Neural differentiation from human embryonic stem cells in a defined adherent culture condition

HOSSEIN BAHARVAND*,1, NARGES-ZARE MEHRJARDI1, MARYAM HATAMI1, SAHAR KIANI1, MAHENDRA RAO2 and MAHDI-MONTAZER HAGHIGHI1

1Department of Stem Cells, Royan Institute, Tehran, Iran and 2Stem Cells and Regenerative Medicine, Invitrogen, Carlsbad, CA, USA

ABSTRACT Understanding how to direct human embryonic stem cells (hESCs) toward a specific lineage pathway and generate appropriate cell types robustly is very important, not only for the study of developmental biology but also for potentially using these cells to treat human diseases. In this study, hESCs were differentiated to the neural lineage in defined adherent culture by retinoic acid and basic fibroblast growth factor. Our protocol seems to recapitulate the early steps of nervous system development in vivo in that undifferentiated hESCs organized into rosettes and then neural tube-like structures are formed. Differentiating cells expressed neuroectodermal and mature neuron markers during neural plate and tube formation and maturation, as shown by reverse transcriptase-PCR. More than 90% of differentiated cells expressed additional neuron-specific antigens (i.e., tubulin-III, MAP-2, synaptophysin and neurofilament protein). Ultrastructural analysis of differentiating neural tube-like structures in three dimensional collagen scaffolds showed an ependymal-like layer and neural structure with typical synapses. These results provide a simple and relatively defined system for differentiation of hESCs to neural lineages, particularly neurons with typical cellular, molecular and ultrastructural markers. The culture of neural precursor cells in a collagen scaffold may provide a new approach for the repair of spinal cord injury.

KEY WORDS: defined condition, human embryonic stem cell, neural differentiation, ultrastructure

Introduction

Human embryonic stem cells (hESCs) are derived from preimplantation embryos and retain the developmental potency of embryonic founder cells, being able to differentiate into cells and tissues of all three germ layers in vitro and in vivo (for review see Baharvand, 2006). The isolation and culture of hESCs has sparked public enthusiasm about the potential application of these cells in understanding early human development and developing assays of pharmacology and toxicology and in developing cell therapy in a wide range of diseases. Differentiating hESC cultures provide a novel model system to elucidate the molecular signals required for the development of various lineages. Human ESCs can be expanded to large numbers under a stable genetic background for a long period and while retaining their differentiation potentials (Reubinoff et al., 2000, Thomson et al., 1998). This is particularly important for transplantation therapies, because hESCs promise an almost unlimited supply of specific cell types. However, directing hESC differentiation along specific lineage pathways remains a challenge. The clinical application of hESCs requires the generation of highly purified donor cells for specific tissues or organs.

For neural differentiation of hESCs, most methods available so far are based on the initial formation of cell aggregation or embryoid bodies (EBs) in the presence of serum or coculture of hESCs with specific stromal cell lines (Carpenter et al., 2001, Perrier et al., 2004, Zhang et al., 2001) or using conditioned medium from the human hepatocellular carcinoma HepG2 cell line (Shin et al., 2006). In the first instance, hESCs were initially differentiated in suspension cultures to form EBs, which often contain cells of all three germ layers; clusters of neural cells are surrounded by flat non-neural cells (Carpenter et al., 2001, Zhang et al., 2001). Moreover, due to the complexity of multicellular aggregates, it is difficult to use this system for studying signaling pathways essential for the neural differentiation. In the latter case, the effect of stromal cells is attributed to an undefined neural-inducing activity (Perrier et al., 2004). In mouse ESCs, neuroectoderm differentiation has been achieved in an adherent monoculture system in a serum-free medium, without multicellular aggregation or coculture.

Abbreviations used in this paper: bFGF, basic fibroblast growth factor; hESC, human embryonic stem cell; KSR, knock-out serum replacement; MEF, mouse embryonic fibroblast; RA, retinoic acid.

*Address correspondence to: Hossein Baharvand. Department of Stem Cells, Royan Institute, P.O. Box: 19395-4644, Tehran, Iran. Fax: +98-21-2241-4532.

e-mail: Baharvand50@yahoo.com

0214-6282/2007/$30.00

© UBC Press
Printed in Spain
www.intjdevbiol.com
with other cell types (Ying et al., 2003). This monolayer culture regimen enables us to directly visualize the process of neural conversion. In addition, because the process is in a chemically defined medium, it provides a good system in the future to investigate signaling pathways in controlling the ESC neural differentiation.

