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ABSTRACT  The otic primordium belongs to a group of related structures, the sensory placodes

that contribute to the paired sense organs - ear, eye and olfactory epithelium - and to the distal

parts of the cranial sensory ganglia. Recent evidence suggests that despite their diversity, all

placodes share a common developmental origin and a common molecular mechanism which

initiates their formation. At the base of placode induction lies the specification of a unique

"placode field", termed the preplacodal region and acquisition of this "preplacodal state" is

required for ectodermal cells to undergo otic development. Here I review the molecular mecha-

nisms that sequentially subdivide the ectoderm to give rise to the placode territory.
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Introduction

The adult vertebrate inner ear is sophisticated both in structure
and function. Responsible for the perception of sound, balance
and acceleration it comprises the semicircular canals, cochlea
and endolymphatic duct and a large variety of different cell types
including hair and supporting cells within the sensory patches. It
is therefore remarkable that during development it arises from a
simple epithelium, the otic placode, which is first visible around
the 10 somite stage next to rhombomeres 5 and 6 of the hindbrain
(Bancroft and Bellairs, 1977; Verwoerd, et al., 1981; Haddon and
Lewis, 1996; Schlosser and Northcutt, 2000). Subsequently, the
placode invaginates and separates from the surface ectoderm to
form the otic vesicle, which then undergoes complex morphoge-
netic events to generate the mature inner ear. However, already
long before the otic placode is morphologically distinct, patterning
events in the ectoderm are well under way to restrict its formation
to the ectoderm next to the future hindbrain and to determine the
position of future otic cells in relation to precursors for other
sensory placodes (for review: Streit, 2004; Bailey and Streit,
2006; Schlosser, 2006). In particular, classical and recent evi-
dence has highlighted the importance of a unique territory in the
head ectoderm that contains precursors for all cranial placodes,
including the otic primordium and has therefore been named the
preplacodal region (PPR; Jacobson, 1963; for review: Streit,
2004; Bailey and Streit, 2006; Schlosser, 2006). The acquisition
of a ‘preplacodal state’ appears to be a prerequisite for ectoder-
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mal cells to become specified as otic precursors (Martin and
Groves, 2006).

The preplacodal region – a common ground state for all
sensory placodes

Cranial placodes form an apparently disparate group of struc-
tures that contribute to the eye, ear, olfactory epithelium and
lateral line (fish, amphibians) and to the distal portions of the
cranial sensory ganglia (Fig. 1A). Their derivatives in the adult
vary largely in structure, function and in the cell types they
produce ranging from simple lens fibre cells to sensory receptor
cells like hair cells in the ear or olfactory receptor cells in the nasal
epithelium. Their development and derivatives have recently
been reviewed extensively elsewhere (Baker and Bronner-Fraser,
2001; Streit, 2004; Schlosser, 2006). Despite their apparent
differences they share similarities during early development: all
placodes form columnar epithelia next to the neural tube, contain
cells that undergo epithelial-mesenchymal transition, contribute
to the cranial sensory nervous system and are neurogenic with
the exception of the lens. In addition, recent evidence suggests
that they initially share a common developmental programme
before they diversify and acquire unique identity (see below for
discussion; Bailey, et al., 2006) and that cells must go through a
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‘preplacodal state’ before they can respond to placode inducing
signals (Martin and Groves, 2006). A continuous placode terri-
tory, where all placode precursors reside, can first be identified at
neurula stages and is defined by the expression of unique set of
molecular markers as well as by common properties of all cells
contained in it (Jacobson, 1963; Kozlowski, et al., 1997; Streit,
2002; Bhattacharyya, et al., 2004; Schlosser and Ahrens, 2004;
Bailey, et al., 2006; for review: Streit, 2004; Bailey and Streit,
2006; Schlosser, 2006). Here, I review how sequential subdivi-
sion of the ectoderm leads to the establishment of the preplacodal
region, its functional relevance to placode development and to
otic induction in particular and how it becomes subdivided to
generate precursors for different placodes.

Subdivision of the ectoderm: changes in gene expres-
sion and the segregation of cell fates

Like neural, neural crest and epidermal precursors, placodal
cells are ectodermal derivatives. How and when do cells of
different fates segregate? Fate map analysis in zebrafish, Xeno-
pus, mouse and chick show that around the time of gastrulation
the ectoderm is roughly subdivided into neural and non-neural
ectoderm, although a large intermediate region exists in which
both fates overlap (Keller, 1975; Keller, 1976; Tam, 1989; Kimmel,
et al., 1990; Garcia-Martinez, et al., 1993; Hatada and Stern,
1994; Lawson, 1999; Fernandez-Garre, et al., 2002). This broad
separation of cells with different fates is reflected by gene expres-
sion (Fig. 2A). Pre-neural markers such as ERNI (chick; Streit, et
al., 2000), Sox3 (Penzel, et al., 1997; Rex, et al., 1997; Kudoh, et
al., 2004), Geminin (Xenopus; Kroll, et al., 1998) and SoxD
(Xenopus; Mizuseki, et al., 1998) are concentrated in the future
neural domain and gradually decrease towards the non-neural
ectoderm, while genes like Gata2, Gata3, Dlx-3, -5, FoxiI  or
Foxi3, BMP4 and Msx1 show the opposite expression pattern
(Papalopulu and Kintner, 1993; Akimenko, et al., 1994; Streit, et

al., 1998; Pera, et al., 1999; Sheng and Stern, 1999; Streit and
Stern, 1999; Luo, et al., 2001; Streit, 2002; Liu, et al., 2003;
Solomon, et al., 2003; Ohyama and Groves, 2004; Matsuo-
Takasaki, et al., 2005). At this stage, precursors for different
placodes, including the otic, are still widely dispersed and inter-
mingled with future neural, epidermal and neural crest cells in the
chick (Garcia-Martinez, et al., 1993; Hatada and Stern, 1994;
Streit unpublished), although a more restricted distribution has
been reported in zebrafish (Kozlowski, et al., 1997).

