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ABSTRACT  Three principles guide natural pattern formation in both biological and non-living

systems: (1) patterns form from interactions of numerous individual particles, or “agents,” such

as sand grains, molecules, cells or organisms; (2) assemblages of agents can adopt combinatori-

ally large numbers of different configurations; (3) observed patterns emerge through the selection

of highly functional configurations. These three principles apply to numerous natural processes,

including the origin of life and its subsequent evolution. The formalism of “functional informa-

tion,” which relates the information content of a complex system to its degree of function,

provides a quantitative approach to modeling the origin and evolution of patterning in living and

nonliving systems.
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Complex patterning is a hallmark of biological systems at every
scale, from molecules to cells to organisms to ecosystems. Life’s
triumph of order over chaos is the epitome of the more general
natural phenomenon of emergent systems, in which numerous
components or “agents” respond to their local environments, thus
interacting to produce patterns or behaviors not characteristic of
individual agents. Such patterning arises at every scale of the
physical universe, for example in the behaviors of sand dunes
(Bagnold 1988; Hansen et al. 2001), turbulent fluids (Frisch
1995), and spiral galaxies (Carlberg 1992). Complex behaviors
also emerge in a range of artificial symbolic contexts, including
artificial life programs (Adami 1995), cellular automata (Wolfram
2002), and models of market economies (Holland 1995). How-
ever, while such symbolic systems can provide insights into
mechanisms of physical pattern formation, this article will focus
exclusively on natural systems of tangible agents.

Life, with its novel patternings and collective behaviors, is the
quintessential emergent complex phenomenon. Life’s ancient
origin has been modeled as a sequence of emergent events that,
step by step, transformed the lifeless geochemical world of
oceans, atmosphere and rocks into a living planet (De Duve 1995;
Morowitz 2002; Hazen 2005). These sequential processes began
with the synthesis of key biomolecules, including amino acids,
sugars, lipids and bases, in a variety of prebiotic environments
(Miller 1953; Miller and Urey 1959; Heinen and Lauwers 1996;
Bernstein et al. 1999; Ehrenfreund and Charnley 2000; Cody et al.
2004). Then, a subset of those diverse molecules had to be
selected and concentrated, for example through a self-organizing
process (Deamer and Pashley 1989; Dworkin et al. 2001; Hazen
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and Deamer 2007) or by adsorption on mineral surfaces (Bernal
1951; Ferris 1999; Hazen 2006). Ultimately, the key step in the
ancient transition from geochemistry to biochemistry was the
emergence of the first self-replicating molecular system (Gilbert
1986; Orgel 1986; Morowitz 1992; Kauffman 1993), and the
consequent triggering of rapid evolution through competition and
natural selection (Sagan 1961; De Duve 2005).

The origin of cellular life and its rapid radiation across the globe
triggered an explosion of new collective biological forms, func-
tions and behaviors. Numerous examples of novel pattern forma-
tion in biological systems have been modeled in terms of emer-
gence, including the aggregation of social amoebas, the function-
ing of neural networks, the formation of spotted or striped skin
pigmentation, the swarming behavior of ants, and many other
phenomena (Jung et al. 1998; Allen et al. 1998; Solé and Goodwin
2000; Camazine et al. 2001; Avery 2003; Maini et al. 2006; Sick
et al. 2006; Deamer and Evans 2006; Borman 2006).

The study of emergent patterning is especially pertinent to the
field of development biology, as represented by the collected
articles of this volume. Each cell in a developing embryo responds
principally to its immediate physical and chemical environment in
space and time, for example through mechanical interactions,
chemical signaling, and the sequential expression of different
genes. Yet these local cellular interactions lead to the remarkable
collective morphological diversity of distinctive organs and tis-
sues, from hearts and eyes to bones and teeth (Lawrence 1992;
Piekny and Mains 2003; Wu et al. 2004; Nüsslein-Volhard 2006).
Furthermore, diverse cellular morphogens and signaling path-
ways provide opportunities for combinatorially vast numbers of
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alternative interactions, and a corresponding richness in evolu-
tionary potential under selective pressures.

The field of emergent complexity thus provides a powerful
framework for understanding the origin and evolution of pattern-
ing in any physical context, including the development of biologi-
cal architecture. The objective of this article is to define general
principles by which patterns form in complex systems, and to
propose a universal formalism for quantifying the information
content necessary for the emergence of such systems.

Studies of patterning in both living and nonliving natural sys-
tems point to three general principles – factors related to (1) the
interaction of agents, (2) the diversity of configurations, and (3)
the degree of function – that influence the emergence of pattern
formation. In the following sections we review these three prin-
ciples.

