Molecular cloning of chicken Cecr2 and its expression during chicken embryo development

JINGCHEN CHEN1,2,4, GABRIELA MOROSAN-PUOPOLO1,3, FANGPING DAI1, JIANLIN WANG2 and BEATE BRAND-SABERI*1,4

1Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Germany, 2School of Life Sciences, Lanzhou University, P. R. China, 3Institute of Biology I, University of Freiburg and 4Institute of Anatomy, Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Germany

ABSTRACT Cecr2 is a transcription factor involved in neurulation and chromatin remodeling. In the present study, the full length of the coding sequence of the chicken orthologue Cecr2 was obtained by RT-PCR. Sequence analysis and alignment showed that it contained an AT hook, as well as a bromodomain which was highly conserved among different species, consistent with its role in chromatin remodeling. The expression pattern of chicken Cecr2 was subsequently investigated during the development of the chicken embryo by in situ hybridization. In addition to its predominant expression in neural tissues during neurulation, Cecr2 was also found to be expressed in the developing somites and in the intermediate zone of the spinal cord, suggesting that it may play a role in somite and neuronal development.

KEY WORDS: Cecr2, myotome, spinal cord, neurulation, chicken embryo

Introduction

Cecr2 was first identified in the region q11.2 of human chromosome 22 (Footz et al., 2001). The full length of the coding region is 4392bp, containing an AT hook and a bromodomain that are present in many chromatin remodeling proteins. The protein product CECR2, together with SNF2L, is involved in chromatin remodeling in vitro (Banting et al., 2005). In the mouse, Cecr2 transcripts are mainly expressed in neural tissues such as neural folds, recently closed neural tube and limb mesenchyme. Mutation of Cecr2 leads to a high rate of exencephaly and prenatal death (Banting et al., 2005), indicating that Cecr2 is involved in neurulation.

In the chicken, three ESTs of Cecr2 are reported in BBSRC ChickEST Database (http://www.chick.manchester.ac.uk/). In our study, we cloned the full length of the coding sequence of chicken Cecr2 and investigated its expression pattern during the development of the chicken embryo. In addition to the expression pattern which resembles that of the neurulation stage in the mouse embryo, the signal present in the somite and the spinal cord argued for potential functions of Cecr2 during embryo development, in addition to its roles reported.

Results

Molecular cloning and sequence analysis

The coding sequence of chicken Cecr2 has a length of 4422bp (Accession No: EU850803), encoding a putative protein of 1473 amino acids (Fig. 1). Motif discovery with Pfam revealed that the protein contains a bromodomain and an AT hook (Fig. 1). Sequence alignments showed these two motifs are highly conserved among human, mouse, chicken and zebrafish Cecr2 (Fig. 1).

Expression of Cecr2 during chicken embryo development

Neural tissues

Cecr2 transcripts were present in the neural folds and newly formed neural tube from HH stage 8 onwards (Fig. 2 A,B,D,E). As the neural tube matured and partitioned rostrocaudally, the expression of Cecr2 was gradually restricted to the dorsal region of the neural tube and brain vesicles (Fig. 2 C,F,G,H). After HH stage 19, the signal extended towards the ventral side of the intermediate zone of the spinal cord, suggesting that it may play a role in somite and neuronal development.

Abbreviations used in this paper: Cecr2, cat eye syndrome chromosome region, candidate 2; DML, dorsal medial lip; DRG, dorsal root ganglia; VLL, ventral lateral lip.
Fig. 1. Cecr2 sequence analysis and alignments. The approximate positions of AT hook and bromodomain in the protein are marked on the scaled line representing the full length of cCecr2. In sequence alignment, green box outlines the AT hook. Red line delimits the bromodomain.

Fig. 2. Cecr2 expression in neural tissues and somites. (A,B,D,E) Expression is present in neural folds (black arrows) and newly formed neural tube (black arrowheads) from HH stage 8 to 11. (C,F,G,H) The signal is restricted to the dorsal region of the neural tube and brain vesicles from HH stage 13 to 16 (black arrowheads). (H-N) The expression in the intermediate layer of the spinal cord and DRG was maintained there (Fig. 2I,J,K). After HH stage 26, the expression in the intermediate layer declined (Fig. 2L,M) until completely vanishing at HH stage 31 (Fig. 2N). Notably, Cecr2 was expressed in the dorsal root ganglia (DRG) from HH stage 22 to 29 as well (Fig. 2J,K,L,M).