Here, we show that adherent cultures of hESCs in serum-free medium supplemented with retinoic acid (RA) and basic fibroblast growth factor (bFGF) gave rise to an enriched neural population (>90%) by mechanical isolation and replating of neural tube-like structures. Characterization of this population showed appropriate expression of phenotype specific markers and an appropriate gene expression profile. Moreover, ultrastructural analysis of differentiated cells in three dimensional collagen scaffolds showed formation of structural networks of synaptically coupled cells.

Results

Differentiation of neuronal cells and expression of specific markers

Human ESCs originally were cultured on a MEF feeder layer in the presence of fetal calf serum (stage 0, Fig. 2A) and then were cultured on matrigel in feeder-free and serum free conditions for several passages (stage 1, Fig. 2B). Our protocol of neural differentiation in defined adherent culture comprises four stages. Stage 1 was feeder-free hESC culture on Matrigel-coated culture plates in the presence of noggin, bFGF and 20% KSR (Fig. 2B). In this condition, the cell line maintained its distinct stem cell morphology and remained Oct4- and SSEA3- and SSEA4-positive (data not shown). When the cells were almost confluent (4-5 days), they were cultured in same medium without noggin and bFGF but supplemented with RA and then further cultured without...
RA (stage 2). During the initial induction stage, the cells exhibited the first sign of neural differentiation, i.e., the appearance of columnar cells forming rosettes (Fig. 2C). The cells expressed nestin, Sox1, Sox3, Pax6, Nkx6.1, Nkx2.2, Mnr2, Lim2, Lim3 and HB9 (as shown by RT-PCR, stage 2, Fig. 3), which most of them are neuroectodermal markers expressed during neural plate and tube formation (Pevny et al., 1998). Immunocytochemical analyses revealed that the rosette cells were positive for nestin (stage 2, Fig. 2D and 2E). The neural progenitors could be maintained at a relatively high dividing rate and the columnar cells organized into neural tube-like structures with lumens when bFGF was added to the medium (stage 3, Fig. 2F). In addition to the genes detected above, a subset of the cells at this stage expressed Olig2 (Fig. 3). We isolated hESC-generated neural tube-like structures with a pipette and differentiation of the hESC-derived neural tubes induced by withdrawal of bFGF and plating on a laminin/poly-L-ornithine substrate (stage 4). Within a few days, numerous processes grew out from the neural tube, giving the appearance of a starburst. By 30 days after plating processes emanating from the neural tubes had formed prominent fiber bundles (Fig. 2G).

Few small migrating cells were seen in close association with the fibers. Immunofluorescence analyses of the differentiated cultures revealed that the vast majority of cells in the outgrowth areas expressed neural markers [β-tubulin III (97.3±2.1, Fig. 2H), MAP-2 (96.4±3.5, Fig. 2I), synaptophysin (93.1±2.7, Fig. 2J) and neurofilament protein (91.8±1.6, Fig. 2K)]. These percents were obtained after mechanical isolation of neural tube-like structures and differentiation. RT-PCR analysis of 30-day differentiated cells demonstrated that transcripts of nestin, Sox1, Nkx6.1, Nkx2.2, Mnr2 and Hb9 were expressed by the cells at stage 4 (Fig. 3). RT-PCR results also showed that Oct4 expression was retained longer during neural differentiation than the other canonical hESC marker, Nanog. Moreover, transcripts of myelin binding protein (MBP), a marker of myelin expression, were not detected by RT-PCR (data not shown).

Ultrastructure of differentiated neurons
Basophilic clumps (Nissl bodies) appeared throughout the cytoplasm as shown by Cresyl violet acetate dye (sigma; C5042) (Fig. 4A). Cultured neural tube-like structures displayed very long neurite extensions in collagen scaffolds and sent their process together (Fig. 4B). The micrographs of hESC-derived differentiated neural cells are shown in Figure 4 (D-K). In the center of neural tube-like structure was an ependymal-like layer, based on the presence of microvilli, centrosomes, microtubules, tight junctions and the columnar shape of the cells (Fig. 4C-4E). The cell bodies contained a large, euchromatic nucleus with one to three prominent nucleoli (Fig. 4F-4H). The perinuclear cytoplasm revealed abundant rough endoplasmic reticulum (rER) and free ribosomes, which constitute the Nissl bodies, a feature consistent with its protein synthetic activity. The perinuclear cytoplasm also contained numerous mitochondria, a large perinuclear Golgi apparatus, lysosomes, microtubules and neurofilaments (intermediate filaments). The axoplasm, lacked rER but contained short segments of eER and long and slender mitochondria. In cross-section, the neurofilaments were spaced a uniform distance apart through the axoplasm. Microtubules were also numerous, but less uniformly distributed, than the neurofilaments. The appearance of synapses was a definite sign of neuronal identity. There were some glial cells with several unmyelinated axons occupying deep recesses on their surface; however, the myelinated axons were not observed (Fig. 4I). There were some immature and mature synaptic contacts with many distinct pre- and postsynaptic densities and synaptic vesicles (Fig. 4J, 4K).

