Expression of *FoxP2* during zebrafish development and in the adult brain

RINA SHAH¹, OLGA MEDINA-MARTINEZ², LI-FANG CHU³, RODNEY C. SAMACO² and MILAN JAMRICH*,^{1,2}

¹Department of Molecular and Cellular Biology, ²Department of Molecular and Human Genetics and ³Cell and Molecular Biology Interdepartmental Graduate Program, Baylor College of Medicine, Houston, Texas, USA

ABSTRACT Fox (forkhead) genes encode transcription factors that play important roles in the regulation of embryonic patterning as well as in tissue specific gene expression. Mutations in the human *FOXP2* gene cause abnormal speech development. Here we report the structure and expression pattern of zebrafish *FoxP2*. In zebrafish, this gene is first expressed at the 20-somite stage in the presumptive telencephalon. At this stage there is a significant overlap of *FoxP2* expression with the expression of the *emx* homeobox genes. However, in contrast to *emx1*, *FoxP2* is not expressed in the pineal gland or in the pronephric duct. After 72 hours of development, the expression of zebrafish *FoxP2* becomes more complex in the brain. The developing optic tectum becomes the major area of *FoxP2* expression. In the adult brain, the highest concentrations of the *FoxP2* transcript can be observed in the optic tectum. In the cerebellum, only the caudal lobes show high levels of *Foxp2* expression.

KEY WORDS: Emx, forkhead, FoxP2, homeobox, speech, telencephalon, zebrafish

Forkhead proteins are important transcriptional regulators that are involved in pattern formation during vertebrate development as well as in tissue specific gene expression and tumorogenesis (Accili and Arden, 2004, Carlsson and Mahlapuu, 2002, Dirksen and Jamrich, 1992, Dirksen and Jamrich, 1995, El-Hodiri *et al.*, 2001, Erickson, 2001, Kaufmann and Knochel, 1996, Lai *et al.*, 2001, Lai *et al.*, 1990, Lehmann *et al.*, 2003, Li and Vogt, 1993, Tseng *et al.*, 2004).

FOXP2, a member of the *Foxp* subfamily of Fox genes, is the only gene shown to be involved in speech and language development in humans (Bruce and Margolis, 2002, Enard *et al.*, 2002, Fisher *et al.*, 1998, Katoh, 2004, Lai *et al.*, 2001, Lu *et al.*, 2002, Saleem *et al.*, 2003, Shu *et al.*, 2001, Wang *et al.*, 2003, Zhang *et al.*, 2002). Mutations in this gene result in impaired linguistic and grammatical skills that, together with diminished control of complex face and mouth movements, lead to disrupted speech (Hurst *et al.*, 1990, Vargha-Khadem *et al.*, 1998). A recent study showed expression of *FoxP2* in the entire adult brain of birds and crocodiles (Haesler *et al.*, 2004). In this paper, we provide information about the isolation, sequence and expression pattern of zebrafish *FoxP2* during development and in adult brain.

Foxp2 is somewhat of an unusual protein in that it contains

a forkhead and zinc finger domain. PCR and degenerate primers were used to isolate a cDNA fragment of the zebrafish FoxP2 gene that encodes both of these domains of the protein. After sequencing the isolated PCR fragment, we found that our sequence has a high homology to several zebrafish EST fragments in the GenBank database. Figure 1 shows the comparison of the deduced amino acid sequence of the zebrafish to the mouse and human FOXP2 protein. This comparison shows that the FoxP2 protein is highly conserved during evolution. Not surprisingly, the similarities between the zebrafish, mouse and human FOXP2 protein are highest in the forkhead and the zinc finger domain. However, the overall conservation of amino acids in the entire protein between zebrafish and human is unusually high, greater than 80%. The most notable difference between these three proteins is in the poly-glutamine region. While the human and mouse FOXP2 contain as many as 50 glutamines in two adjacent poly-glutamine regions, the zebrafish FoxP2 contains only nine. The functional significance of this difference is not known, but the expansion of poly-glutamine stretches of proteins has been identified as the cause of several neurodegenerative diseases in humans (for review see (La

Abbreviations used in this paper:EST, expressed sequence tag; PCR, polymerase chain reaction.

^{*}Address correspondence to: Dr. Milan Jamrich. Department of Molecular and Cellular Biology, N620 Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. Fax: +1-713-798-3017. e-mail: jamrich@bcm.tmc.edu

Spada and Taylor, 2003).

Expression of FoxP2 during embryogenesis

Expression of *FoxP2* begins in zebrafish at 20-somites in the dorsal telencephalon (Fig. 2A, C). When we compared the *FoxP2* expression pattern to the expression pattern of other genes transcribed at this stage, we found that *FoxP2* expression is very similar to the expression pattern of the *emx* homeobox genes (Kawahara and Dawid, 2002, Morita *et al.*, 1995). However, in contrast to *emx1* (Kawahara and Dawid, 2002), *FoxP2* does not

