appeared in the mid-dorsal region adjacent to where the limb bud joined the body (Fig. 2J).

Fig. 3. Expression domains of *Rdh10* in the stage 4 – 14 chick embryo.

(A) Stage 4 showing expression posterior to Hensen’s node. (B) Section through a stage 4 embryo as in A showing expression in the mesoderm. (C) Stage 5 showing expression has narrowed down to a stripe with the same anterior border. (D) Stage 7 showing expression in the mesoderm of the first forming somites. (E) Stage 8 showing continuing expression as the somites form. (F) Stage 9 embryo showing somite expression and two new domains. One in the endocardial tubes (black arrow) and the other in the intermediate mesoderm (red arrow). (G) Close-up of the stage 10 somite expression. In the first three newly formed somites, expression is throughout but it soon narrows down in the remaining, older somites to just the medial edge. (H) Stage 14 embryo. Anterior to the first somite there is no expression. Posterior to this level expression is seen in the somites and most strongly in the intermediate mesoderm (red arrow).
absence of RA in the vitamin A-deficient (VAD) quail embryos. One of these domains was in the notochord at the posterior end of the embryo which extended anteriorly from the node to the middle of the somites (red arrow in Fig. 2M). In contrast such a domain was not seen in the normal quail embryo at stage 10 (Fig. 2L), nor in the normal chick embryo (Fig. 1J). A second domain which had more extensive expression in the VAD embryos was in the eye and nasal pit (Fig. 2O vs 2N).

Rdh10 expression

Rdh10 expression began at stage 4 (Fig. 3A) in a domain which has the same shape as that of Raldh2 (Blentic et al. 2003), with a sloping anterior edge and spreading all the way to the posterior end of the embryo. Sections revealed that, like Raldh2, Rdh10 was expressed in the ingressing mesodermal cells (Fig. 3B), but was not expressed in the streak or node itself. Almost immediately the expression of Rdh10 shrank down to a band of mesoderm (Fig. 3C) which was narrower than that of Raldh2 (Blentic et al., 2003) and subsequently Rdh10 was expressed in the newly formed somites (Fig. 3D & E). By stage 9/10 (Fig. 3F) Rdh10 was still expressed in all the somites although expression narrowed down from its presence throughout the whole somite in the first three newly formed somites to just the medial edge in the more mature somites (Fig. 3G). This expression pattern was identical to that of Stra6 (Fig. 1I) and in sections Rdh10 expression in mature somites was in the medial lip of the dermamyotome (Fig. 4C). Somitic expression became weaker through subsequent stages and by stage 20 it was restricted to the posterior half of the medial edge, just as Stra6 was (Fig. 2F). Several other RA metabolism enzymes are expressed in the somite, namely Cyp1B1 and Raldh2 although in both of these cases expression is throughout the somite and not just restricted to the medial edge (summary in Fig. 5C).

At stage 9 two new domains of Rdh10 expression appeared, one in the forming endocardial tube (Fig. 3F, black arrow) and another in the newly differentiating intermediate mesoderm (Fig. 3F, red arrow). Although these are the same domains as Raldh2, the latter is more intensely and more widely expressed at this stage. By stage 14 the intermediate mesoderm expression had become stronger (Fig. 3H arrow) and was the major site of expression in the embryo. At this stage (Fig. 3H) the expression of Rdh10 was clearly absent in the head and began at the level of the first somite, remarkably similar to that of Raldh2, although as noted above Raldh2 is more widespread in the intermediate mesoderm and lateral plate (Blentic et al. 2003; Swindell et al. 1999).

By stage 16 a domain of expression of Rdh10 had appeared anterior to the first somite in the eye, but the rest of the body showed the same pattern (Fig. 4A) except that the somite expression had declined in intensity and two streams of expression appeared dorsal to the heart which were presumably neural crest cells in the inflow and outflow tracts of the heart (Fig. 4A arrows). The eye expression was both dorsal and ventral (Fig. 4B) and became more intense by stage 19 (Fig. 4D) but the domains did not expand. This expression in the eye co-localises with Raldh1 dorsally and Raldh3 ventrally, but it is very noticeable that these Rdh10 domains were smaller than those of either Raldh1 or Raldh3 (summary in Fig. 5D).