Discussion
This work demonstrates that neuronal cells with typical cellular, molecular and ultrastructural markers can differentiate efficiently from hESCs using a defined adherent culture protocol with RA and bFGF. Differentiated neural tube-like structures displayed an ependymal-like layer, neuronal structure and typical synapses in a three dimensional collagen scaffold. Although, relatively little is known about dissimilarities in developmental competencies between hESC lines (Allegriuci et al., 2004), this protocol may be useful for neural differentiation of most of other hESC lines as we see in other reports (Nat et al., 2007). Most studies investigating mouse and human ESC differentiation to neural progenitors have used methods involving cell aggregation or EB formation. EB formation in serum containing medium included cells differentiated into neuroepithelial cells (Schuldiner et al., 2000, Zhang et al., 2001), but also led to stochastic differentiation yielding multiple cell lineages, thus limiting the overall yield of the desired neuroepithelial cells (Dang et al., 2002). Dang et al., (2002) compared EB differentiation cultures to adherent differentiation culture and reported that adherent differentiation seemed to exclude cell differentiation toward hematopoietic development. Ying et al., (2003) used adherent differentiation with mouse ESCs and obtained efficient neural commitment. Moreover, Li et al., (2005) demonstrated that early neuroepithelial cells can be efficiently generated from hESCs in serum-free medium without any growth factors or morphogens, in suspension cultures (in the first stage of their protocol). Subsequently the cells proliferated in bFGF enriched medium. Here, we adapted these protocols for the production of hESC-derived neural cells adherent culture. In the same manner as Li et al., (2005) we did not use bone morphogenetic protein (BMP) inhibitors, such as noggin for neural induction. It was shown that adherent cultures of hESCs in serum deprived

Fig. 3. Temporal expression pattern of genes by reverse transcription - polymerase chain reaction (RT-PCR). Stages 0 to 4 are explained in Materials and Methods and Fig. 1. The samples of stage 4 were harvested 30 days after replating of neural tube-like structures. Genomic contamination was monitored by sample prepared without reverse transcription (RT).
Fig. 4. Light microscopy (A-C) and electron micrograph of the differentiated neurons (C-K). (A) Basophilic clumps (Nissl bodies; *) appeared throughout the cytoplasm as shown by Cresyl violet acetate dye. (B) Differentiated neural tube-like structures in collagen scaffolds displayed very long neurite extensions. (C) The semithin section of differentiated hESC-derived neural tube. The labeled area in (C) appears to be an ependymal layer based on the presence of microvilli (MV), tight junctions (TJ) and the columnar shape of the cells (magnified in D). (E) A higher magnification of the labeled area in (D) showing centrosomes (C), microtubules (MT), neurofilaments (NF) and TJ. (F-H) The perinuclear cytoplasm also contains numerous mitochondria (M), a large perinuclear Golgi apparatus (G), MT and NF. The axoplasm lacked rough endoplasmic reticulum (rER) but contained short segments of smooth endoplasmic reticulum (sER) and long and slender mitochondria. In cross-section, the NFs were spaced a uniform distance apart through the axoplasm. Microtubules were also numerous, but less uniformly distributed than the NFs. The cell body contained a large, euchromatic nucleus (N) with one to three prominent nucleoli (n). (I) There were some glial cells (Gl) with several unmyelinated axons occupying deep recesses (*) on their surface. However, myelinated axons were not observed. (J,K) Some immature and mature synaptic contacts with many distinct pre and postsynaptic densities and synaptic vesicles were observed. Note the synaptic area (S), the cluster of synaptic vesicles (SV), synaptic cleft (SC) and postsynaptic density (PSD).
medium with N2 and B27 accompany with conditioned medium of human hepatocellular carcinoma (HepG2) (Shin et al., 2006) and/or noggin (Gerrard et al., 2005, Yao et al., 2006) gave rise to a rosette enriched population, respectively. More recently, Nat et al., (2007) by adapting of Ying et al., (2003) protocol used six hESC lines to evaluate defined conditions for neural differentiation in suspension and adherent culture systems in serum- and feeder-free condition to induce neural fate decisions in hESCs. However, these protocols cultured their hESCs on feeder cells, or isolated immediately before differentiation and/or produced neuroepithelial cells only, while our hESCs were cultured feeder free and allowed to differentiate in serum-free medium as adherent cultures in the presence of RA and bFGF. In contrast to the method adopted for single cell differentiation of mouse ESCs (Ying et al., 2003) and isolated clumps of hESCs (Nat et al., 2007) we also maintained cell-to-cell contact of hESCs in the adherent system, on a matrigel matrix. In these conditions, the hESCs survived in feeder-free conditions and without plating the cells as clusters. Our findings indicate efficient production of neural cells of relatively high purity. Moreover, the adherent culture protocol facilitates visualization of the process of neural conversion. Serum deprivation apparently is crucial for ectodermal derivation (Tropepe et al., 2001) and removal of the feeder cell layer produced homogenous rosette formation from homogenous spread of cells in adherent culture conditions.