Agents and their interactions

Principle 1: patterns form as a consequence of the interac-
tions of numerous agents
The nature of agents

Patterns emerge when numerous individual agents interact
(e.g., Holland 1995). Thus, for example, patterning in living
systems may arise from interactions of small molecules to form
membranes, biopolymers to form muscle fibers, cells to form
multi-cellular organisms, or multi-cellular organisms to form colo-
nies. Patterns in nonliving systems, similarly, are observed to
emerge from physical, chemical, and gravitational interactions of
such diverse agents as water molecules, sand grains, automo-
biles or stars. (Note also that agents in symbolic systems, includ-
ing sequences of letters, numbers, musical notes or machine
commands, play analogous roles by interacting under sets of
mathematical or computational selection rules or protocols.) In
every case numerous agents interact to produce patterns and
behaviors not associated with the traits of individual agents: a
single sand grain cannot form a ripple, a single neuron cannot be
conscious, nor can a single ant display the complex collective
behaviors of an ant colony.

In some systems all agents are identical to each other. Thus,
patterns may emerge in interacting systems with pure water
molecules, uniform microspheres, or identical automobiles. On
the other hand, complex systems often display a variety of
interacting agents. Sand grains provide an instructive example,
because sediment grains may be relatively uniform in size, shape

cated), in part because agents can be analyzed at several scales,
including small molecules, biopolymers, cells and cell clusters. [At
the smallest scale, living systems have also been discussed in
terms of quanta (Morowitz 1982).] This hierarchical aspect of
embryogenesis may lead to confusion regarding the number of
levels of information that must be integrated when studying
development. Nevertheless, whatever set of agents is consid-
ered, the collective behavior of the system arises from the
response of each agent to its local environment.

Selection rules
Given a collection of interacting agents, what are the immedi-

ate mechanisms of pattern formation? In many systems complex
patterns are known to arise from a few simple selection rules or
protocols that are followed by each agent. Thus, for example, the
formation of sand patterning, including a rich variety of ripples and
dunes, results from the net additive effect of three kinds of forces,
each of which represents a selection rule that operates on each
grain. The vertical gravitational force on each grain and the
contact forces from adjacent grains tend to keep a grain in place,
while the horizontal force of moving wind or water tends to move
grains laterally (Bagnold 1988). Collective patterns emerge as
each individual grain responds only to these local forces.

Selection rules at several levels of organization are also
observed in biological systems (Doyle and Csete 2007). The
seemingly random yet remarkably synchronized schooling pat-
terns of fish or flocking behavior of birds provide dramatic ex-
amples of selection rules. Cohesion is achieved when each
individual in the group responds to the positive feedback of
staying close to its mates, balanced by the negative feedback of
avoiding collisions (Camazine et al. 2001; Fedder 2007; Parrish
and Hamner, 1997). Thus individual birds or fish need not monitor
the actions of the entire system, nor is it necessary for any one
individual to act as leader.

Simple rules also describe the behaviors of ant and termite
colonies. The coordinated behavior of ant swarm raids and the
complex architecture of ventilated termite mounds result from
responses of numerous individuals to a small number of local
chemical and physical stimuli (Wilson and Hölldobler 1988; Franks
et al. 1992; Franks and Deneubourg 1997; Camazine et al. 2001).
Again, there does not appear to be any one leader, architect or
blueprint.

The role of selection rules in pattern formation underscores the
importance of information transfer among individuals and their

Fig. 1. (A) Linear, (B) spot and (C) globular patterns formed in systems of two reacting

chemicals (Ouyang and Swinney 1991). Photographs courtesy of H. L. Swinney.

and composition (a situation found in the
well-sorted sand dunes and ripples at many
beaches), or they may vary significantly in
size, shape and density (as observed in
the heterogeneous sediments of deltaic
deposits downstream of rapidly eroding
mountains). Note that a greater variety of
sediment grains leads to greater opportu-
nities for patterning, for example in the
dynamic size-sorting of graded bedding
(Pettijohn 1957) or the density separation
of gold grains into rich placer ore deposits
(Park and MacDiarmid 1964).

The case of developing biological sys-
tems is especially intriguing (and compli-
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environments. Each agent obtains information from its environ-
ment through interactions. The contact forces between sand
grains, the visual proximity of two birds, the pheromone trails of
ants, or the gravitational fields between stars represent modes of
information transfer that ultimately lead to patterning. Each inter-
action is thus equivalent to the transfer of information from one
agent to another.