With the formation of the definitive neural plate (Fig. 2B), neural
specific genes like Sox2 become up-regulated (Rex, et al., 1997;
Kishi, et al., 2000), while pre-neural markers either become
confined to a broad band of ectoderm surrounding the neural plate
(ERNI) or remain expressed in both domains (Sox3, Geminin).
Likewise, some non-neural markers become upregulated in (e.g.
Dlx and Gata) or confined to (e.g. FoxiI ) the ectoderm next to the
neural plate. Thus, at early neurula stages a contiguous stripe of
ectoderm coexpresses pre-neural and non-neural ectoderm mark-
ers and has therefore been termed the ‘border’ (Streit and Stern,
1999; McLarren, et al., 2003; Woda, et al., 2003; Meulemans and
Bronner-Fraser, 2004). Within the border region precursors for
neural, neural crest, epidermis and placodes remain interspersed
(Kozlowski, et al., 1997; Streit, 2002; Bhattacharyya, et al., 2004).

Shortly thereafter, members of the Six and Eya families of
nuclear factors begin to be expressed in a horseshoe-shaped
domain surrounding the rostral neural plate from fore- to hindbrain
levels (Fig. 2C) (Mishima and Tomarev, 1998; Esteve and
Bovolenta, 1999; Sahly, et al., 1999; Kobayashi, et al., 2000;
Pandur and Moody, 2000; McLarren, et al., 2003; Bessarab, et al.,
2004; Schlosser and Ahrens, 2004; Litsiou, et al., 2005). Simul-
taneously, precursors for all placodes become concentrated in
the Six/Eya+ territory to form a contiguous, unique domain: the
preplacodal region (Streit, 2002; Bhattacharyya, et al., 2004) (Fig.
1B). Unlike other factors that have a more widespread expression
in the ectoderm (Dlx3/5 and Gata3 ), Six1, Six4, Eya1 and/or Eya2
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Fig. 1. Position of sensory placodes at the 10-somite and fate maps at late gastrula and neural plate stages. (A) Schematic representation of
the sensory placodes and their derivatives at the 10 somite stage in the chick embryo (after D’Amico-Martel and Noden, 1983; Bhattacharyya, et al.,
2004). (B) Fate map of a 1-somite stage chick embryo (after Streit, 2002; Bhattacharyya, et al., 2004). Grey, neural plate. (C) Fate map of a zebrafish
embryo at 50% epiboly (modified from Kozlowski, et al., 1997); grey, neural plate, (Woo and Fraser, 1995). (D)Fate map of salamander embryo
(Ambystoma) at neural plate stages (modified from Carpenter, 1937). Light grey, neural plate; dark grey, neural folds.
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are exclusively expressed in the preplacodal region.
Around the same time, neural crest specific genes such as

Snail2, FoxD3 or Sox10 begin to be expressed in a thin line along
most of the neural plate (except its most rostral part, where no
neural crest cells are generated; Couly and Le Douarin, 1985;
Couly and Le Douarin, 1987). Although some overlap between
neural crest and placode precursors is still observed at this stage
in chick, both fates are completely segregated by the 4-5 somite
stage, when the neural plate has begun to fold and neural folds are
morphologically obvious (Fig. 2D) (Streit, 2002; Bhattacharyya, et
al., 2004). Thus, by late neurula stages, the preplacodal region is
molecularly and cellularly distinct from other ectodermal deriva-
tives.

Transcription factors that position the neural plate
border

As outlined above, a number of transcription factors are co-
expressed at the border of neural and non-neural ectoderm
before the onset of definitive neural crest and placode markers
and are therefore likely to function upstream of preplacodal
genes. Indeed, some of these have been implicated in controlling
the position of the border and appear to be required for the
specification of border derivatives. Msx1 is a direct mediator of
BMP signalling and as such functions in promoting epidermal and
repressing neural character during early stages of Xenopus
development, thereby positioning the border between both tis-
sues (Suzuki, et al., 1997; Feledy, et al., 1999; Phillips, et al.,
2006). However, at late gastrula/early neurula stages Msx1 is
more specifically involved in neural crest cell formation; it is both
required for and sufficient to induce neural crest cells at the border
of the neural plate (Tribulo, et al., 2003; Monsoro-Burq, et al.,
2005; Khadka, et al., 2006; Phillips, et al., 2006). Like Msx1,
members of the Dlx family also counteract neural plate formation,
but in addition both seem to play antagonistic roles during the
specification of neural crest and placode precursors. Misexpression
of Dlx5, Dlx3 or constitutively active Dlx3 represses neural and
neural crest cells, while promoting the expression of preplacodal
Six1 and -4 (Luo, et al., 2001; McLarren, et al., 2003; Woda, et al.,
2003). In contrast, overexpression of dominant negative Dlx3
shifts the neural plate border laterally or results in a complete loss
of preplacodal gene expression (Woda, et al., 2003), while in
zebrafish, knockdown or deletion of dlx3b and –4b (b380 mutants)
leads to a severe reduction of olfactory, trigeminal and otic pla-
codes (Solomon and Fritz, 2002; Kaji and Artinger, 2004). How-
ever, when MsxB, C and E function is blocked in b380 mutants,
placode development is restored indicating that in the absence of
Dlx function Msx proteins repress placode formation (Phillips, et
al., 2006). Thus, Dlx protein function is required for normal placode
formation, but its activity in the border region opposes Msx1
function. Since their expression partially overlaps fine tuning of
their function maybe achieved through direct protein-protein inter-
action: Dlx and Msx proteins can form heterodimers that block their
function as transcriptional activator or repressor (Zhang, et al.,
1997). Thus, on cellular level relative expression levels of Dlx and
Msx proteins may determine cell fate choices.

The winged helix transcription factor FoxiI has mainly been
studied in relation to its function in early otic development.
However, recent evidence indicates that it may have an even

earlier function in positioning the border between neural and non-
neural ectoderm. In Xenopus and fish, FoxiI  is initially expressed
widely, but then becomes rapidly confined to a stripe of ectoderm
surrounding the neural plate (Solomon, et al., 2003; Matsuo-
Takasaki, et al., 2005; Hans, et al., 2007). A similar expression is
observed in mouse for Foxi3 (Ohyama and Groves, 2004). In fish,
its requirement for otic and epibranchial placode specification has
been demonstrated in FoxiI mutants (foo/foo, hearsay and no
soul; Lee, et al., 2003; Nissen, et al., 2003; Solomon, et al., 2003),
while other sensory placodes have not been investigated in detail.
Two recent studies suggest that both FoxiI and Dlx3b are required
in ectodermal cells to respond to the otic inducing factor FGF8
(Hans, et al., 2004; Hans, et al., 2007): misexpression of FGF8