Somites and limb buds

At HH stage 16, the expression of Cecr2 was observed in the mesenchyme of the lateral plate-derived mesoderm at limb level (Fig. 3A,B). The expression domain in the mesenchyme increased as the limb bud grew (Fig. 3D). From HH stage 18, Cecr2 appeared at the cranial and caudal border of rostral somites (Fig. 3C,D). At around HH stage 22 or 23, the dorsal medial and ventral lateral regions of the somites were positive for Cecr2 expression (Fig. 3E,F). Sections revealed that the expression was located in the sub-lips of the dorsal medial lip (DML) and ventral lateral lip (VLL) (Fig. 3J,K). During these stages, the signal in limb buds was gradually restricted to the distal mesenchyme (Fig. 3E,F). It completely vanished in the mesenchyme, but was present in the dorsal and ventral myogenic zones after HH stage 27 (Fig. 3K), while in the somite, it was further
Cecr2 expression during chicken embryo development

restricted to the mesenchyme originating from the dermomyotome and DML (Fig. 2 L,M). At HH stage 31, the transcripts were observed in feather buds (Fig. 2N, Fig. 3 I), dermis (Fig. 2N) and perichondrium of the developing digits (Fig. 3 J,L) as well.

Other tissues
Cecr2 expression was also observed in the mesonephric duct (Fig. 2 I,J,K) and pharyngeal arches (Fig. 3 D,E,F).

Comparisons of expression pattern between Cecr2 and Frek in somites
From HH stage 19 to HH stage 21, both Cecr2 (Fig. 4 A,B) and Frek (Fig. 4 E,F) appeared at the rostral and caudal borders of somites. Sections revealed that Cecr2 occupied the dorsal region of the myotome (Fig. 4 a,b), while Frek was expressed in the ventral region of the myotome (Fig. 4 e,f). From HH stage 23 to HH stage 25, Cecr2 expression was restricted to the dorsal medial and ventral lateral regions of somites (Fig. 4 C,D). Sections revealed that the expression was located in the sub-lips of DML and VLL (Fig. 4 c,d). In contrast, Frek extended through the whole somite (Fig. 4 G,H). Sections showed that it was expressed in the whole myotome (Fig. 4 g,h).

Discussion
Roles of conserved domains in Cecr2
The bromodomain can interact specifically with acetylated lysine (Haynes et al., 1992), and may be involved in protein-protein interactions as well as the assembly or activity of multi-component complexes involved in transcriptional activation (Tamkun, 1995). It is 110 amino acid long and found in many chromatin-associated proteins. The so-called AT hook is a DNA binding motif with a preference for A/T rich regions. It is suggested that proteins with AT hook could function in nucleosome phasing (Reeves and Nissen, 1990). Both of the two motifs are characteristic of many chromatin remodeling proteins (Flaus and Owen-Hughes, 2001). In vitro study reveals that Cecr2 is indeed involved in chromatin remodeling (Banting et al., 2005). The high conservancy of these two motifs among different species suggests that Cecr2 may function in the same conserved chromatin-remodeling way among different organisms.

Possible roles of Cecr2 during embryo development
Myotome development
Myotome development is a multi-step process that comprises four waves of cell recruitment. The first wave arises from the dorsomedial wall of the epithelial somite where cells spread underneath the dermomyotome as a scaffold for the second
wave of postmitotic cells which arise from all four edges of the dermomyotome (Gros et al., 2004; Kahane et al., 1998a; Kahane et al., 1998b). The third wave cells enter from the rostral and caudal lips of the dermomyotome. They are mitotically active, and express Frek (Kahane et al., 2001). Finally, cells delaminate from the center of the dermomyotome to enter the myotome, making up the fourth wave of mitotically active, Frek-expressing muscle precursors (Gros et al., 2005).

Of the four waves that contribute to myotome formation, two populations of cells have origins from rostral and caudal lips of the dermomyotome. One population belongs to the third wave of which cells are Frek positive (Kahane et al., 2001). The other one belongs to the second wave of which cells arise from four borders of the dermomyotome (Gros et al., 2004; Kahane et al., 1998a). In our observation, though Cecr2 is expressed in the rostral and caudal borders of the somites, it has a distinctly different expression pattern from Frek. In brief, Cecr2 expression is restricted to the four borders of the dermomyotome, while Frek extends through the whole myotome from the rostral and caudal lips. The disparity distinguishes the Cecr2 expressing cells from the Frek-positive cells, thus ruling out the possibility of Cecr2 expressed in cells of the third wave. Additionally, Cecr2 expression is concomitant with the initial phase of cell dynamics of the second wave. Accordingly, we suggest that Cecr2 is expressed in subpopulation of the second-wave cells during myotome development, probably the ones arising from the four edges which correlate with Cecr2 expression.

Neural development

A study in the mouse shows that Cecr2 is expressed in the neural folds and the recently closed neural tube and that mutation of mouse Cecr2 leads to exencephaly. These results indicate that Cecr2 is involved in neurulation (Banting et al., 2005). In support, there is a similar expression pattern during neurulation in the chick embryo. After neurulation, the Cecr2 expression domain is gradually restricted to the dorsal neural tube. During this period, the ventral signal Sonic hedgehog (SHH) and the dorsal signal of Tgf-β proteins are shaping the dorsal-ventral polarity of the neural tube (Wilson and Maden, 2005). The recession of Cecr2 expression may be related to such signaling networks. Continuous expression of Cecr2 is also observed in the intermediate layer of the spinal cord and DRG, which consist of postmitotic neuronal cells imminent to further differentiate (Lee et al., 1995; Roztocil et al., 1997). Persistent expression of Cecr2 in these two regions suggests that Cecr2 may function during neuronal development.