The role of gradients
Patterns, by definition, represent deviations from a homoge-

neous equilibrium state. In both living and non-living physical
systems, pattern formation is a dynamic, non-equilibrium phe-
nomenon of self-organization that arises from the interaction of
agents under the influence of a gradient (e.g., in density, chemical
concentration, temperature, velocity, or electrical or gravitational
potential). Gradients have been cited as critical to pattern forma-
tion because patterns arise spontaneously as energy is dissi-
pated into the environment against various constraints, such as
chemical or thermal diffusion, in accord with the second law of
thermodynamics (Nicolis and Prigogine 1989; Ouyang and Swin-
ney 1991; Petrov et al. 1997; Swinney 2000; Hoyle 2006). Indeed,
in such “dissipative systems” patterns may be analyzed as being
arrangements of agents that arise from the tendency of agents to
attain equilibrium at a local scale, while heterogeneities occur at
a much larger scale.

A system near equilibrium tends to respond to perturbations
through the rapid decay of that perturbation. Thus, small local
excursions in the temperature, velocity or chemical composition
of a near-homogeneous fluid will tend to even out and return the
system to a homogeneous (i.e., high symmetry) state. However,
if such a system is perturbed beyond a critical value, for example
by heating from below or by the continuous injection of a dye, the
perturbation may grow and produce patterns that break the
symmetry of the near-equilibrium state (Swinney 2000). Such
patterning arises as the most efficient means to re-attain equilib-
rium (i.e., to eliminate the local gradient as rapidly as possible).

Consider, for example, a shallow pan of water uniformly heated
from below (Koschmeider 1981; Nicholis and Prigogine 1989). As
long as the thermal gradient between the water’s lower and upper
surface remains below a critical value, the liquid will retain its
homogeneous state (i.e., it will adopt the symmetry of the bound-
ary conditions). However, at gradients above the critical value the
shallow water is observed to divide into numerous small convec-
tion cells, called Bénard cells, which break the symmetry of the
boundary conditions to form a pattern (Swinney 2000). These
convection cells are able to distribute thermal energy (and thus
reduce the thermal gradient) more efficiently than heat dissipation
in the homogeneous fluid.

An analogous situation may obtain in chemical systems. Below
a critical concentration gradient, perturbations can be damped by

diffusion alone. However, above that critical chemical gradient
new patterns, such those formed by the well known Belousov-
Zhabotinski or BZ reactions, arise (Vidal and Pacault 1984; Field
and Burger 1985; Nicolis and Prigogine 1989). Depending on the
gradients and reaction rates, a variety of spiral, branching and
oscillatory patterns emerge (Table 1; Figures 1-6). Strikingly
similar patterns, also the consequence of chemical signaling, may
emerge in nutrient-limited cultures of bacteria (Ben-Jacob et al.
1994; Ko et al. 1994). In like manner, compositional gradients may
promote a host of phenomena in developing multi-cellular organ-
isms, including invertebrate segmentation, vertebrate somite
formation, and patterning in skin and mollusk pigmentation (Tur-
ing 1952; Meinhardt 1995; Palmeirin et al. 1998; Solé and Goodwin
2000).

Internal versus external controls on interactions
Pattern formation requires the transfer of information from the

environment to agents. A common feature of emergent systems
is that agents obtain their information exclusively from their local
environments, as opposed to receiving instructions from a leader
or blueprint. Agents may interact directly, as in two touching sand
grains, or indirectly if one agent alters the environment in such a
way as to affect other agents (Figures 1-6). Nevertheless, agents
need not be guided by a global information system.

Numerous familiar systems of interacting agents do not con-
form exactly to this model because their behavior is dictated, at
least in part, by information from an external supervisor or master
program. In these cases individuals do not respond exclusively to
local stimuli. The interactions of musicians illustrate the con-
tinuum of such external controls.

Consider first a football marching band that employs numerous
individual musicians to spell out a school letter or logo. As in
emergent systems, the observed pattern is formed by many
individual agents, but in this case each individual acts in a
predetermined manner with an assigned place and programmed
movements. The marchers may incorporate minor adjustments in
their positions and their playing in response to the small perturba-
tions of adjacent individuals, but the overall pattern formation is
dictated by an external blueprint.

In a symphony orchestra, similarly, the conductor and musical
score together dictate the action of each player; however, each
symphony musician has a modest degree of individual leeway in
performance style. Indeed, such emergent behavior, with each
musician responding in part to immediate local influences of
fellow instrumentalists, provides the spontaneity of a live orches-
tral performance. Increasing emergent behavior arises in a jazz
ensemble, where all musicians follow the basic guidelines of a
“lead sheet,” but are free to interact with exuberant spontaneity.