Fig. 2. Changes in gene expression from gastrula to early somite

stages. Diagrams show a cross section through chick embryos at
gastrula (A), head process (B), 1-2-somite (C) and 4-5-somite (D) stages.
(A) At gastrula stages, the epiblast is roughly subdivided into neural and
non-neural territories. (B)The neural plate can be identified morphologi-
cally expressing definitive neural markers (Sox2), while preneural mark-
ers (ERNI) become confined to the border, where non-neural markers
become upregulated (Dlx5, Gata3, BMP4, Msx1, FoxiI). (C) Preplacodal
markers begin to be expressed (Six1, Six4, Eya2); there is some overlap
between BMP4, Msx1 and Pax7, which are later confined to the neural
folds where neural crest cells arise. (D) Neural folds are morphologically
distinct and express neural crest cells markers (Slug, Pax7). There is no
overlap between neural crest and preplacodal genes. NP, neural plate; B,
border; NNE, non-neural ectoderm; NC, neural crest; PPR, preplacodal
region; EPI, future epidermis.
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leads to an enlarged otic vesicle only within the normal ear field,
where both genes are co-expressed. In contrast, loss of both
genes completely abolishes the formation of otic structures
(Solomon, et al., 2004; Hans, et al., 2007). Experiments in
Xenopus demonstrate an even earlier role for FoxiI; loss of FoxiIa
function leads to an expansion of the neural plate at gastrula
stages, while its overexpression suppresses neural development
while simultaneously promoting epidermal character (Matsuo-
Takasaki, et al., 2005). It should be noted that so far an early role
for Foxi class genes has not been demonstrated in mouse; this
may be due the difference in Foxi gene expression in different
species. Together, these findings identify FoxiI as one of the early
players in ectodermal patterning involved in setting the border
between neural and non-neural ectoderm and as a prerequisite
for otic and epibranchial development. Future experiments will
need to address its potential role in the formation of other
placodes and its epistatic relation to genes specific for the placode
territory.

Thus, members of the Dlx, Msx and Foxi family are expressed
early and in a broad domain and regulate neural crest and placode
specific genes. They are therefore at the top of a hierarchy
controlling the specification of cells that arise from the border
region and are likely to be intracellular mediators of the signalling
pathways that pattern the ectoderm and position the placode
territory next to the cranial neural plate.

The Six/Eya/Dach network in placode development

Among the many transcription factors expressed in the
preplacodal region, only members of the Six and Eya families
match precisely the location of all placode precursors and are
subsequently maintained in all placodes, but lost from non-
placodal ectoderm. They have been implicated in multiple pro-
cesses during placode formation and are therefore likely candi-
dates to be involved in defining the placode territory at early
developmental stages.

Six and Eya genes in sensory organ formation
Their importance in sensory organ development was initially

reported in Drosophila, where their homologues sine oculis (so)
and eyes absent (eya) form a non-linear, regulatory network that
together with dachshund (dac) control eye development and
photoreceptor cell specification (for review: Kumar and Moses,
2001; Donner and Maas, 2004; Pappu and Mardon, 2004; Rebay,
et al., 2005). Loss of any of these genes results in defects or
absence of the eye (Bonini, et al., 1993; Cheyette, et al., 1994;
Mardon, et al., 1994; Quiring, et al., 1994; Serikaku and O’Tousa,
1994), while their overexpression leads to ectopic eye formation
in restricted positions of other imaginal discs (Halder, et al., 1995;
Bonini, et al., 1997; Chen, et al., 1997; Pignoni, et al., 1997; Shen
and Mardon, 1997; Weasner, et al., 2007). So, eya and dac
regulate each others’ expression and function downstream of the
Pax6 homologue eyeless (ey): their expression and eye-inducing
ability depends on the presence of functional Ey (Halder, et al.,
1998; Niimi, et al., 1999; Bui, et al., 2000; Punzo, et al., 2002;
Pappu, et al., 2005; for review: Kumar and Moses, 2001; Pappu
and Mardon, 2004).

In vertebrates, six Six genes have been identified (Six1-6),
while there are only four Eya genes (Eya1-4) (for review: Kawakami,

et al., 2000; Wawersik and Maas, 2000; Hanson, 2001; Rebay, et
al., 2005). Of those Six1, Six4, Eya1 and Eya2 are found in the
pre-placodal region, while combinations of different family mem-
bers are coexpressed in mature placodes (Mishima and Tomarev,
1998; Esteve and Bovolenta, 1999; Sahly, et al., 1999; Kobayashi,
et al., 2000; Pandur and Moody, 2000; McLarren, et al., 2003;
Bessarab, et al., 2004; Schlosser and Ahrens, 2004; Litsiou, et al.,
2005). Of the Eya gene family, only Eya3 is never found in any
placode. As in the fly, they are often colocalised with members of
the Pax gene family (e.g. Pax6: lens, olfactory; Pax2: otic and
epibranchial; Pax3: trigeminal) although their regulatory relation-
ship appears to be more complicated. For example, in the mouse
olfactory ectoderm initial expression of Six3, Eya1 and Dach1
proteins is Pax6 independent, while their maintenance in the
placode requires Pax6 (Purcell, et al., 2005). Likewise, in the
presumptive lens ectoderm, Pax6 is controlled by Six3 but once
the placode is formed Six3 expression depends on Pax6 activity
(Purcell, et al., 2005; Liu, et al., 2006). In the ear Pax2, Eya1 and
Six1 are expressed in partially overlapping domains; Eya1 and
Six1 expression is independent of Pax2, while Six1 depends on
Eya1 function (Zheng, et al., 2003; Burton, et al., 2004). In the
preplacodal region Six and Eya transcripts are present prior to the
onset of Pax gene and are therefore likely to act independently.

The importance of Six and Eya genes for normal placode
development has been demonstrated through loss-of-function in
mouse, zebrafish and humans. Eya1 and Six1 have been studied
extensively and play a role in the formation of most placode
derivatives (see below), reflecting their widespread expression in
the preplacodal region. Likewise, mutations in Eya4 and Six5 are
associated with defects in placode derivatives (Klesert, et al.,
2000; Wayne, et al., 2001; Zhang, et al., 2004), while information
about Six2 and Eya2 is very sparse. Mice lacking Eya2 function
have been generated, however, their placodal phenotype has not
been described in detail (Grifone, et al., 2007). So far, no placode
phenotype has been described for Six4 mutant mice (Ozaki, et al.,
2001; Grifone, et al., 2005); one possible explanation may be
functional redundancy between genes of the same family that are
normally co-expressed. In support of this, Six1 and -4 double
knock-out mice show a more severe muscle, kidney and trigemi-
nal ganglion phenotype than Six1 mutants alone (Grifone, et al.,
2005; Konishi, et al., 2006; Kobayashi, et al., 2007). However, it
is not know whether this is also the case for other placodes.