By stage 19 the mesonephros had become the major site of expression of Rdh10 (Fig. 4C arrow) and this remained so for the continuing period of observation (Fig. 4E & I arrows). The coelomic epithelium lateral to the mesonephros also expressed Rdh10 strongly (Fig. 4C) and as the limb buds emerged expression spread laterally to encompass the epithelium ventral to the limb bud (Fig. 4E & G). This co-localises with the expression of Raldh2 in the lateral extraembryonic membrane (Berggren et al. 1999). There was no expression of Rdh10 in the early limb bud itself, but from stage 23 there was a strong dorsal domain in the proximal part of the limb bud (Fig. 4G) which co-localised with Stra6 (Fig. 2J) and may be related to the expression of Raldh2 in the region of the limb bud where axons wait before entering (Wang and Scott 2008).

The expression at stage 20 revealed the clear posterior bias with only the eye expression and the two stripes dorsal to the heart present in the anterior end of the embryo (Fig. 4F). The somite
expression of Rdh10 had decreased in intensity and been reduced to the posterior halves. The strong signal in the posterior of the embryo was due to expression in the mesonephros (Fig. 4C, E, I) and in the mesenchyme of the developing hindgut (Fig. 4J). The latter co-localised with Stra6 (Fig. 2I). One final domain of Rdh10 which appeared at these later stages was the roof plate which appeared at stage 23 (Fig 4H) and co-localised with Stra6 (Fig. 2K).

Regulation of Rdh10 expression by RA

We performed the same experiments on Rdh10 expression as Stra6, namely implanting RA soaked beads adjacent to the posterior hindbrain and examining VAD quail embryos. Unlike Stra6, in neither case could any effect of Rdh10 expression be detected (data not shown) from which we conclude that, as in the case of the Rdh10s these enzymes are not responsive to RA.

Discussion

According to current concepts of RA signaling, in a cell which can generate RA three components should co-localise: a cell surface receptor to take up retinol, a Rdh to convert retinol to retinal in the cytoplasm and a Rdh to convert retinal to RA. RA then acts as a paracrine signaling molecule to affect cells at a distance and these distant cells express one of the Cyp26s in order to inhibit the RA signal within that cell or to generate a gradient of RA across the gap. We and others have previously documented in detail the expression patterns of the Rdh10s and the Cyps in the chick embryo (Blentic et al. 2003; Reijntjes et al. 2003; Reijntjes et al. 2004; Swindell et al. 1999; Cui et al. 2003) and now with the data reported here on Stra6 and Rdh10 we can determine whether Stra6, Rdh10 and a Raldh1 are indeed localised in the same tissue type and thus examine the validity of this concept. We find that there are three classes of localisations: the first supports the co-localisation concept described above; but the second and third do not and as a result two further novelties of RA signaling are hypothesized.

The first class of localisation is where Stra6, Rdh10 and a Raldh occur in the same tissue region. There are two clear examples of this that we have observed: one is the intermediate mesoderm from which develops the mesonephros. This tissue expresses Stra6, Rdh10, Raldh1 and Raldh2. Another example is the roof plate of the neural tube which expresses Stra6, Rdh10 and Raldh2.

The second class of localisation are those regions which superficially show co-expression, but actually reveal an interesting phenomenon recently described in Xenopus (Strate et al. 2009) where the domain of the Rdh10s much more extensive than that of Rdh10. These regions include the eye, the somites and the early mesoderm and the expression patterns are summarised in Fig. 5B-D. In the eye (Fig. 5D) Stra6 is expressed throughout, in the retinal pigmented epithelium, Rdh10 is expressed dorsally in a smaller domain than Raldh1 and ventrally Rdh10 is expressed in a smaller domain than Raldh3. In the somites (Fig. 5C) Stra6 and Rdh10 are expressed medially whereas Raldh2 is expressed throughout the somite and into the lateral plate (Blentic et al. 2003; Swindell et al. 1999). As the early mesoderm is generated during gastrulation the ingressing mesenchymal cells begin by expressing Stra6, but down-regulate it as they migrate laterally. Stra6 expression is retained adjacent to the mid-line in these recently ingressed cells as the node moves posteriorly. These mesenchymal cells also express Rdh10 and Raldh2 so the full complement of enzymes and cell surface receptor are initially expressed, but it is clear that the domain of Rdh10 expression is not as extensive in the anteroposterior dimension as that of Raldh2 as summarised in Fig. 5B. This phenomenon has been seen in Xenopus early mesoderm and led to the suggestion that retinal diffuses from the Rdh10 expressing cells into the Raldh2 expressing (Rdh10 negative) posterior cells (Strate et al. 2009). This novel concept means that not only does RA diffuse across fields of cells but does its precursor, retinal and it will be important to conduct tests of this hypothesis.