The example of music illustrates three important aspects of the
interactions that lead to pattern formation that are also relevant to

Fig. 2. Patterns formed in sand on a

vibrating table. Different patterns, in-
cluding squares, lines, hexagons and
periodic dots, arise at different vibration
frequencies (Swinney 2000). Photo-
graphs courtesy of H. L. Swinney.
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biology. (1) In music, as in biology, patterns typically emerge
from interactions simultaneously at more than one level. Thus,
the music we hear results from at least two levels of organiza-
tion – from the sequential superposition of numerous individual
pitches and timbres (sound waves that form a melody, for
example), and also by the collective efforts of numerous indi-
vidual musicians. (2) Interactions are governed by selection
rules or protocols. Thus, the arrangements of musical pitches
of successful musical compositions are guided rules of har-
mony and counterpoint. And (3), there is not always a strict
dichotomy between internal and external controls on interac-
tions; both often come into play during a musical performance,
as they will in some instances of biological pattern formation.
What is clear is that many patterns in biological systems (e.g.,
Table 1) can form strictly by local interactions, in parallel to
pattern formation in non-living systems with no obvious exter-
nal control.

The diversity of configurations

Principle #2: interacting agents can adopt combinatorially
large numbers of distinct configurations

We have seen that emergent patterning arises from the
interaction of agents. A key to pattern formation is that assem-
blages of agents have the potential to adopt combinatorially
large numbers of different configurations. The diversity of
possible configurations depends on three principal factors: (1)
the number of interacting agents, (2) the number of different
kinds of agents, and (3) the nature of interactions among
agents.

Consider the example of RNA oligomers. For a standard 3’-
5’ linked RNA strand composed of a sequence of four nucle-
otides, the number of possible different sequence configura-
tions, N, depends only on the number of nucleotides, n: N = 4n.
If, however, we add x non-conventional bases (i.e., a greater
diversity of agents), then the number of sequence configura-
tions increases to N = (4 + x)n. And if we allow both 3’-5’ and 2’-
5’ linkages (i.e., a greater variety of interactions between
agents), then the number of sequence configurations further
increases to N = (4 + x)2n.

In many systems of interest the number of configurations,
though large, is finite. For example, a sequence of 100 letters
in the standard English alphabet has 26100 possible configura-
tions. Similarly, a 100-nucleotide strand of RNA has 4100 differ-
ent configurations. Though these numbers of different configu-
rations are large, these systems are of modest complexity
compared to many everyday examples. Consider, for example,
the number of different possible neural network configurations
of a human brain with 1010 neurons, each connected to hun-
dreds of other neurons.

The nature of interactions is especially important in deter-

mining the number of possible system configurations. In the
case of sand grains, all interactions involve direct physical
contact with adjacent grains (a number that will rarely exceed
7 or 8 simultaneous contacts), in combination with moving wind
or water (Bagnold 1988). In RNA or proteins, by contrast,
interactions include both primary structures (the one-dimen-
sional sequence of nucleotides or amino acids, respectively),
and the complex secondary and tertiary interactions character-
istic of folded macromolecules. In many social organisms,
including colonial insects and social amoebas, residual phero-
mone signals of varying strengths create complex networks of
chemical gradients. And in neural networks, numerous inter-
connections of variable electrical potential among neurons
create large numbers of different possible configurations.

A central challenge in understanding developmental biologi-
cal processes in terms of emergence lies in the combinatorially
vast numbers of possible configurations, which arise from the
three-dimensional and time-dependent complexity of inter- and
intracellular interactions. Not only does each cell (or cell clus-
ter) respond to a variety of local mechanical and chemical
signals, but cellular agents also have the distinctive ability to
generate new agents through mitosis (or to eliminate agents

Pattern Examples Reference 

Uniform striping or banding Sand ripples (steady flow) 
Thin-layer convection rolls 
Stationary chemical patterning 
Embryo segmentation 

Bagnold (1988) 
Solé & Goodwin (2000)   
Ouyang & Swinney (1991)
Lawrence (1992) 

Bifurcating stripes Sand ripples (oscillating flow) 
Zebra stripes 

Hansen et al. (2001) 
Murray (1981) 

Irregular hexagons Bénard cells (heated water or oil) 
Giraffe pigmentation 
Tilapia (fish) nest distributions 