Mice heterozygous for Eya1 display a phenotype very similar
to an inherited form of deafness in humans, the Branchio-Oto-
Renal (BOR) syndrome, a form of conductive hearing loss due to
defects in middle ear development (Abdelhak, et al., 1997; Xu, et
al., 1999). Mice completely lacking Eya1 function have severe
inner ear defects (Johnson, et al., 1999; Xu, et al., 1999; Li, et al.,
2003; Zou, et al., 2004; Friedman, et al., 2005; Zou, et al., 2006):
otic development arrests at vesicle stages, sensory patches
remain small and while cochlear-vestibular neurons initially form,
they later undergo apoptosis. In addition, the trigeminal ganglion
is reduced in size, epibranchial placode derived petrosal, genicu-
late and nodose ganglia are missing or greatly reduced and fail to
express neuronal determination genes. Zebrafish dogeared mu-
tants (Eya1) also show ear defects and the development of the
lateral line placodes is impaired, however cranial ganglia are
generally unaffected (Kozlowski, et al., 2005; Whitfield, 2005).
Eya1 mutations in humans are also associated with congenital
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eye defects (Azuma, et al., 2000), although these have not been
described in mice. Finally, mutations in the eya-homologous
region of Eya4 lead to late-onset deafness in humans (Wayne, et
al., 2001; Zhang, et al., 2004; Schonberger, et al., 2005).

Like Eya1, Six1 has been implicated in normal development of
the inner ear and mutations in human Six1 cause BOR syndrome
like Eya1 mutations (Ruf, et al., 2004). Mice lacking Six1 function
display very similar phenotypes to Eya1 mutant mice: otic vesicles
are small, lack the cochlea and semicircular canals and do not
form a cochlear-vestibular ganglion (Laclef, et al., 2003; Li, et al.,
2003; Zheng, et al., 2003; Ozaki, et al., 2004). In addition,
trigeminal and epibranchial placode derived neurons are reduced
or absent and development of the olfactory epithelium is impaired.
In zebrafish, Six1 promotes the formation of hair cells by increas-
ing their proliferation, while inhibiting neurogenesis by inducing
apoptosis (Bricaud and Collazo, 2006). Finally, Six5 mutations
lead to cataract formation in the lens (Klesert, et al., 2000; Sarkar,
et al., 2000; Bateman, et al., 2006) and are associated with BOR
syndrome in humans (Hoskins, et al., 2007).

 The widespread defects in almost all placode derivatives in
Six1 and/or Eya1 mutants argues for a conserved function of this
network during sensory placode formation or for an involvement
at very early stages development, maybe in the preplacodal
region. Unfortunately, none of the above studies has addressed
this issue. In Xenopus, Six1 function has been assessed at
preplacodal stages (Brugmann, et al., 2004), where it promotes
the expression of other preplacodal genes like Eya1, while re-
pressing neural, neural crest and epidermal fates. These findings
point to a potentially early role of Six and Eya proteins in ectoder-
mal patterning by establishing the preplacodal region and confer-
ring common preplacodal properties (see below). However, fur-
ther studies are required to determine their precise role at these
early stages.

Molecular function and targets of the Six/Eya/Dach network
Six, Eya and Dach proteins are thought to interact physically

and to act as a transcription factor complex to activate down-
stream target genes (for review: Relaix and Buckingham, 1999;
Kawakami, et al., 2000; Wawersik and Maas, 2000; Hanson,
2001; Silver and Rebay, 2005). Six genes encode homeodomain
DNA binding proteins (Seo, et al., 1999; Kawakami, et al., 2000)
that can act either as transcriptional activators or repressors
depending on the recruitment of appropriate cofactors. One group
of such cofactors are the Dach proteins (Mardon, et al., 1994;
Hammond, et al., 1998; Davis, et al., 1999), nuclear factors which
together with other repressors inhibit target gene transcription. In
addition, Dach proteins themselves seem to bind DNA (Ikeda, et
al., 2002) and modulate BMP signalling by interacting with Smad4
(Wu, et al., 2003; Kida, et al., 2004). Eya proteins represent
transcriptional coactivators that are recruited to DNA via their
interaction with Six proteins (Ohto, et al., 1999; Silver, et al.,
2003). Recently, Eya proteins have been shown to have catalytic
activity as protein phosphatases and this activity appears to be
required for their function as activators (Li, et al., 2003;
Rayapureddi, et al., 2003; Tootle, et al., 2003). Direct binding has
indeed been shown for Eya and Dach and Six and Eya proteins
(Chen, et al., 1997; Pignoni, et al., 1997; Ohto, et al., 1999; Ikeda,
et al., 2002; Li, et al., 2003; Silver, et al., 2003) and nuclear
translocation of Eya protein is dependent on its interaction with

members of the Six family (Ohto, et al., 1999). Furthermore,
Groucho repressors have been shown to bind Six proteins, in
particular Six3 directly and thus modulate its activity (Kobayashi,
et al., 2001; Zhu, et al., 2002).

So far only a few direct target genes have been identified,
among them cMyc and CyclinA1 and –D1, all involved in cell cycle
control (Coletta, et al., 2004; Yu, et al., 2006). Indeed, both Six1
and Eya2 appear to promote tumorigenesis by enhancing prolif-
eration (Coletta, et al., 2004; Zhang, et al., 2005; Yu, et al., 2006),
while high levels of Eya2 seem to trigger apoptosis (Clark, et al.,
2002). In the otic vesicle, loss of Eya1 and Six1 leads to reduced
proliferation, while in Drosophila loss of either so, dac or eya
initially results in overgrowth followed by cell death (Bonini, et al.,
1993; Pignoni, et al., 1997; Xu, et al., 1999; Li, et al., 2003; Ozaki,
et al., 2004; Kozlowski, et al., 2005; Zou, et al., 2006). In zebrafish,
Six1 plays opposite roles in hair cells and otic neurons that arise
from common sensory patches. Six1 induces apoptosis in neu-
ronal precursors, but promotes proliferation in sensory hair cells
(Bricaud and Collazo, 2006) thereby regulating the balance
between both cell types. Thus, the Six/Eya/Dach network may
control the number of placode precursors during early stages of
development, differential proliferation and apoptosis during mor-
phogenesis and the number of precursors for different cell types
within placodes.