Fig. 4. Expression of Cecr2 and Frek in somites. (A,B) Cecr2 is expressed in the rostral and caudal borders of somites (black arrows) at HH stage 19 and HH stage 21. (a,b) Cross sections from (A,B) show Cecr2 expression in the dorsal region of the cranial and caudal borders of the somite at interlimb level (black arrows). (C,D) The expression of Cecr2 is moderately positive in the dorsal medial region (black arrows) and ventral lateral region (white arrows) of somites at HH stage 23 and HH stage 25. Sections reveal that the expression is located in the sub-lips (black and white arrows in c,d) of DML and VLL. (E,F) Expression of Frek in the rostral and caudal borders (black arrows) of somites at HH stage 19 and HH stage 21. (e,f) Cross sections from E, F show Frek expression in the ventral region of the cranial and caudal borders of the somite at interlimb level. (G,H) The expression of Frek extends through somites. (g,h) Cross sections from G, H indicate that Frek transcripts are positive through the whole myotome (black arrows).
Limb development

Cecr2 transcripts persist in the mesenchyme of the limb bud from HH stage 16 to 21, but gradually diminish along the proximal-distal (P-D) axis afterwards. Fgf10 has the same expression pattern in the limb bud. It interacts with Fgf8 from the apical ectodermal ridge (AER) to maintain the outgrowth of the limb bud (Ohuchi et al., 1997). Possibly, Cecr2 may correlate with Fgf10 or its signaling cascade during early limb development. Besides, presence of Cecr2 in the perichondrium of developing digits implies its participation in the chondrogenic processes as well.

Materials and Methods

RT-PCR and sequence analysis
Total chicken mRNA was extracted with Trizol reagent (Invitrogen). Seven pairs of primers were used for RT-PCR (Table 1). The amplified fragments were purified from 1% agarose gel. cDNA fragments of interest were cloned into the pDrive vector (Qiagen) and then sequenced. Sequences were sectioned at a thickness of 40–60 μm using a Leica vibratome. Sections were photographed with Leica DFC320 digital camera mounted in situ and Hamilton (1951), sacrificed and fixed in 4% PFA/PBT. Whole mount hybridization and sectioning

Probe preparation
A 967 bp cDNA fragment of chicken Cecr2 was obtained by RT-PCR. The preparation was ligated into the pDrive vector (Qiagen) and then sequenced. Sequencing analysis was performed with Pfam (Finn et al., 2006). Sequence alignments were made with clustalw2 provided in EBI (http://www.ebi.ac.uk/Tools/clustalw2/).

In situ hybridization and sectioning
Fertilized chicken eggs obtained from a local breeder were incubated at 38°C, 80% humidity. Embryos were staged according to Hamburger and Hamilton (1951). Fertilization, and fixed in 4% PFA/PBT. Whole mount in situ hybridization was performed as described (Nieto, 1996). Embryos were sectioned at a thickness of 40–60μm using a Leica vibratome. Sections were photographed with Leica DFC320 digital camera mounted to the microscope Axioscope 20 from Zeiss.

Acknowledgements

The authors appreciate Ulrike Pein and Susanna Glaser for their technical assistance and would like to thank Wanghong Zhao, Rizwan Rehimi, Nargis Khalda and Bea Redinger for their advice. The study was funded by the Chinese Scholarship Council (CSC L 07024) and Grako 1104.

References

Further Related Reading, published previously in the *Int. J. Dev. Biol.*

Expression of Shisa2, a modulator of both Wnt and Fgf signaling, in the chick embryo
Thomas A. Hedge and Ivor Mason
Int. J. Dev. Biol. (2008) 52: 81-85

Mouse-chick neural chimeras
Josiane Fontaine-Pérus and Yvonnick Chéraud
Int. J. Dev. Biol. (2005) 49: 349-353

Ventral vs. dorsal chick dermal progenitor specification
Ingrid Fliniaux, Jean P Viallet and Danielle Dhouflay

Molecular mechanisms controlling dorsal dermis generation from the somitic dermomyotome
Isabel Olivera-Martinez, Jacques Thélu and Danielle Dhouflay

Notch activity is required to maintain floorplate identity and to control neurogenesis in the chick hindbrain and spinal cord
Isabelle le Roux, Julian Lewis and David Ish-Horowicz
Int. J. Dev. Biol. (2003) 47: 263-272

Melanoma Cell Adhesion Molecule (MCAM) expression in the myogenic lineage during early chick embryonic development
Cristina Pujades, Borhane Guez-Guez and Dominique Dunon
Int. J. Dev. Biol. (2002) 46: 263-266

Orienting axon growth: spinal nerve segmentation and surround-repulsion
D Tannahill, J M Britto, M M Vermeren, K Ohta, G M Cook and R J Keynes
Int. J. Dev. Biol. (2000) 44: 119-127