Nicolis & Prigogine (1989) 
Koch & Meinhardt (1994)  
Barlow (1974) 

Squares Vertically oscillated liquid/spheres Swinney (2000) 

Quasiperiodic spots Stationary chemical patterning 
Shell pigmentation 
Hair follicle distribution 

Ouyang & Swinney (1991) 
Meinhardt (1995) 
Sick et al. (2006) 

Triangular waves Shell pigmentation Meinhardt (1995) 

Spiral defect chaos Rayleigh-Bénard convection 
Belousov-Zhabotinsky reactions 
Aggregating starving amoebas 
Predator-prey spatial distribution 

Solé & Goodwin (2000) 
Nettesheim et al. (1993)  
Höfer et al. (1995)  
Solé et al. (1992) 

Branching Lightning and Streams 
Respiratory, circulatory & neural 
Mammary glands 
Army ant swarm raid paths 

Arrayas et al. (2002) 
Metzger & Krasnow (1999  
Widelitz et al. (2007)  
Deneubourg et al. (1989) 

Circular rings Patterned arctic ground 
Leptothorax (ant) wall building 
Ringworm infections 

Kessler & Werner (2003) 
Franks et al. (1992) 
Deacon (2006) 

Quasipatterns Faraday wave experiments 
Ni-Cr quasicrystals 

Edwards & Fauve (1993) 
Shechtman et al. (1984) 

TABLE 1

COMMON REGULAR SPACIOTEMPORAL
MODES OF PATTERNING

Each of these modes of patterning can arise from gradients, for example in chemical concentra-
tion, temperature or velocity. For a mathematical treatment of the formation of these patterns see
Hoyle (2006).

Fig. 3. Sand ripple patterns, photographed in ob-

lique light, form in a shallow wave tank (from Hansen

et al. 2001). Uniform water oscillations (left image)
result in regular linear ripples, whereas variations in
wave frequency or amplitude (increasing left to right)
result in sinuosity, bifurcation and braiding of ripples.
Photographs courtesy of J. L. Hansen.
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through apoptosis). Thus, all three factors – the number of
agents, the diversity of agents, and the interactions among
agents – contribute to the extreme complexity of developing
biological systems.

Patterns and their degree of function

Principle #3: observed patterns arise through the selection
of functional configurations

All emergent complex systems arise from interactions among
numerous agents, but what factors lead to the appearance of one
configuration in preference to another? Why do some patterns
tend to form, while others do not? We suggest that patterns
typically emerge as a result of selective pressures on a variety of
configurations of varying degrees of function. In both living and
nonliving systems, therefore, observed patterns may represent
the small subset of highly functional configurations.

All complex systems have the ability to do something – to
accomplish one or more functions. The function of some emer-
gent systems is obvious: a sequence of letters communicates a
specific idea, a computer algorithm performs a specific computa-
tion, and an enzyme catalyzes at least one specific bioreaction.
Less obvious are the functions of patterned systems of many
interacting inanimate particles such as molecules, sand grains or
stars, but these systems may also be described quantitatively in
terms of function, for example in terms of their structural stability,
their ability to dissipate energy, or their ability to maximize entropy
production through patterning (e.g., Bertalanffy 1968; Nicolis and
Prigogine,1989; Swenson and Turvey 1991; Emanuel 2006).
Indeed, this type of self-organizing, entropy-driven pattern forma-
tion may play a key role in some localized developmental events
in embryos, such as the formation of branching patterns, stripes
and dots, and oscillations (e.g., Turing 1952; Lechleiter et al.
1991; Maini et al. 2006; Sick et al. 2006).

Living systems often display multiple essential functions, in-
cluding the abilities to harvest nutrients and energy, adapt to
changes in environment, avoid predation and produce viable
offspring (Allen et al. 1998; Ayala 1999; McShea 2000). Conse-
quently, quantification of the degree of function of a multi-cellular
organism is challenging. However, the function of specific devel-
oping biological structures, such as an enzyme, an organ, or a
beak, may be amenable to more rigorous functional analysis.

In the following section we review the concept of “functional
information,” which provides a measure of the information (in bits)
necessary to achieve a specified degree of function. This consid-
eration of complexity in terms of the function of a system, as
opposed to some intrinsic measure of its patterning or structural
intricacy, distinguishes our treatment from many previous efforts
(Gell-Mann 1995; Bell 1997; Kåhre 2002; Gell-Mann and Lloyd
2003; Adami 2003; Von Baeyer 2003; Shalizi 2006).