Although data in Drosphila show that the Six/Eya/Dach cas-
sette can induce cell fate changes by making non-eye cells adopt
an eye fate, the exact molecular mechanisms of how they operate
during this process are still unknown (Bonini, et al., 1997; Pignoni,
et al., 1997; Shen and Mardon, 1997; Weasner, et al., 2007).
Eyeless is directly regulated by sine oculis, however further
targets have not been identified. In vertebrates, functional Six and
Eya are required for myogenesis (Heanue, et al., 1999) for review
Relaix and Buckingham, 1999), but the evidence that they control
cell specification without affecting proliferation during placode
development is very poor. As mentioned above, misexpression of
Six1 promotes preplacodal gene expression (Brugmann, et al.,
2004), but by itself or in combination with Eya is insufficient to
generate mature placodes or to activate Pax genes (Christophorou
and Streit, unpublihsed). Since only cells within the preplacodal
region are competent to respond to placode inducing signals, one
potential role of Six and Eya genes may be to impart competence
to such inducing factors.

In summary, there is considerable evidence for a crucial role of
the Six/Eya/Dach network in various aspects of placode develop-
ment, however in many cases the precise molecular mechanisms
remain to be identified. Characterisation of direct targets in
different cellular contexts will be an important step to understand
their function.

Signalling pathways inducing the neural plate border
and the preplacodal region

Formation of the preplacodal region is initiated through a series
of events that first define the border of the neural plate and
subsequently subdivide the border into placode and neural crest
precursors. This is achieved through interactions with surround-
ing tissues – neural plate, future epidermis and the underlying
head mesoderm – which secrete factors that promote or attenuate
placode formation. Thus, different signalling pathways converge
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to position the placode territory in the head ectoderm next to the
neural plate.

FGF pathway
Several observations implicate FGFs as one of the factors

that initiate the formation of the border region. In the chick,
misexpression of FGF8 rapidly induces ectopic expression of a
set of genes normally coexpressed in the border: ERNI, Sox3,
Dlx5 and Msx1 (Streit and Stern, 1999; Streit, et al., 2000;
Litsiou, et al., 2005). However, FGF alone is not sufficient to
generate any of the cell types that arise from the border: neural
crest and placodes (Mayor, et al., 1997; LaBonne and Bronner-
Fraser, 1998; Monsoro-Burq, et al., 2003; Ahrens and Schlosser,
2005; Litsiou, et al., 2005). In contrast, FGF inhibition using the
antagonist SU5402 or dominant negative receptors shows that
active signalling through the FGF pathway is required for at
least some of the border genes (Sox3, ERNI; Streit, et al., 2000)
and for the generation of border derivatives (Mayor, et al., 1997;
LaBonne and Bronner-Fraser, 1998; Monsoro-Burq, et al.,
2003; Ahrens and Schlosser, 2005; Litsiou, et al., 2005). To-
gether, these findings argue for a role of FGFs in promoting
border character in ectodermal cells as a prerequisite to gener-
ate neural crest and placode cells. Accordingly, FGFs are
expressed in the head mesoderm and trunk paraxial mesoderm
that comes to underlie the border region and in Xenopus at the
edge of the neural plate (Niswander and Martin, 1992; Shamim
and Mason, 1999; Streit and Stern, 1999; Ahrens and Schlosser,
2005).

In addition, FGFs seem to play a role in preplacodal induc-
tion at slightly later stages. FGF signalling from surrounding
tissues (head mesoderm in chick, neural plate in Xenopus) is
required for the induction of preplacodal markers, while ectopic
expression of FGF8 promotes expression of Eya2, but not of
any other placode specific gene (Brugmann, et al., 2004;
Ahrens and Schlosser, 2005; Litsiou, et al., 2005). Thus, FGFs
play a dual role in the supporting placode formation: initially
they promote the expression of border genes and later initiate
expression of a subset of preplacodal markers.

BMP pathway
Modulation of BMP signalling has been widely implicated in

early ectodermal patterning (Wilson, et al., 1997; Marchant, et
al., 1998; Barth, et al., 1999; Tribulo, et al., 2003; for review
Sasai and De Robertis, 1997; Aybar and Mayor, 2002; Stern,
2005). Indeed, FoxiI is dependent on BMP signalling in fish and
frogs (Matsuo-Takasaki, et al., 2005; Phillips, et al., 2006). In
zebrafish, FoxiI expression is reduced or lost in BMP7 and
BMP2a mutants, while it is downregulated in Xenopus in the
presence of the BMP antagonist Chordin. In contrast, overex-
pression of BMP4 causes an expansion of FoxiI at the expense
of neural tissue. Likewise, BMP signalling is required for Dlx
gene expression in chick, frog and fish (Nguyen, et al., 1998;
Feledy, et al., 1999; Pera, et al., 1999; Luo, et al., 2001), while
Msx1 is a direct target of BMP signalling and mediates its ability
to promote epidermis (Suzuki, et al., 1997). These findings
implicate BMP activity, like FGF signalling, in the regulation of
border specific genes.

One model mainly based on experiments in Xenopus sug-
gests that a gradient of BMP activity within the ectoderm acts to

