Using fruitflies to help understand the molecular mechanisms of human hereditary diffuse gastric cancer

JOANA CALDEIRA1,4, PAULO S. PEREIRA2,3, GIANPAOLO SURIANO4 and FERNANDO CASARES*,1,2

1Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide, Sevilla, Spain, 2IBMC, Universidade do Porto, Porto, Portugal, 3School of Health Sciences, University of Minho, Braga, Portugal and 4IPATIMUP, Universidade do Porto, Porto, Portugal.

ABSTRACT Mutations in the CDH1 gene, which encodes the cell adhesion molecule E-cadherin, are associated with hereditary diffuse gastric cancer in humans. Although most of the CDH1 mutations found are truncating, leading to non-functional E-cadherin, some are missense. These missense E-cadherin mutants result in full-length proteins which, when assayed in cell culture, still retain some biological activity. In order to understand the molecular causes of the malfunction of the E-cadherin missense forms found in patients, we developed a Drosophila model, where the effects of expressing the mutant forms can be studied in vivo (Pereira et al., 2006). Here, we review the results obtained so far, and outline possible ways of exploiting the fly model system to screen for pathways affected by specific E-cadherin missense mutant forms and to identify mechanisms that contribute to tumourigenesis.

KEY WORDS: gastric cancer, E-cadherin, β-catenin, adhesion, Drosophila

Introduction

Gastric Cancer (GC), as most of human cancers (~80-90%), originates from epithelial cells (Christofori and Semb, 1999). Although the incidence rate of this type of cancer has significantly decreased during the last century, it is still responsible for more than half a million deaths per year, ranking second in terms of global cancer burden worldwide (Caldas et al., 1999, Dunbier and Guilford, 2001). As much as 90% of gastric cancer cases arise in a sporadic setting, whereas for the remaining 10% familial clustering is observed (Zanghieri et al., 1990; La Vecchia et al., 1992). Both familial and sporadic gastric cancers are products of multiple genetic and epigenetic alterations that transform normal gastric epithelial cells into malignant neoplasms. These include activation of oncogenes through mutation and/or amplification, or biallelic inactivation of tumour suppressor genes through mutation and loss of heterozygosity (LOH) or promoter hypermethylation. (Berx et al., 1998, Carneiro et al., 2004, Christofori and Semb, 1999, Dunbier and Guilford, 2001, Fitzgerald and Caldas, 2004, Hirohashi, 1998, Moran et al., 2005, Oliveira et al., 2006). Hereditary diffuse gastric cancer (HDGC) is an autosomal, dominant inherited gastric cancer susceptibility syndrome, which account for 1-3% of all gastric cancer cases (Ford, 2002). In 1998, germ-line truncating mutations in the E-cadherin (Ecad) gene were described in three Maori families with predisposition to diffuse gastric cancer (Elterman et al., 2001). Similar mutations have since been described in close to 60 other families of different ethnic backgrounds (Suriano et al., 2006). All these mutations result in dysfunctions in E-cadherin, a molecule found at intercellular junctions and that links epithelial cells by establishing both homophilic and heterophilic, calcium-dependent, interactions across the intercellular space (Chappuis-Flament et al., 2001, Oliveira et al., 2006, Panorchan et al., 2006, Steinberg and McNutt, 1999).

CDH1 germ-line inactivating mutations have a disease-penetrance in the range of 70% to 80%. Usually diffuse gastric cancers become symptomatic only when they are already incurable (Caldas et al., 1999, Fitzgerald and Caldas, 2004, Lynch et al., 2005). The most obvious characteristic of diffuse-type cancers is the...
complete loss of cell-cell adhesiveness, resulting in destruction of the histological structure, followed by a strong tendency to invade, the morphological hallmark of malignant tumours. Invasion and metastasis only occur at later stages of the disease (Christofori and Semb, 1999, Hirohashi, 1998). Focal dissociation or dedifferentiation are characteristics of the leading invasive cells of solid tumours with a great ability to metastasize (Hirohashi, 1998).

In an attempt to classify the numerous subgroups of gastric tumours, many different classification systems have been formulated, taking into account parameters such as biological behaviour and prognostic indicators. Yet, there is agreement on one thing: the downregulation of E-cadherin correlates with the shift from well-differentiated adenoma to invasive carcinoma, and it is a necessary event in the progression of epithelial tumours (Christofori and Semb, 1999, Dunbier and Guilford, 2001, El-Rifai and Powell, 2002, Guilford, 1999).

E-cadherin dysfunctions in HDGC are a result, in many instances, of inactivating mutations in its coding gene CDH1 (such as nonsense and frameshift mutations or those affecting splice sites) that result in an inactive molecule (Fitzgerald and Caldas, 2004). However, missense mutations have also been found in HDGC patients. These mutations in CDH1, which cause the substitution of one aminoacid and still give rise to normal length molecules, are a clinical burden still out on debate, since their biological consequences are unknown (Oliveira et al., 2006).