Our protocol seems to recapitulate the early steps of the nervous system development in vivo in that undifferentiated hESCs become more compact and then neural tube–like structures are formed. This could provide an experimental tool to study factors affecting human neural tube formation under controlled conditions (Gerrard et al., 2005, Ying et al., 2003). In line with the procedure of Li et al., (2005), Yao et al., (2006) and Li and Zhang, (2006), we did not use bFGF in the first step of neural induction of hESCs. We used this growth factor for the proliferation stage of neural progenitor cells, in our system (stage 3). RA and bFGF treatment induce caudalization of neural tissues and/or motoneuron specification and inhibit the production of rostral central nervous system tissues (Mizusaki et al., 2003, Wichterle et al., 2002). Retinoic acid treatment of EBs results in robust neuronal differentiation in a reproducible way (Bain et al., 1996). Hence, it is most widely used for neuronal differentiation from ESCs including hESCs. In contrast, it was suggested that neuroepithelial formation may be a default process during neural differentiation of ESCs in vitro (Liour et al., 2006). Nat et al., (2007) have also shown that the addition of RA is not mandatory for the induction of neuroepithelial phenotype. Further, RA in concert with bFGF signaling leads to the differentiation of spinal motor neurons (Mizusaki et al., 2003, Wichterle et al., 2002). The inhibition of the FGF signaling pathway suppresses the expression of the RA receptor and the overexpression of RARa, the RA receptor, restores the effects of FGF, demonstrating the interaction between the RA and FGF pathways in specifying the rostrocaudal neural axis and suggesting that RARa is a direct target for the FGF signaling pathway (Shiotsugu et al., 2004). In contrast, bFGF has also been shown to inhibit RA signaling and thus motoneuron differentiation (Cavodeassi et al., 1999, Meirmanov et al., 2003). Moreover, bFGF alone induced long-term cultured fetal human neural stem cells to form cholinergic neurons (Wu et al., 2002), suggesting that bFGF may also be an effective growth factor for in vitro differentiation to human motor neurons. Basic FGF is a survival and proliferation factor for early neural precursor cells (Okabe et al., 1996). FGF might act by antagonizing the BMP signal pathway indirectly, or by directly inducing specific transcription factors, which determine neuroectoderm induction and inhibit mesoderm differentiation (Chen et al., 2003). Thus, we predicted that subjecting adherent human neuroepithelial cells to these two factors would lead to motor neuron phenotypes. Our RT-PCR results showed that the expression of nestin, Sox1, Nkx6.1, Nkx2.2, Mnr2 and Hb9 up to stage 4. Lim3 and olig2 were expressed only at stage 2 (after treatment with RA) and stage 3 (after treatment with bFGF), respectively and Hb9 and Mnr2 initiated to express at stage 2. However, the expression of Sox3, Pax6 and Lim2 was not detectable after 30 days at stage 4. SOX1 and SOX3 are conservative criteria for neuroepithelial characterization (Shin et al., 2006) and two homeodomain proteins, Pax6 and Nkx6.1 and basic helix-loop-helix protein, Olig2, are the markers of progenitor cells of motor neurons (Mizuguchi et al., 2001, Novitch et al., 2001, Sander et al., 2000); their combined activities direct the expression of downstream transcription factors, notably the homeodomain proteins Isl1 and HB9, that consolidate the identity of postmitotic motoneurons (Arber et al., 1999). In feeder-free culture of hESC, the expression of Nkx6.1, Nkx2.2 and Lim3 were observed; however, these were not detected in hESCs on a feeder layer. This could be due to the application of the BMP antagonist, noggin in our feeder free undifferentiated hESC culture. The addition of noggin into the medium might have blocked the BMP signaling and stimulated expression of some neural progenitor genes (Itsykson et al., 2005).

It has been reported that Oct4, the POU-domain transcription factor encoded by Pou5f1, may be required for neurogenesis (Shimozaki et al., 2003). Our RT-PCR results showed which Oct4 expression was retained longer during neural differentiation than the other hESC marker, Nanog and decreased slowly. This is consistent with previous published reports (Gerrard et al., 2005, Nat et al., 2007, Perrier et al., 2004, Shimozaki et al., 2003) suggesting that transiently sustained levels of Oct4 expression may be required for in vitro differentiation of hESCs into neural lineages because rapid downregulation of Oct4 expression in ESCs might have promoted the formation of primitive endoderm (Hay et al., 2004, Niwa et al., 2000).