The third class of localisation is where Stra6 is expressed, but there is no Rdh10 or Raldh1 in the same tissue, only a Cyp. One of these regions is the node which is a known site of RA synthesis (Chen et al. 1992; Hogan et al. 1992) and when RA signaling is inhibited the expression of a range of laterality genes is abolished and cardiac sidedness is randomized (Zile et al. 2000). We see the expression of Stra6 in the mesoderm of the node and anterior to it (yellow dots in Fig. 5A) so retinol is taken up. However there is no Rdh10 in the node to convert it to retinal, instead Rdh10s is expressed in the ingressed mesenchyme posterior to the node (purple dots in Fig. 5A), as is Raldh2. There is another Raldh, Raldh3, in the epiblast of the node (solid red in Fig. 5A), but no synthetic enzyme.
co-localises with *Stra6*. This suggests that there ought to be another Rdhs somewhere within the node, preferably co-localised with *Stra6*, in order to generate retinal for use by the cells expressing *Raldh3* in the epiblast of the node.

Other regions where there are no co-localisations is the regressing node (Fig. 1J) and, for a brief period of time, the ventral floor plate of the neural tube (Fig. 1L). The only other enzyme expressed in the regressing node is *Cyp26A1* (Blentic *et al.* 2003) predicting that there should be a *Rdh* and perhaps a *Raldh* to be found localised to this region since the CYP26s cannot synthesise RA from retinol. A further region is the mesenchyme surrounding the posterior hindbrain (Fig. 2B). The hindbrain is the area of the embryo where the role of RA signaling has been studied in the greatest detail as the posterior hindbrain is patterned in the rostrocaudal axis by a graded concentration of RA (Dupe and Lumsden 2001; Gale *et al.* 1999; Kolm *et al.* 1997; White *et al.* 2007). Since no enzymes of the RA synthetic pathway are present within the neuroepithelium the source of the graded RA signal is the somitic mesenchyme posterior to the hindbrain. But dorsal-ventral patterning in the hindbrain is also responsive to RA and we have previously shown the presence of *Cyp1B1* which can synthesise RA from retinol in the mesenchyme adjacent to the hindbrain (Chambers *et al.* 2007). Over-expression of *Cyp1B1* disrupts the expression of several genes responsible for the generation of ventral progenitor domains and subsequent differentiation of motor neurons in the hindbrain. Now that we have seen *Stra6* there as well (Fig. 2B) we have the potential to generate RA for patterning directly at the posterior hindbrain neuroepithelium.

Finally, we observed that the expression of *Rdh10* is unaffected by the excess RA or the absence of RA and thus behaves like the *Raldhs*. Other factors must therefore control the tissue specific expression and levels of these enzymes rather than their substrate. In contrast to this behaviour, the enzymes at the distal end of the RA pathway, the *Cyp26s*, are highly responsive to RA in excess and in its absence (Reijntjes *et al.* 2005) and are known to possess retinoic acid response elements in their promoter sequences. They respond to excess RA by up-regulation in order to stabilize RA levels. It is interesting therefore that the most proximal gene in the RA pathway also responds to altered levels of RA as we noted the expansion of *Stra6* expression in the absence of RA in certain domains. This suggests that RA may be part of a feedback loop with the cell surface receptor for retinol to increase retinol uptake when RA levels are in decline in an attempt to re-establish appropriate levels.

In conclusion, the expression patterns described here on two new components of the RA synthetic pathway have added considerably to our understanding of how this molecule is generated in the embryo and which regions of the embryo require RA signaling for their proper development. We also suggest that there may be more enzymes yet to be discovered.

Materials & Methods

Embryos

Fertilised hens eggs (mixed flock, Henry Stewart and Co. Ltd., Louth, Lincolnshire) were incubated in a humidified atmosphere at 37°C. Embryos were staged according to Hamburger and Hamilton (Hamburger and Hamilton 1951).

The generation of vitamin A-deficient (VAD) quail embryos and the criteria for normal and VAD quail development have been described before (Dersch and Zile 1993; Dong and Zile 1995).

For RA treatment of embryos, all-trans-RA (Sigma) was dissolved in 250 μl dimethylsulphoxide to a concentration of 4 mg/ml to which was added anion exchange resin beads AG1-X2, formate form (Bio-RAD). To visualize the beads 1 ml of Dulbecco’s MOD Medium (Gibco) was added after the excess RA solution was removed. In the embryos at stage 9, part of the vitelline membrane was carefully removed and 1 bead placed by the head/trunk junction. Controls were treated identically except that only dimethylsulphoxide was added to the beads. Embryos were incubated overnight at 37°C and before fixation the position of the beads noted if they had not become embedded within the embryonic tissue.