Functional information

Given the ubiquity and diversity of emergent systems and
pattern formation, it has proven desirable to quantify the charac-
teristics of emergent complex systems, and to identify factors that
might promote complexity in evolving systems. The formalism of
“functional information” provides a quantitative approach to mod-
eling the origin and evolution of biological patterning, as well as

patterned behavior in other physical and symbolic systems
(Szostak 2003; Carothers et al. 2004; Hazen et al. 2007).

We quantify the complexity of a system that can adopt numer-
ous different configurations in terms of the information (in bits)
necessary to achieve a specified degree of function. The formal-
ism applies equally to symbolic systems (letter sequences, com-
puter code), nonliving physical systems (sand configurations,
spiral galaxies), and living systems (RNA aptamers, colonial
insects). Note that all of these examples share the three critical
characteristics of emergent systems: (1) they consist of numer-
ous interacting agents, (2) the agents can combine in a combina-
torially large number of different configurations, and (3) some
configurations display functions that are not characteristic of the
individual agents.

Analysis of such emergent systems sheds light on questions
related to the close connection between information content and
function, including complex functional patterning in evolving bio-
logical systems. For example, how much information is required
to encode a biological structure, such as a tooth or beak with a
specific function? Are there multiple distinct solutions to achieving
a specific degree of function and how are such solutions distrib-
uted in configuration space? How much additional information is
required to attain a specified improvement in function? What
environmental factors might lead to new or enhanced modes of
patterning?

Szostak and coworkers (Szostak 2003; Carothers et al. 2004)
introduced functional information as a measure of complexity in
information-rich biopolymers, such as RNA aptamers (RNA struc-
tures that bind a target molecule), in contrast to prior formalisms
based on genomic, sequence, or algorithmic information (e.g.,
Adami 2003; Lenski et al. 2003). The concept was subsequently
expanded to other emergent systems, including letter sequences
and artificial life genomes (Hazen et al. 2007).

Functional information as a measure of system complexity
Emergent systems of interacting agents can be described in

terms of their potential to accomplish one or more quantifiable
functions. Consider the system of all possible 100-nucleotide

Fig. 4. Bifurcation and braiding of sand ripples on the flanks of a sand

dune. Photograph courtesy of C.-M. Chuong.
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RNA strands with four different nucleotides A, U, G and C.
Assume that a small fraction of the 4100 different possible se-
quences accomplishes a specified function x to a significant
degree (corresponding to a relatively high functional information).
A significantly greater number of configurations will be somewhat
less efficient in accomplishing function x (corresponding to a
smaller value of functional information), and the majority of
configurations will display little or no function (Lenski et al. 2003;
Carothers et al. 2004).

We define “degree of function” (Ex ) as a quantitative measure
of a configuration’s ability to perform the function x. In an enzyme,
for example, Ex might be defined as the increase in a specific
reaction rate that is achieved by the enzyme, whereas in a system
with water flowing over sand ripples, Ex might be defined as the
rate at which energy dissipates by turbulence, compared to water
flowing over a smooth, unpatterned sand surface. The scale or
units of Ex may be chosen somewhat arbitrarily and will depend
on the character of the function. For example, the catalytic
efficiency of an enzyme might be measured as percentage rate
enhancement, or it might be recorded as a decreased activation
energy (which is proportional to the log of rate enhancement).

We calculate functional information [I (Ex )] in terms of a
specified degree of function (Ex ). In most cases, a minute fraction
[F (Ex )] of all possible configurations of a system achieves a
degree of function ≥ Ex . Thus, functional information (in bits) is
defined in terms of F (Ex ):

I (Ex ) = -log2[F (Ex )]
In a system with N possible configurations (e.g., a sequence of

n RNA nucleotides with N = 4n different sequences, and assuming
equal probability for all sequences):

I (Ex ) = -log2[M (Ex )/N  ],
where M (Ex) equals the number of different RNA configurations
with degree of function ≥ Ex. Note that the fraction of configura-
tions, F (Ex), capable of achieving a specified degree of function
will generally decrease with increasing Ex (Szostak 2003).

This simple formalism leads to several important consequences.
First, the greatest possible functional information for a given
system occurs in the case of a single configuration that displays
the highest possible degree of function, Emax :

I (Emax ) = -log2[1/N ] = log2N (in bits).
This maximum functional information is thus equivalent to the

maximum number of bits necessary and sufficient to specify any
particular configuration of the system. Given such a maximally
functional configuration, the only way to increase the function
(and, by definition, the functional information) of the system is to
increase to total number of different possible configurations, N,
either (1) by increasing the number of interacting agents, (2) by
increasing the diversity of interacting agents, or (3) increasing the
diversity of interactions among agents.