allocate different cell fates for review (Sasai and De Robertis,
1997; Aybar and Mayor, 2002; Vonica and Brivanlou, 2006). In
support of this idea, Xenopus animal caps treated with different
concentrations of BMP antagonists form epidermis in the pres-
ence of high levels of BMP activity, while neural crest and
preplacodal cells are generated at intermediate and neural
plate at low levels (Wilson, et al., 1997; Tribulo, et al., 2003;
Brugmann, et al., 2004; Glavic, et al., 2004). Likewise, zebrafish
mutants with reduced BMP activity (and thus a shallower
gradient) show a relatively larger expansion of the neural crest
territory than of the neural plate (Nguyen, et al., 1998; Barth, et
al., 1999). However, the placode territory is merely displaced,
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Fig. 3. Model for induction of the preplacodal region. (A) The diagram
shows a cross section through a chick embryo at the 2-4 somite stage
viewed from anterior towards posterior (modified from Litsiou, et al.,
2005). Ectodermal signals that influence the position of the preplacodal
region are schematised on the left, whereas mesoderm derived signals
are shown on the right. The preplacodal region (purple) is surrounded by
inhibitory signals from the lateral (light yellow; BMP) and posterior
(yellow; Wnt) ectoderm, from the neural folds (orange; Wnt, BMP) and
from the lateral and posterior mesoderm (green; Wnt). FGF, Wnt antago-
nists and BMP antagonists (purple) from the mesoderm underlying the
preplacodal region protect the overlying ectoderm from these inhibitory
signals and allow the formation of placode precursors. (B) Signals and
transcription factors in the border and preplacodal region. FGFs and
BMPs act upstream of border specific transcription factors. Once the
border is established, levels of BMP and Wnt signalling determine
whether border cells generate neural crest or placode cells.
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but not expanded and different placodes are affected differen-
tially arguing against a simple gradient model (Neave, et al.,
1997; Nguyen, et al., 1998).

In chick, the main region sensitive to modulation of BMP
signalling is the neural plate border itself (Streit and Stern,
1999). Here, misexpression of BMP antagonists leads to a shift
of the border towards the non-neural ectoderm, while
misexpression of BMP4 narrows the neural plate and shifts the
border medially. In contrast, modulation of the BMP pathway
away from the border does not have any effect. Likewise, local
reduction of BMP signalling close to the preplacodal region
expands this territory in chick and Xenopus, but is not sufficient
to induce it ectopically in future epidermis (Glavic, et al., 2004;
Ahrens and Schlosser, 2005; Litsiou, et al., 2005). One possible
explanation to reconcile these differences is that Xenopus
animal caps may contain border territory and are therefore
particularly sensitive to changes in BMP activity.

Thus, modulation of BMP activity and loss- or gain-of-func-
tion experiments for border specific transcription factors show
the same effect: they shift the border of the neural plate. It is
therefore likely that BMP signalling acts via mediators such as
FoxiI, Dlx and Msx to alter preplacodal gene expression indi-
rectly.

Wnt pathway
As discussed above, both FGF and BMP pathways modulate

the expression of preplacodal genes: FGF8 activates Eya2,
while inhibition of BMP signalling expands preplacodal markers
(Brugmann, et al., 2004; Ahrens and Schlosser, 2005; Litsiou,
et al., 2005). However, even the combination of FGF and BMP
antagonists is not sufficient to induce preplacodal character in
ectoderm away form the endogenous placode territory or in the
future trunk ectoderm (Brugmann, et al., 2004; Ahrens and
Schlosser, 2005; Litsiou, et al., 2005). Like inhibition of BMP,
misexpression of Wnt antagonists leads to an expansion of
preplacodal gene expression at the expense of future epider-
mis (Brugmann, et al., 2004; Litsiou, et al., 2005). Interestingly,
Six1, -4 and Eya2 also extend into the trunk ectoderm, where
placode formation is not normally observed. In contrast, activa-
tion of canonical Wnt signalling represses preplacodal gene
expression suggesting that Wnt attenuation allows the specifi-
cation of placode precursors (Litsiou, et al., 2005). Further-
more, a combination of FGF with Wnt and BMP antagonists
induces an ectopic preplacodal region in naïve ectoderm in the
absence of neural and mesodermal tissue indicating that these
factors promote placode character directly (Litsiou, et al., 2005).
Thus, temporal and spatial integration of all three signals is
important to generate placode precursors.

Unlike placode precursors, neural crest cells require canoni-
cal Wnt signalling (for review: Aybar and Mayor, 2002; Knecht
and Bronner-Fraser, 2002). These findings suggest that at the
border of the neural plate exposure to different levels of Wnt
activity determines whether cells adopt placode or neural crest
cell fates. Indeed, activation of Wnt signalling expands neural
crest markers into the placode territory, while its inhibition has
the opposite effect (Litsiou, et al., 2005). In this context it is
interesting that at slightly later stages when the otic placode
begins to form, Wnt signalling promotes placode formation:
Pax2+ cells that activate the pathway become otic, while those

that do not, develop into epidermis (Ohyama, et al., 2006).
These findings highlight that interpretation of the same signal-
ling pathway is highly context dependent and is determined by
the developmental history of individual cells.

A model for induction of the preplacodal region

The data summarised above highlight that induction of the
preplacodal region is a multi-step process, which requires the
integration of different signals produced by different tissues. The
following model tries to integrate tissue interactions and signalling
pathways (Fig. 3). As a first step, a border territory is set up in the
early neurula ectoderm between future neural and epidermal
cells. Genes specific for this region are under the control of FGF
and/or BMP signalling. BMP4 and -7 are expressed in the non-
neural ectoderm and transcript levels and phospho-smad activity
are highest at the edge of the neural plate (Fainsod, et al., 1994;
Streit, et al., 1998; Streit and Stern, 1999; Faure, et al., 2002),
which in turn may lead to the upregulation of some border genes
(Dlx, Msx, FoxiI ). FGFs emanating from the organiser and the
mesoderm underlying the border maintain the expression of Sox3
and ERNI and cooperate with BMPs to promote Dlx and Msx gene
expression. Once established the border gives rise to two differ-
ent cell types: neural crest and placodes. BMP4 and -7  transcripts
concentrate in the forming neural folds (Fainsod, et al., 1994;
Liem, et al., 1995), where Wnts begin to be expressed; together
they promote formation of neural crest cells. The future heart
mesoderm expands anteriorly and comes to underlie the placode
territory (Kimmel and Warga, 1988; Keller and Tibbetts, 1989;
Tam, et al., 1997; Redkar, et al., 2001; Hochgreb, et al., 2003).
This tissue expresses FGF4, the BMP antagonist DAN and the
Wnt inhibitor Cerberus (Ogita, et al., 2001), while more lateral and
posterior mesoderm contains high levels of Wnt8c (Hume and
Dodd, 1993; Litsiou, et al., 2005). Wnt6  is found in the trunk, but
not the head ectoderm (Garcia-Castro, et al., 2002; Schubert, et
al., 2002). Thus, the preplacodal region is surrounded by inhibi-
tory factors at its medial, lateral and posterior edges. Signals from
the heart mesoderm protect the overlying ectoderm from these
inhibitory influences and allow it to adopt placode fate.