Further, ultrastructural analysis of differentiated cells in three dimensional collagen scaffolds showed formation of structural networks of synaptically coupled cells. The immobilization of neural cells in three-dimensional scaffolds has been the subject of some previous work. Primary neural cells, neuronal cell lines, and/or glial cells have been immobilized in a wide variety of matrices including polyacrylamide hydrogels, agarose and collagen gel and used for treatment of spinal cord injury (Joosten et al., 2004, Klapka and Muller, 2006, O’Shaughnessy et al., 2003).

Taken together, the results reported here provide a simple and relatively defined system for differentiation of hESCs to neural lineages, particularly neurons with typical cellular, molecular and ultrastructural markers. The culture of neural pre-
cursors in collagen scaffold may provide a new approach to repair spinal cord injury.

Materials and Methods

Human embryonic stem cell culture

The hESC line, Royan H5, at passages 15-30 used in these experiments was first cultured on mouse embryonic fibroblasts (MEF), inactivated by mitomycin C (Sigma; M5053) (Baharvand et al., 2006). The cells were then passaged and maintained under feeder-free conditions for 25-30 passages as described (Xu et al., 2005). Briefly, ideal colonies were mechanically dissected into small pieces and replated on matrigel-coated dishes and the medium changed every day. The cells were cultured in hESC medium: DMEM/F12 medium (Gibco; 21331-020) supplemented with 20% knock-out serum replacement (KSR, Gibco; 10828-028), 2mM L-glutamine (Gibco; 25030-024), 0.1 mM β-mercaptoethanol (Sigma; M7522), 1% nonessential amino acid (Gibco; 11140-035), 100 units/ml penicillin and 100 µg/ml streptomycin (Gibco; 15070-063), 40 ng/mL basic-fibroblast growth factor (bFGF, Sigma; F0291) and 100 ng/mL noggin (R&D; 1967-NG). Cells were grown in 10% CO2 and 95% humidity and they were further passaged as small clumps every 5-6 days manually with a sterile pulled-glass pipette.

Neural differentiation

The differentiation procedure is outlined in Figure 1 and divided into four stages to assist in characterizing the progression of in vitro neural differentiation. After manual passage in the absence of feeder layer, hESCs were allowed to proliferate in hESC medium for 4-5 days (stage 1). Since RA may promote caudalization and/or motoneuron specification (Li et al., 2005), we induced the neuroectodermal cells with RA (4x10^{-6} M, Sigma; R2625) in the hESC medium without bFGF and noggin and the presence of 5% KSR for six days at which time we observed columnar cells beginning to organize into rosettes. The cells were then grown without RA for another six days (stage 2) in the same medium to promote additional rosette formation without growth arrest. Then the cells were exposed to 25 ng/ml bFGF for another 6 days, giving rise to what appeared to be neural tube-like structures (stage 3). These structures were separated manually from the surrounding flat cells with a sterile pulled-glass pipette under the phase contrast microscope (10X, Olympus, CKX41). The neural tube-like structures were then plated on laminin (5 µg/ml, Sigma; L2020) and poly L-ornithine (15 µg/ml, Sigma; P4957)-coated tissue culture dishes (TPP; 93040) in neurobasal medium (Gibco; 21103-049), supplemented with 1% N2 (Gibco; 17502-048) and 2% B27 (Gibco; 17504-044) for up to 30 days (stage 4).

Antibodies and immunocytochemistry

Cells plated on laminin and poly L-ornithine-coated chamber slides (Nunc; 177429) were washed in PBS and fixed with 4% paraformaldehyde (Sigma; P6148) and 0.25% glutaraldehyde (sigma; G5882) in phosphate buffered saline (PBS) for one hour. Fixed cells were washed two times with PBS before staining. Permeabilization and blocking was carried out in a blocking buffer consisting of 0.1% Triton, 5% goat serum and 1 mg/ml bovine serum albumin (BSA; Sigma; A3311) in Tris buffer for 20 min. Primary antibodies were applied in blocking buffer for 45 min at room temperature or overnight in 4ºC and washed three times in blocking buffer before secondary antibody application. Secondary antibody, goat anti-mouse IgG conjugated–fluorescein isothiocyanate (FITC, Chemicon; AP308F), was diluted at 1:200 in blocking buffer and applied to cells for 45 min at room temperature. After two washes in PBS, propidium iodide (10 µg/ml) was applied for 10 min for nuclear counterstaining and cells were observed under the fluorescence microscope. For negative controls, primary antibodies were omitted and the same staining procedure was followed. Primary antibodies and dilutions used included the following: mouse anti-nestin (1:50; Chemicon; MAB5326), mouse anti-beta-tubulin III (1:250, Sigma; T8660), mouse anti-MAP-2 (2a+2b) (1:200, Sigma; M1406), mouse anti-synaptophysin (1:250, Sigma; S5768) and mouse anti-neurofilament protein 200 (1:50, Sigma; N5389). To estimate the efficiency of generation of neurons, we determined the number of differentiating neurons among a group of 1000 cells based on three independent experiments.