On the other hand, the minimum functional information of any
system is zero. This situation obtains for configurations with the
lowest degree of function, Emin, because all possible states have
Ex ≥ Emin :

I (Emin ) = -log2(N/N ) = -log2(1) = 0 bits
Thus, functional information must increase with degree of

function, from zero for no function (or minimal function) to a
maximum value corresponding to the number of bits that are both
necessary and sufficient to specify any system configuration.

It is important to note that functional information is defined only

in the context of a specific function x. For example, the functional
information of a ribozyme will be greater than zero with respect to
the catalysis of one specific reaction, but will be zero or minimal
with respect to most other reactions. Functional information thus
depends on both the system and on the specific function under
consideration. Note also that if no configuration of a system is able
to accomplish a specific function x [i.e., M(Ex) = 0], then the
functional information corresponding to that function is undefined,
no matter how complex the patterning of that state appears to be.

Function versus information
Functional information is a statistical property of a system of

many different agent configurations (e.g., RNA nucleotides, neu-
rons, ants) with respect to a specific function. In order to quantify
the functional information of any given configuration, we need to
know the distribution of function for all possible configurations in
the system, as well as the degree of function for that specific
configuration. The distribution of function must be determined
from the statistical properties of the system as a whole, as
opposed to the intrinsic patterning of any one particular configu-
ration. Analysis of the functional information of a specific configu-
ration, therefore, requires a deep understanding of the system’s
agents, their various interactions, and the consequent diversity of
configurations.

Comprehensive functional information analysis is difficult for
most complex systems because of the combinatorial richness of
configuration space. A large number of randomly generated
configurations and their functions must be analyzed in order to
obtain a statistically meaningful sampling of configuration space.
Such analysis is currently impractical for many biological sys-
tems, but general trends have been determined for two cases. For
example, Carothers et al. (2004) analyzed GTP-binding for ran-
domly generated RNA aptamers and found that a 10-fold increase
in GTP binding strength requires approximately 10 additional bits
of information (i.e., specification of 5 additional nucleotides). They
also recognized several distinct classes of RNA aptamers, which
represent topologically different solutions to the problem of GTP

Fig. 5. “Patterned ground” with morphologies including circles, bifur-
cating lines, vermiform mounds and polygons, arises in Arctic regions,
where cyclic freezing and thawing differentially repositions sediments of
different sizes (from Kessler and Werner 2003). Photographs courtesy of
B. T. Werner.
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binding.
In a similar effort, Hazen et al. (2007) investigated randomly

generated Avida artificial life organisms, which consist of circular
“genomes” of machine instructions. A small fraction of all ge-
nomes has the ability to perform one or more simple arithmetic of
logic functions. They found a distinctive stepped relationship
between the degree of function (measured as the number of times
a given operation was performed by the Avida genome) and
functional information. This result also pointed to the likely exist-
ence of several functional “islands” in configuration space –
multiple solutions to the problem of function.

In the future we hope to employ Monte Carlo procedures and
genetic algorithms (e.g., Oganov and Glass 2006; Oganov and
Valle 2009) to study other emergent systems, for example com-
putational functions with electronic networks (Koza et al., 1997)
and crystal structure prediction (Oganov et al., 2006). A similar
approach might be applied to pattern formation in sand under the
influence of flowing water (Bagnold 1988); the objective will be to
generate numerous random, gravitationally stable sand configu-
rations and calculate the efficiency of each configuration in
dissipating energy or disrupting laminar flow. Similar techniques
might be applied to the formation of chemical or cellular patterning
under diffusive gradients.

Functional information and the emergence of biologi-
cal patterning

Evolution is a process by which functional configurations are
preferentially selected, while nonfunctional configurations are
winnowed out. Functional patterns, including biological forms,
thus arise through natural selective processes. The concept of
functional information, coupled with principles of biological evolu-
tion, may shed light on the emergence of such patterns.

The Law of Increasing Complexity
The functional information formalism leads to intuitively rea-

sonable conclusions with respect to the evolution of complex
systems. Previous authors have proposed a “law of increasing
complexity,” which states that natural selection, acting alone,
tends to increase the complexity of a system (McShea 2000;

al. 2001).
The role of cycling is also illustrated in the molecular evolution

experiments of Szostak and coworkers (Ellington and Szostak
1990; Wilson and Szostak 1999). Their RNA aptamer evolution
experiments begin with large populations (as many as 1016

random sequences), which are subjected to a selective environ-
ment – for example, a target molecule. The small fraction of the
random RNA population that selectively binds to the target can be
isolated, amplified with mutations, and passed through the selec-
tion process. Repeated cycling rapidly reduces the combinatori-
ally large number of possible configurations to a few highly
functional RNA strands.