Missense mutations are also some kind of a paradox: they retain some biological function when assayed in cell cultures, but still are associated with HDGC and, therefore, should behave as null proteins (at least in early stages of the tumour). Nevertheless, the gap between cell culture studies and the situation found in vivo, in a tissue context, is huge. In addition, each missense mutation affects different domains of the E-cadherin molecule, which might result in significant differences in E-cadherin’s ability to interact (or fail to interact) with molecular partners and signaling pathways, or even in anomalous subcellular localizations (Chen et al., 1999).

Results

Drosophila to understand the molecular mechanism affected by E-cadherin missense mutations in gastric cancer

To understand what specific consequences each missense mutation has in a tissue and to use this knowledge in helping the prognosis of their associated malignancies, our aim was to generate a simple *in vivo* model in which we would be able to study cellular, genetic and molecular modifications associated with HDGC in a tissue context, to overcome all the technical problems inherent to cell cultures and with a sufficiently large “tool kit” to address these points in a time and cost-efficient manner.

The model of choice was *Drosophila melanogaster*. The junctional complexes along the epithelial cell membrane and overall epithelial organization are sufficiently similar in invertebrates and vertebrates to assume that most cellular and molecular mechanisms involved in epithelial maintenance and reorganization are conserved (Fig. 1).

For instance, during *Drosophila* gastrulation, the loss of epithelial junctions by degradation of DE-cadherin (DEcad) causes cells to go through what looks like a typical vertebrate epithelial-mesenchymal transition (Locascio and Nieto, 2001, Oda et al., 1998).

The pipeline in the construction of a *Drosophila* model for the study of the molecular consequences of different forms of missense human E-cadherin (hEcad) included the ability to direct their expression in *Drosophila* epithelia and to check for a normal (or almost) pattern of subcellular localization. Also, the functional interactions of overexpressed hEcad could be determined by genetic means. Then, each missense form should be interrogated, by the same genetic tests, about abnormal functional interactions when compared with the wild type hEcad form. This comparison should yield candidate genetic pathways affected by all mutations or specific for particular mutations, being those pathways good candidates to be explored in other systems as likely affected downstream of the mutant hEcdads in cancer.

In addition, *Drosophila* can also add to our understanding of the initiating events in cancers where the loss of Ecad is causative. In order to generate the *Drosophila* model and to follow up the *Drosophila* work with experiments in other systems, two groups from Porto University (F. Casares at IBMC and R. Seruca/G. Suriano at IPATIMUP) joint efforts in 2002. The IPATIMUP group had been involved in the discovery of the association of CDH1 mutations to HDGC, and was at the time in the process of identifying new CDH1 mutations in HDGC patients and character-
izing the missense mutant forms in CHO cell culture assays (Suriano et al., 2003a, Suriano et al., 2003b, Suriano et al., 2005). The IBMC group chipped in with their expertise in Drosophila genetic manipulation and developmental biology.

To express hEcad forms in Drosophila we used the binary system GAL4/UAS (Brand and Perrimon, 1993, Phelps and Brand, 1998). In this system, a GAL4-driver line, in which the transactivator GAL4 is expressed in a specific tissue pattern, is crossed to a responder-UAS line. The responder harbours a transgene in which the cDNA of interest (in our case the Ecads) is cloned downstream of the UAS sequences, to which GAL4 binds. In the progeny, ECads expression will be targeted to the GAL4-expressing territories. For our experiments, wild type hEcad and the missense mutants (V832M and A634V) were cloned under UAS and stable transgenic lines established for each of them. The target tissues were the imaginal discs, formed by a simple, monolayered epithelium, which give rise to adult external structures of the adult fly, such as wings or eyes (Cohen, 1993), and that can be easily dissected form larvae (Fig. 1).

Expression of hEcad in developing Drosophila epithelia resulted in its targeting to the apical cell membrane, where the endogenous DEcad is involved in forming the adherens junctions (AJs). Increasing the levels of expression by raising the culture temperature (as the GAL4/UAS system is temperature sensitive), leads to accumulation of hEcad in more basal localizations of the membrane, likely due to overexpression. In these situations, ectopic actin foci are formed that correlate with an increased membrane Armadillo accumulation - the fly β-catenin homologue. This result indicated that, even if the human Ecad protein is not completely homologous to the endogenous DEcad (Fig. 2), the human form reaches the right membrane domains and, also, that it interacts with expected molecular partners, in this case β-catenin, capable of triggering actin cytoskeleton assembly (Bienz, 2005, Nelson and Nusse, 2004, Pereira et al., 2006, Wheelock and Johnson, 2003).