Reverse transcription-polymerase chain reaction analysis

Total RNA was extracted from cultured cells using the NucleoSpin RNA II kit (Macherey-Nagel, Düren, Germany). Prior to reverse transcription (RT), RNA samples were digested with DNase I (Fermentas; EN0521) according to the manufacturer’s instructions. The cDNA samples were subjected to polymerase chain reaction (PCR) amplification using human specific primers designed using different exons (Table 1). Amplification conditions were as follows: Initial denaturation at 94°C for 30 sec, annealing at 55-70°C for 45 sec followed by 35 cycles of denaturation at 94°C for 30 sec, annealing at 55-70°C for 45 sec (see table for conditions used), extension for 45 sec at 72°C and a final polymerization at 72°C for 10 min. The PCRs were performed in triplicate.

TABLE 1

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primer Sequences (5’-3’)</th>
<th>Annealing Temperature (°C)</th>
<th>Gene Bank accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sox1</td>
<td>CAA TGC GGG GAG GAG AAG TC CTC CTC TGG ACC AAA CTG TG</td>
<td>60</td>
<td>005986</td>
</tr>
<tr>
<td>Sox3</td>
<td>ACC TTT GTA GGC TGG GAA TCG ATG ACG GGA AAA ACC AAC</td>
<td>64</td>
<td>005634</td>
</tr>
<tr>
<td>Nkx6.1</td>
<td>GTT CCT CCT CCT CTT CCT C C</td>
<td>58</td>
<td>001668</td>
</tr>
<tr>
<td>Nkx2.2</td>
<td>TGC TCG TCC TGC TCA ACC TGG GGG AAA TCT GCC ACC AGT TG</td>
<td>60</td>
<td>002509</td>
</tr>
<tr>
<td>Nestin</td>
<td>CAG CTC GGT GTG CCT TCT G AGT GGC TCC TCT CCT TTT A</td>
<td>63</td>
<td>002320</td>
</tr>
<tr>
<td>Pax6</td>
<td>CAG GTC GGT GGT CCT TTT G AGT GGC TCC TCT CCT TTT A</td>
<td>63</td>
<td>005280</td>
</tr>
<tr>
<td>Hb9</td>
<td>GCC TAA GAT GCC GCA CTT C CTC TCG TCG TCG TCC TCC TC</td>
<td>63</td>
<td>005515</td>
</tr>
<tr>
<td>Is1</td>
<td>GAT TCT CCT ATG TGT TGT TCG C CTT CCA CTG GGT TAG CTT GTA A</td>
<td>60</td>
<td>002202</td>
</tr>
<tr>
<td>Olig2</td>
<td>CTA GGA GGC AGT GGC TCT CAG CTC GCT CAC CAG TCG CCT CA</td>
<td>65</td>
<td>005806</td>
</tr>
<tr>
<td>Lm2</td>
<td>AGG AGC GGC TCG TCT ACT GC AGC TTA GGC GGT CTT AG</td>
<td>55</td>
<td>003057</td>
</tr>
<tr>
<td>Lm3</td>
<td>CTTGGCTCAGTCAGTCTCAGCAGTCTCAGGCTCAGTGCTCCTCTCAAG</td>
<td>56</td>
<td>014564</td>
</tr>
<tr>
<td>Nestin</td>
<td>CTC TGA CCT AGA AGA AT CC CTT CTT TTT TTT GCG</td>
<td>56</td>
<td>006617</td>
</tr>
<tr>
<td>Oct4</td>
<td>CTT CCT GTA GCA GTA GTG CTT GTC CCT GTA A</td>
<td>70</td>
<td>002701</td>
</tr>
<tr>
<td>Nanog</td>
<td>CAG AGG GCC TCA GCA CCT AC GTC ACT GCC AGG AGA ATT TGG</td>
<td>62</td>
<td>024865</td>
</tr>
<tr>
<td>GAPDH</td>
<td>CCA GGT GGT CTC CTC TGA CTT CCA CAG AGG TCT CTC TCT CCT TGG TGC TCT</td>
<td>70</td>
<td>002046</td>
</tr>
</tbody>
</table>
The PCR products were analyzed by gel electrophoresis on 1.7% agarose and stained with ethidium bromide (10 μg/ml) and visualized and photographed on a UV transilluminator (Uvdoc, UK).