Length selection pressure
A system with several functions that is subjected to selective

pressure for only one of those functions may display a substantial
reduction in the size of the optimal system, especially in the face
of limited resources or circumstances where rapid replication
confers an advantage. This phenomenon of “length selection
pressure” (e.g., Wang and Unrau 2005) was dramatically demon-
strated in the original molecular evolution experiments of
Spiegelman and colleagues (Mills et al. 1967), who observed an
83% reduction in Qβ viral genome length when selecting for rapid
replication only. Similar instances of genome reduction are ob-
served in many parasites and endosymbionts (Andersson and
Andersson 1999; Shigenobou et al. 2000; Nakabachi et al. 2006).

Inherent complexity of functions
The functional information formalism points to the fact that

some functions are inherently more complex than others. Some
ribozymes, for example, require sequence lengths of several
dozen nucleotides to display any significant degree of function. If,
however, a ribozyme achieves a high degree of function with, for
example, a sequence of only 15 nucleotides, then the functional
information cannot exceed Imax ≤ -log2(1/415) = 30 bits. Thus,
some problems may have inherently simple solutions. In the
context of life’s origin, this observation raises the possibility that
the sequence of some key macromolecules may be deterministic,
because all possible short sequences are likely to be present in
a local population.

Fig. 6. Branching patterns arise in numerous non-living and living systems. (A)

Sand patterning at the mouth of a small stream (photo courtesy of R. Hazen). (B)

Lightning strike on a lake (photo courtesy of Google Images). (C) Vasculature in
human mammary gland (photo courtesy of J.A. Mayer). Similar branching patterns
are observed in raiding pathways of army ants, vein patterns in leaves, and the
circulatory systems of vertebrates (Camazine et al., 2001).

Adami 2003). Our formalism supports this conjecture but
with an important caveat. Given our operational defini-
tion, any evolutionary mechanism that selects from a
population of states based on enhanced function must
lead to increased functional information with respect to
the selected function. However, at the same time other
functions that are not under selective pressure may
remain constant or decrease in their degree of function.

Note in this regard that many natural and artificial
systems are subject to cycles, such as wetting and
drying, freezing and thawing, or day and night. Such
cycles have the potential to apply repeated selective
pressure on a system and thus accelerate evolution to
states of increased degree of function and patterning
(e.g., Hansen et al. 2001; Kessler and Werner 2003; see
Fig. 5). Such cycling is thought to have played especially
important roles in life’s origins, for example in the selec-
tion, concentration and organization of life’s molecular
building blocks (Lahav et al. 1978; Orgel 1998; Hazen et

B CA
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In this regard, any system subject to selective pressures will
favor configurations exhibiting even a modest degree of function
over non-functioning configurations. Consequently, simple sys-
tems with near-equilibrium configurations that possess the ability
to perform some function are likely to serve as precursors to more
complex, highly functional states. It is this type of process, for
example, by which primitive amphiphilic vesicles that formed at
equilibrium with the ability to encapsulate prebiotic molecules
could have begun the evolution toward the complex cell mem-
branes of contemporary biology.

Evolution potential
An important consideration in analyzing complex systems is

the degree to which they can continue to evolve – what has been
called “potential complexity” or “future complexity” as a measure
of how much more complex an evolving system might become
(e.g., Gell-Mann and Lloyd 2003). Functional information has the
potential to shed light on this problem. If we are able to analyze a
statistically significant fraction of a system’s states and thus
identify the relationship between I(Ex) and Ex, then we should be
able to deduce how close we are to Emax [and I(Emax)]. We can
then estimate the utility (or futility) of further evolutionary pres-
sure, or perhaps enhance system parameters (i.e., the number of
agents, the variety of agents, or the interconnectivity of agents)
that will increase the inherent complexity of the system.

Conclusions

Studies of patterned systems, whether symbolic or physical,
nonliving or living, reveal that complex forms, functions and
behaviors emerge from the collective interactions of numerous
agents, each of which responds to its own environment. In
particular, patternings in developing biological systems arise from
spatial and time-dependent interactions among cells and cell
clusters. The functional information formalism not only provides a
method for estimating the information required to achieve a
particular degree of function, but it also points to factors that may
govern the evolution to modified states.
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