Anterior-posterior patterning of the preplacodal region

Within the preplacodal region precursors for different placodes
are intermingled, although some separation of individual popula-
tions along the anterior posterior axis is already apparent. Precur-
sors for anterior placodes (adenohypophysis, olfactory, lens) are
located in the rostral preplacodal region, while precursors for
posterior placodes (trigeminal, epibranchial, otic, lateral line) are
restricted more caudally (D’Amico-Martel and Noden, 1983; Couly
and Le Douarin, 1985; Couly and Le Douarin, 1988; Kozlowski, et
al., 1997; Streit, 2002; Bhattacharyya, et al., 2004; Litsiou, et al.,
2005). This approximate subdivision is reflected by the onset of
regionally restricted expression of transcription factors (and few
other genes), shortly after the induction of the placode territory. As
development proceeds, the preplacodal region becomes molecu-
larly divided in successively smaller sub-domains such that by the
time placodes can be identified morphologically each appears to
have a unique transcription factor code (Torres and Giraldez,
1998; Bailey and Streit, 2006; Schlosser, 2006). These changes
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in gene expression have recently been reviewed in detail in
Xenopus (Schlosser, 2006) and therefore only some of the early
aspects of patterning will be highlighted below.

Transcription factors in anterior-posterior patterning
At neurula stages, the rostral preplacodal region begins to

express Otx2, Six3, Pitx3, Dmbx1 and Pax6, while its caudal part
is characterised by Irx1, -2 and -3 and Gbx2 (Li, et al., 1994; Bally-
Cuif, et al., 1995; Oliver, et al., 1995; Pannese, et al., 1995; Hirsch
and Harris, 1997; Bellefroid, et al., 1998; Gomez-Skarmeta, et al.,
1998; Shamim and Mason, 1998; Goriely, et al., 1999; Zhou, et
al., 2000; Glavic, et al., 2002; Gogoi, et al., 2002; Matsumoto, et
al., 2004; Dutta, et al., 2005; Zilinski, et al., 2005; Liu, et al., 2006;
for review: Schlosser, 2006). Although these patterns appear to
be roughly complementary, closer inspection reveals that differ-
ent transcripts do not share the same rostro-caudal boundary
(Fig. 4). Rather pairs of transcription factors have boundaries at
different levels: Six3 expression abuts Irx, while Otx2 and Gbx2
abut at slightly more posterior levels. These patterns are very
reminiscent of their expression in the neural plate, where the
same pairs of genes control the subdivision of the brain into
different compartments (for review: Martinez, 2001; Nakamura,
2001; Hidalgo-Sanchez, et al., 2005). Gbx2 and Otx2 are involved
in positioning the midbrain-hindbrain boundary (Broccoli, et al.,
1999; Millet, et al., 1999; Katahira, et al., 2000; Acampora, et al.,
2001; Li and Joyner, 2001), while Six3 and Irx3 define a boundary
in the forebrain that later corresponds to the zona limitans
intrathalamica (Kobayashi, et al., 2002).

At early somite stages, members of the Pax gene family
become expressed in more restricted domains within the
preplacodal region (Bang, et al., 1997; Hirsch and Harris, 1997 Li,
1994 #195; Stark, et al., 1997; Heller and Brandli, 1999; Groves
and Bronner-Fraser, 2000). Pax3 is detected in the ophthalmic
part of the trigeminal, Pax8 in the otic and Pax2 epibranchial, otic
and lateral line territory. Together Pax genes cover the entire
placode region in non-overlapping patterns except Pax2 and -8

which are co-expressed in the future otic placode. Interestingly, in
the neural plate Pax2 and -6 represent another pair of transcrip-
tion factors that position a boundary, in this case between future
diencephalon and mesencephalon (Okafuji, et al., 1999; Schwarz,
et al., 1999; Matsunaga, et al., 2000; Schwarz, et al., 2000). As it
is the case for Six3/Irx3 and Otx2/Gbx2, in the brain Pax2 and –
6 negatively cross regulate each other, leading to sharpening of
the molecular boundary and separation of different cell fates. It is
tempting to speculate that the same molecular mechanisms that
pattern the brain also operate to impart regional identity to the
placodes.

Loss of Otx2 function results in severe defects in the head
including the brain, olfactory and lens placode as well as pattering
of the otic vesicle (Acampora, et al., 1995; for review: Acampora,
et al., 2001). However, because of the severe fore- and midbrain
defects, it has been difficult to asses its direct function in placode
development without the availability of tissue specific knock outs.
Mice deficient in Gbx2 (Lin, et al., 2005) and Pax2 function show
patterning defects in the otic vesicle (Torres, et al., 1996; Burton,
et al., 2004), while loss of Six3 or Pax6 affects lens and olfactory
development (Hogan, et al., 1988; Quinn, et al., 1996; Grindley,
et al., 1997; Lagutin, et al., 2003; Liu, et al., 2006). In Xenopus,
Irx1 is required for the expression of the early preplacodal marker
Six1 and later placode specific genes like Sox2 and Pax2 (Glavic,
et al., 2004). Thus, mutation in or loss of any of these genes leads
to defects in placode development, although their role in early
patterning of the preplacodal region remains elusive probably due
to functional redundancy with other members of the same family
that are expressed in similar patterns (Schlosser, 2006).

Signalling pathways in anterior-posterior patterning
In the neural plate, regional identity is initially set up through the

graded activity of Wnts, FGF and retinoic acid, all of which
possess posteriorising activity and control some of the transcrip-
tion factors described above (for review: Yamaguchi, 2001; Wil-
son and Houart, 2004; Kiecker and Lumsden, 2005; Rhinn, et al.,
2006). Do the same signalling pathways control anterior posterior
patterning in the preplacodal region? Experiments in Xenopus
revealed that the formation of neural crest cells indeed requires
Wnt and retinoic acid activity and that anterior neural folds, which
normally do not generate neural crest cells, do so in the presence
of these factors (Villanueva, et al., 2002). In chick and Xenopus,
the expression of preplacodal markers can be expanded into the
trunk ectoderm in the presence of Wnt antagonists (Brugmann, et
al., 2004; Litsiou, et al., 2005). In contrast, the zebrafish mutants
masterblind and headless, in which Wnt signalling is overactivated,
show a loss of anterior placodes (lens, olfactory), but an expan-
sion of trigeminal neurons around the anterior neural plate (Kim,
et al., 2000; Heisenberg, et al., 2001). Thus, differential activation
of the Wnt pathway along the rostro-caudal axis influences
patterning of the preplacodal region suggesting that the mecha-
nisms that allocate regional identity in the neural plate may act
more globally to pattern the entire ectoderm.