Transmission electron microscopy
Two weeks after plating of neural tube-like structures in three-dimensional collagen scaffolds, differentiated neurons were processed for ultrastructural analysis. The collagen solution consisted of 2 ml collagen type I (3 mg/ml, Vitrogen, Palo Alto, CA, USA), which was mixed with 250 μl Hanks' balanced salt solution (HBSS, 10x, Gibco, 25300-054) and 250 μl sodium bicarbonate (0.1 M) in the proportions of 8:1:1 (v/v/v). The mixture supplemented with the medium of stage 4 in the proportions of 1:1 (v/v). Finally, 5 μg/ml laminin and 15 μg/ml poly-L-ornithine were added. The concentration of collagen was selected based on results published for neural cell growth in collagen gel where it was reported that optimal growth occurred in gels prepared below 0.5 mg/ml (Baldwin et al., 1996, Mahoney et al., 2006). The samples were fixed using 2% glutaraldehyde in 0.1 M PBS (pH 7.4) for 2 h. After washing for 2 x 30 min, the samples were fixed with 1% osmium tetroxide for 1.5 h. The samples were washed 3 times in distilled water (5 min each) and dehydrated in an ethanol series; 30%, 50%, 70%, 90% and 100% for 15 min each and then 3 times (15 min each) in 100% ethanol. Infiltration into Spurr's resin was achieved by an ethanol/resin series: first in 50:50 (2 h), then 100% resin (2 h), and finally in 100% resin (overnight) and again in fresh resin (2 h). The samples were then embedded in moulds containing 100% resin and polymerized at 70°C overnight. After polymerization, the sections of about 80 nm were cut and stained with lead citrate for 8 min. Micrographs of transverse sections of the cells were taken on plate films on a Zeiss EM900 transmission electron microscope (TEM).

Acknowledgement
We gratefully thank Dr. Philip H. Schwartz, Children’s Hospital of Orange County Research Institute, USA, for his critical reading and helpful comments on the manuscript. We also acknowledge Abbas Piriaei Orange County Research Institute, USA, for his critical reading and helpful comments on the manuscript. We also acknowledge Abbas Piriaei.

References
ALLEGRUCCI, C., DENNING, C., PRIDDLE, H. and YOUNG, L. (2004). Stem-cell differentiation and neural cell growth in collagen gel where it was reported that optimal growth occurred in gels prepared below 0.5 mg/ml (Baldwin et al., 1996, Mahoney et al., 2006). The samples were fixed using 2% glutaraldehyde in 0.1 M PBS (pH 7.4) for 2 h. After washing for 2 x 30 min, the samples were fixed with 1% osmium tetroxide for 1.5 h. The samples were washed 3 times in distilled water (5 min each) and dehydrated in an ethanol series; 30%, 50%, 70%, 90% and 100% for 15 min each and then 3 times (15 min each) in 100% ethanol. Infiltration into Spurr’s resin was achieved by an ethanol/resin series: first in 50:50 (2 h), then 100% resin (2 h), after that in 100% resin (overnight) and again in fresh resin (2 h). The samples were then embedded in moulds containing 100% resin and polymerized at 70°C overnight. After polymerization, the sections of about 80 nm were cut and stained with lead citrate for 8 min. Micrographs of transverse sections of the cells were taken on plate films on a Zeiss EM900 (Germany) transmission electron microscope (TEM).

Received: 12th February 2007
Reviewed by Referees: 29th March 2007
Modified by Authors and Accepted for Publication: 25th June 2007
Related, previously published Int. J. Dev. Biol. articles

Effects of growth factors on the differentiation of neural crest cells and neural crest cell-derivatives.
B K Hall and S Ekanayake

Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro
Hossein Baharvand, Seyed M. Hashemi, Saeid Kazemi Ashtiani and Ali Farrokhi

Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells
Erik Willems, Ileana Mateizel, Caroline Kemp, Greet Cauffman, Karen Sermon and Luc Leyns

Expression of regulatory genes for pancreas development during murine embryonic stem cell differentiation
Josué K. Mfopou, Erik Willems, Luc Leyns and Luc Bouwens

Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells
Przemyslaw Blyszczuk, Christian Asbrand, Aldo Rozzo, Gabriela Kania, Luc St-Onge, Marjan Rupnik and Anna M. Wobus