Two other observations were of interest: if hEcad is driven in cells ubiquitously expressing GFP-tagged DEcad, the amounts of GFP-DEcad decrease, indicating that DEcad is subject to a posttranslational downregulation upon hEcad overexpression. Also, confocal microscopy analysis showed that most foci of Ecad staining contained either hEcad or DEcad, suggesting that different Ecads segregate into different junctional complexes, maybe due to a preference in engaging in strictly homotypic interactions. The subcellular localization of overexpressed missense mutant variants A634V and V832M, at our level of resolution, was typically different mutations. The further phenotypic analysis also revealed a putative interaction with a key signalling pathway also involved in cancer, that of Notch. Considered together, these results indicated that using the Drosophila system it was possible to gather information regarding cellular and molecular effects of the human Ecad variants, and that the system was sensitive enough as to discriminate phenotypically different mutations.

Perspectives

Several questions related to HDGC lay ahead that could also be tackled using Drosophila. One of them is still surprisingly unexplored: the loss of Ecad function as the initiating effect in tumourigenesis. On the one hand, cell lines lacking Ecad exist, but these are also immortalized and, therefore, must carry other alterations that mask the cell behaviour of a cell that just lacks Ecad. On the other, one might predict that the sole loss of Ecad should result in loss of cell-cell contact and anoikis, so either

![Fig. 2. Comparison of the domain structures of human and Drosophila E-cadherin.](image-url)
gastric cells are particularly resilient to Ecad loss, or some coadjuvant alterations should cooperate with the loss of Ecad to send a gastric cell down the tumoural road. In any case, these “coadjuvants”, either gastric-specific or mutation-induced, are not fully understood. Some candidates are emerging, such as the tumour suppressor Scribble, which in mammalian cell cultures mediates E-cadherin adhesion and stabilizes alpha and beta-catenin in the cell. (Qin et al., 2005). In Drosophila it is possible to study the initiating event in a tissue context by inducing clones of marked cells mutant for the DEcad-coding gene, shotgun (shg), and following their behaviour. Even more, using the MARCM technique (Lee and Luo, 2001), it is possible to express specifically in the mutant shg cells other gene products to activate or repress specific signalling pathways, to then ask to what extent these pathways are able to promote tumour-like behaviour of DEcad cells. If the tested pathway contributes to the tumour-like behaviour, then it is possible to use the system to further analyze the cellular mechanisms through which it does so (such as apoptosis resistance, epithelial extrusion, cell migration etc.).

Another aim is to uncover why the missense proteins, although retaining some – and importantly, allele-specific – biological activity in cell culture, seem to be conducive to cancer. One possibility is that these mutations have some dominant effect. This seems unlikely, though, because carriers do not seem to develop the disease unless the wild type loci become also inactivated. Thus, the most likely possibility is that the mutations affect the interactions of Ecad with critical pathways, even if retaining some of the wild-type functions. To uncover these interactions, it is possible to devise genetic screenings. For example, the overexpression of different hEcad forms, wild type and missense mutants, produce distinctive roughening of the fruity eye, indicating that their effects differ quantitatively and/or qualitatively. These overexpression genotypes can be then crossed into different genetic backgrounds, and those able to modify (enhance or suppress) the phenotype, be selected as candidate interactors. Importantly, it is expected that mutant forms lack some specific interaction shown by the wild type hEcad, and that these missing (or altered) interactions would play a role in tumour formation.

As Garth Nicolson put it (Nicolson, 2004), and we can ratify from our own experience, the way to approach and treat various diseases is changing because of the necessity for an increasing “integration of areas previously somewhat segregated”, especially when studying diseases as complex and multifarious as cancer.

Acknowledgements
Work reviewed here has been funded through grants POCTI/CBO/ 44770/2002 and POCTI/SAU-OBS/57111/2004 from Fundação para a Ciência e a Tecnologia (Portugal), co-funded by FEDER.

References
Drosophila, E-cadherin mutations and gastric cancer

1561

Genet. 15: 1704-1712.

Related, previously published Int. J. Dev. Biol. articles

See our recent Special Issue Ear Development edited by Fernando Giraldez and Bernd Fritzsch at:

Expression of protocadherin 18 in the CNS and pharyngeal arches of zebrafish embryos
Fumitaka Kubota, Tohru Murakami, Yuki Tajika and Hiroshi Yorifuji

The expression of Fat-1 cadherin during chick limb development
Terence G. Smith, Nick Van Hateren, Cheryll Tickle and Stuart A. Wilson

Cadherin-6 is required for zebrafish nephrogenesis during early development
Fumitaka Kubota, Tohru Murakami, Kenji Mogi and Hiroshi Yorifuji

N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling
Lara D.M. Derycke and Marc E. Bracke

Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy
Ramsey A. Foty and Malcolm S. Steinberg

Discovery and characterization of the cadherin family of cell adhesion molecules. An interview with Masatoshi Takeichi
Douglas Sipp

Transcriptional regulation of cadherins during development and carcinogenesis
Héctor Peinado, Francisco Portillo and Amparo Cano

Germinal tumor invasion and the role of the testicular stroma
Alejandro Díez-Torre, Unai Silván, Olivier De Wever, Erik Bruyneel, Marc Mareel