Cells in the preplacodal region share a common devel-
opmental programme

As outlined at the beginning of this review, placodes form
diverse structures with different functional properties and a vari-
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Fig. 4. Anterior-posterior patterning of the preplacodal region. At
early neurula stages preplacodal markers are expressed along the entire
length of the preplacodal region (anterior to the left, posterior to the right).
Soon thereafter, regionalised gene expression is apparent: Pax6, Six3
and Otx2 are concentrated anteriorly, while Irx1-3 and Gbx2 are restricted
posteriorly. At early somite stages Pax3 is upregualted in the ophthalmic
part of the trigeminal region and Pax2 and -8 in the otic/epibranchial
territory. Note: the relative boundaries of gene expression are inferred
from data in the literature that show in situ hybridisation with a single
gene (references see text). Double in situ hybridisation is required to
confirm this model.
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ety of different cell types. Yet, they have variously been grouped
together as a family and considered as related structures. Does
this grouping reflect a meaningful developmental concept and
does the preplacodal region represent a ‘basic placode state’? At
least two conditions need to be fulfilled. First, at some point along
their developmental history placode cells should acquire a unique
state that distinguishes them from other ectodermal derivatives.
This is clearly the case (see above): placode precursors occupy
a unique region in the embryonic ectoderm surrounding the
cranial neural plate and they express a unique set of molecular
markers. Furthermore, the preplacodal region is induced by a
specific combination of tissues and signals that is different from
the signals that induce neural, neural crest and epidermal precur-
sors. Second and more importantly, the ‘preplacode state’ should
be a unique property of placode precursors and be a prerequisite
for cells to become mature placodes.

Recent experiments on otic induction in the chick embryo
provide strong evidence that indeed ectodermal cells have to
acquire preplacode character before they are responsive to the
otic inducer FGF (Martin and Groves, 2006). Only cells within the
preplacodal territory are responsive to FGF, while future epider-
mal cells are not. Anterior epiblast from chick gastrula stage
embryos normally never gives rise to the otic placode, but is
competent to do so when transplanted into the ectoderm next to
the hindbrain, where the otic placode normally forms. Likewise,
explants of anterior epiblast do not express otic markers when
cultured in isolation or when treated with FGF. However, when the
same tissue is first transplanted into the preplacodal region for a
brief period (ca. 8 hrs), it initiates gene expression characteristic
for this territory (Eya2, Dlx) and when explanted can now respond
to FGF by expressing otic markers. These experiments support
the idea that the preplacodal region has unique properties and
suggest that the acquisition of preplacodal character is an essen-
tial step in otic induction and a prerequisite for cells to form mature
placodes.

But do all placode precursors share a common developmental
history? Recent evidence indicates that at the very least they
initially share common characteristics: unlike any other part of the
ectoderm, the entire preplacodal region is specified as lens
(Bailey, et al., 2006). When the preplacodal region is subdivided
into four portions along the anterior posterior axis and cultured in
neutral environment, no markers specific for olfactory, trigeminal
or otic placodes are expressed – the tissue is not specified.
However, in the same experiment, explants from all parts of the
preplacodal region, even cells that normally never contribute to
the lens, but to the otic placode, form lens-like structures. These
explants follow the same sequence and timing of gene expression
as observed during normal lens development: they initially ex-
press Pax6, followed by L-maf and Foxc1 and finally, δ- and α-
crystallin. Thus, all placode cells regardless of their ultimate fate
initially possess lens character suggesting that in normal develop-
ment placode induction is intimately linked with lens suppression.
The lens probably represents the simplest placode derivative: it
only generates two cell types, lens fibre and lens epithelial cells.
The only other non-neurogenic placode, the anterior pituitary,
which develops in the anterior midline, is easily transformed into
lens in the absence of sonic hedgehog from underlying axial
structures (Sbrogna, et al., 2003; Dutta, et al., 2005; Zilinski, et al.,
2005). In contrast to the lens and anterior pituitary, all other

placodes give rise to sensory neurons and/or sensory cells. Thus,
lens suppression must be accompanied by the acquisition of
neurogenic properties in non-lens placodes. Together, these
results provide good support for the concept of a common ground
state for all sensory placodes and for the importance of the
preplacodal region in the developmental history of placode cells.

What are the lens repressing signals? FGFs appear to be the
main players to initiate lens repression: activation of the FGF
pathway inhibits the expression of the presumptive lens marker
Pax6 (Bailey, et al., 2006). FGFs (FGF3, FGF10, FGF19 depend-
ing on species) also play an important role in otic induction
(Ladher, et al., 2000; Vendrell, et al., 2000; Leger and Brand,
2002; Maroon, et al., 2002; Wright and Mansour, 2003) and lens
specification is abolished in preplacodal explants in the presence
of FGF2, while the otic marker Pax2 is induced (Bailey and Streit,
unpublished). In contrast, exposure to FGF8 is sufficient to induce
olfactory character from lens specified ectoderm (Bailey, et al.,
2006). Finally, FGF signalling (FGF3, -8) has been implicated in
epibranchial placode specification and in the generation of the
adenohypophysis, a placode forming in the anterior midline
(Herzog, et al., 2004; Nechiporuk, et al., 2007; Nikaido, et al.,
2007; Sun, et al., 2007). Thus, FGFs play a key role in restricting
lens fate and in simultaneously inducing other placodes. The next
important question to address is how the activation of the same
signalling pathway in the preplacodal region elicits different
responses leading to the formation of placodes with different
identities.

Future perspectives

In summary, prior to the appearance of morphological pla-
codes induction of the preplacodal region is an essential process,
which imparts unique identity to all placode precursors. The
signalling pathways involved are similar to those implicated in
neural and neural crest induction, however, timing and levels
differ. Recent evidence argues that all placodes initially share a
common ground state as lens and thus possess a common
developmental history, before they diversify later. Surprisingly,
FGF signalling appears to play a role during the induction of
different placodes from this ground state. The future challenge is
to unravel how different pathways cooperate with FGF signalling
to impart placode identity and to establish networks of transcrip-
tion factors that control this process.
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