The generation of insulin-producing cells from embryonic stem cells - a discussion of controversial findings
Gabriela Kania, Przemyslaw Blyszczuk and Anna M. Wobus

Quantitative gene expression profiling reveals a fetal hepatic phenotype of murine ES-derived hepatocytes.
Andrea Jochheim, Tina Hillemann, Gabriela Kania, Jennifer Scharf, Masoumeh Attaran, Michael P Manns, Anna M Wobus and Michael Ott

Targeted disruption of fibroblast growth factor receptor-1 blocks maturation of visceral endoderm and cavitation in mouse embryo bodies.
Milan Esner, Jiri Pachernik, Ales Hampl and Petr Dvorak

Embryonic stem cell differentiation and the analysis of mammalian development.
Stephen J Rodda, Steven J Kavanagh, Joy Rathjen and Peter D Rathjen

DNA methylation of the U2af1-rs1 gene in embryonic stem cells and embryonal carcinoma cells after RA-induced differentiation and apoptosis
N Andollo, MD Boyano, A Asumendi, MM Zalduendo, J Arechaga

Lithium influences differentiation and tissue-specific gene expression of mouse embryonic stem (ES) cells in vitro.
M M Schmidt, K Guan and A M Wobus

Bone morphogenetic proteins (BMPs) induce epithelial differentiation of NT2D1 human embryonal carcinoma cells.
A Caricasole, D Ward-van Oostwaard, L Zeinstra, A van den Eijnden-van Raaij and C Mummery

The generation and in vivo differentiation of murine embryonal stem cells genetically null for either N-cadherin or N- and P-cadherin.
R Moore, G L Radice, M Dominis and R Kemler
Mammalian Reproduction and Development

Preface
by Brigid Hogan

INTRODUCTORY PAPERS

A history of mammalian embryological research
by Henri Alexandre

Research in the Canine Block
by John D. Biggers

From Embryo to Ethics: a career in science and social responsibility
An interview with Anne McLaren by Brigid Hogan

The McLaren Effect - a personal view
by Virginia E. Papaioannou

Anne McLaren as Teacher
by Baroness Mary Warnock

Anne McLaren - A tribute from her research students
by Ann G. Clarke

REVIEWS & CURRENT RESEARCH ARTICLES

Of microbes, mice and man
by Marilyn Monk

Evidence that the testis determination pathway interacts with a non-dosage compensated X-linked gene
by Paul S. Burgoyne, Robin Lovell-Badge and Aíne Rattigan

Epigenetic reprogramming of the genome - from the germ line to the embryo and back again
by Katharine L. Arney, Sylvia Erhardt, Robert Dredell and M. Azim Surani

The case of the midwife scientist
by Elizabeth Simpson

Twenty years of research on primordial germ cells
by Massimo De Felici

Germ cell biology: from generation to generation
by Peter Donovan

Differentiation of mouse primordial germ cells into female or male germ cells
by Norio Nakatsuj and Shinichiro Chuma

The allocation and differentiation of mouse primordial germ cells

Germ cells, gonads and sex reversal in marsupials
by Marilyn B. Renfree and Geoffrey Shaw

Association of egg zona pellucida glycoprotein mZP3 with sperm protein sp56 during fertilization in mice
by Natalie Cohen and Paul M. Wassarman

Chimaeras and mosaics for dissecting complex mutant phenotypes
by Andras Nagy and Janet Rossant

Size regulation does not cause the composition of mouse chimaeras to become unbalanced
by Pin-Chi Tang and John D. West

Mouse singletons and twins developed from isolated diploid blastomeres supported with tetraploid blastomeres
by Andrzej K. Tarkowski, Wacław Olszowski and Renata Czolowska

Pre-implantation genetic diagnosis and embryo research: human developmental biology in clinical practice
by Peter Braude

Implantation: molecular basis of embryo-uterine dialogue
by Bihush C. Paria, Haengseok Song and Sudhansu K. Dey

Reproductive ageing and the menopause
by Colin A. Finn

In situ hybridization to mRNA: from black art to guiding light
by Peter Koopman

ORDER FORM

I would like to order ___ cop(y/ies) of the Int. J. Dev. Biol. Special Issue “Mammalian Reproduction and Development” (Vol. 45, Nº 3) at US$ 90 or Euro € 70 per copy (including post and packaging). Total to be charged: ________ US$ / Euro € (please specify currency)

ORDER BY
✓ Web: http://www.intjdevbiol.com
✓ E-mail: ijdbc@ehu.es (include the information indicated above)
✓ FAX: +34-94-601-3266
✓ POST: to the address shown beside

The International Journal of Developmental Biology
UBC Press - Faculty of Medicine
University of the Basque Country,
E-48940 Leioa, Vizcaya,
SPAIN