Isolation of cDNA clones

Total RNA was purified according to Chomczynski and Sacchi (1987). A cDNA pool was prepared using cloned AMV reverse transcriptase (Invitrogen). Oligo(dT)_30 as a primer and 2 μg of RNA as a template. PCR was carried out using Advantage cDNA PCR Kit (BD Biosciences) using primers designed from the BBSRC Chicken EST Project (Boardman *et al.* 2002: http://www.chick.umist.ac.uk).

ChEST421a24 for RDH10: forward 5'-GGGTGCAGGATCAGAAAAGA-3' and reverse 5'-ACACAGGTGAGGACCAGGAG-3' to generate a 403bp product and ChEST109e12 for Stra6: forward 5'-CGAGCTCTCTACATCGTCACC-3' and reverse 5'TGGTGGAGGGCGTTAGGCC-3' to generate a 398bp product. PCR amplification conditions were: 95°C for 60 s; 95°C for 30 s, extension at 72°C for 60 s; 58°C for 30 s, extension at 72°C for 60 s. The PCR products were purified by agarose gel electrophoresis, cloned into pGEM-T Easy vector (Promega, USA) and sequenced.

Whole-mount in situ hybridisation and sectioning

For both *Rdh10* and *Stra6*, labelling of antisense and sense RNA probes with digoxigenin (DIG) was performed using T7 and SP6 RNA polymerases respectively, according to the protocol supplied by Roche (Germany). Chick whole-mount in situ hybridisation was carried out using standard procedures (Acloque *et al.* 2008). Briefly, prehybridisation and hybridisation were carried out at 37°C with a probe concentration of 1 μg/ml and visualised with digoxigenin antibodies conjugated to alkaline phosphatase (Roche, Germany) reacted with NBT/BCIP purple (Roche). After in situ hybridisation a proportion of embryos were sectioned. For this embryos were embedded in 3.6ml of vibratome embedding mix consisting of gelatin type A, egg albumin (Sigma) and sucrose (BDH), incubated for 2h at room temperature and then 400 μl glacial acetic acid (Sigma) was added. Sections were cut at 80 μm on a vibratome (Leica VT 1000S), placed on glass microscope slides and mounted in glycerol.

Acknowledgements

We would like to thank Dr. Lynda Erskine for generous use of equipment and reagents. SR is funded by the Wellcome Trust. MHZ was funded by a grant from the USDA and the Michigan Agricultural Experiment Station. MM is funded by start-up funds from the University of Florida and The Regeneration Project at the McKnight Brain Institute, UF.

References

Further Related Reading, published previously in the *Int. J. Dev. Biol.*

See Special Issue *Pattern Formation* edited by Michael K. Richardson and Cheng-Ming Chuong at:

Retinoid signalling is required for information transfer from mesoderm to neuroectoderm during gastrulation
Ferran Lloret-Vilaspasa, Hans J. Jansen, Koen de Roos, Rosh A.S. Chandraratna, Maija H. Zile, Claudio D. Stern and Antony J. Durston

Retinoic acid is both necessary for and inhibits myogenic commitment and differentiation in the chick limb
Susan Reijntjes, Philippa Francis-West and Baljinder S. Mankoo

Retinoic acid metabolizing factor *xCyp26c* is specifically expressed in neuroectoderm and regulates anterior neural patterning in *Xenopus laevis*
Misaki Tanibe, Tatsuo Michiue, Akira Yukita, Hiroki Danno, Masayuki Ikuzawa, Shoichi Ishiura and Makoto Asashima

The retinoic acid metabolising gene, CYP26B1, patterns the cartilaginous cranial neural crest in zebrafish
Susan Reijntjes, Adam Rodaway and Malcolm Maden

Retinoic acid is required for specification of the ventral eye field and for Rathke’s pouch in the avian embryo
Malcolm Maden, Aida Blentic, Susan Reijntjes, Sophie Seguin, Emily Gale and Anthony Graham

TBX1, a DiGeorge syndrome candidate gene, is inhibited by retinoic acid
Lifeng Zhang, Tao Zhong, Yuexiang Wang, Qiu Jiang, Houyan Song and Yonghao Gui

Exogenous retinoic acid induces a stage-specific, transient and progressive extension of Sonic hedgehog expression across the pectoral fin bud of zebrafish.
Lisa Hoffman, Jennifer Miles, Fabien Avaron, Lynda Laforest and Marie-Andrée Akimenko

Stage-dependent responses of the developing lung to retinoic acid signaling.
R Mollard, N B Ghyselinck, O Wendling, P Chambon and M Mark

Abnormalities of somite development in the absence of retinoic acid.
M Maden, A Graham, M Zile and E Gale

5 yr ISI Impact Factor (2009) = 3.253