	1
zFoxP2	${\tt MMQES} {\tt ANETISNSSM} {\tt SQNGMS} {\tt SLSSQLDAGSRDGRSSGETSSEVSAVELLHLQQQQALQA}$
mFoxp2	MMQESVTETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELLHLQQQQALQA
hFOXP2	MMOESATETISNSSMNONGMSTLSSOLDAGSRDGRSSGDTSSEVSTVELLHLOOOOALOA
	61
zFoxP2	AROLLLOOPGSGLKSPKNNDKORPLOVPVSVAMMSPOVTTPOOMOOTLOOOVLSPOOLOA
mFoxp2	
hEOVD2	
IIF OXF Z	
ZFOXPZ	
mroxp2	LTŐŐŐŐAAMTŐŐŐŐTŐEE.XKKŐGEŐTHTŐTTŐŐŐ ŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐ
hFOXP2	LTŐŐŐŐAAMTŐŐŐŐTŐEE.XKKŐŐEŐTHTŐTTŐŐŐ ŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐŐ
	181
zFoxP2	HPGKQAKEQQQQQQLAAQQLVFQQQLLQMQQLQQQQHLLNMQRQG
mFoxp2	QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
hFOXP2	QQQQQQQQQQQADHPGKQAKEQQQQQQQQQQQQLAAQQLVFQQQLLQMQQLQQQQHLLSLQRQG
	241
zFoxP2	${\tt LLSMPPGPGQPTLPGQTLPPAGLSPAE} {\tt LQQLWKDVT} {\tt ASHTMEDNGMKHSGLDLSTNNNTS}$
mFoxp2	LISIPPGQAALPVQSLPQAGLSPAEIQQLWKEVTGVHSMEDNGIKHGGLDLTTNNSSS
hFOXP2	LISIPPGQAALPVQSLPQAGLSPAEIQQLWKEVTGVHSMEDNGIKHGGLDLTTNNSSS
	301 Zinc Finger
zFoxP2	TTSTSNPKASPPITHHSMSNGOSPALNNRRESSLHEETAVSHSLYGHGVCKWPGCESICD
mFoxp2	TTSSTTSKASPPITHHSIVNGOSSVLNARRDSSSHEETGASHTLYGHGVCKWPGCESICE
hFOXP2	TTSSNTSKASPPITHHSIVNGOSSVLSARBDSSSHEETGASHTLYGHGVCKWPGCESICE
	361
ForD?	
zroxrz	DECOELKIII MAEHAIDDASTAQCAVQMQVVQQLETQLSAEKEKLQAMMAILIMARSEEKE
hEOXD2	DECOELKIII MAEHAIDDASTAQCAVQMQVVQQLETQLSAEKEKLQAMMI HABDCEDAD
IIFOXP2	DFGQFLKHLNNEHALDDKSTAQCKVQMQVVQQLETQLSKEKEKLQAMMIHLHMKPSEPKP
ZFOXP2	SPKPLNLVSSVTMSKNLPSISPPNLPQTPTTPTAPVTPLSQMPQVPNVLSPANVPSMGAM
mroxp2	SPKPLNLVSSVTMSKNMLETSPQSLPQTPTTPTAPVTPITQGPSVITPASVPNVGAI
hFOXP2	SPKPLNLVSSVTMSKNMLETSPQSLPQTPTTPTAPVTPITQGPSVITPASVPNVGAI
	481
zFoxP2	RRRHTDKYSMALSSEIAPNYEFYKNADVRPPFTYATLIRQAIMESSDRQLTLNEIYSWFT
mFoxp2	RRRHSDKYNIPMSSEIAPNYEFYKNADVRPPFTYATLIRQAIMESSDRQLTLNEIYSWFT
hFOXP2	RRRHSDKYNIPMSSEIAPNYEFYKNADVRPPFTYATLIRQAIMESSDRQLTLNEIYSWFT
	541 Forkhead domain
zFoxP2	RTFAYFRRNAATWKNAVRHNLSLHKCFVRVENVKGAVWTVDEMEYQKRRSQKITGSPTLV
mFoxp2	${\tt RTFAYFRR}{\tt SAATWKNAVRHNLSLHKCFVRVENVKGAVWTVDE}{\tt VEYQKRRSQKITGSPTLV}$
hFOXP2	${\tt RTFAYFRR} {\tt NAATWKNAVRHNLSLHKCFVRVENVKGAVWTVDE} {\tt VEYQKRRSQKITGSPTLV}$
	601
zFoxP2	$KN \ LP \\ SLGYGAALNAS \\ LQAALAE \\ TT \\ LP \\ LG \\ NPG \\ LM \\ SAS \\ AMMG \\ AS \\ PPVMMSG \\ SPT \\ GLL \\ QG$
mFoxp2	KNIPTSLGYGAALNASLQAALAE SSLPLL SNPGL INNAS SGLLQ A
hFOXP2	$\underline{KNIP}TSLGYGAALNASLQAALAESSLPLLSNPGLINNASSGLLQA$
	661
zFoxP2	TTHeelngtldh L D Tng H Spg Y Sphth L PP I H V Keep L NM E D E D CPMS L VTTANHSP
mFoxp2	V-HEDLNGSLDHIDSNGNSSPGCSPQPHIHSIHVKEEPVIAEDEDCPMSLVTTANHSP
hFOXP2	V-HEDLNGSLDHIDSNGNSSPGCSPQPHIHSIHVKEEPVIAEDEDCPMSLVTTANHSP
	721
zFoxP2	ELDDDRELEEGNLSEDLE
mFoxp2	ELEDDREIEEEPLSEDLE
hFOXP2	ELEDDREIEEEPLSEDLE

Fig. 1. Amino acid sequence comparison between zebrafish FoxP2 protein and its orthologues in mouse and human. *Identical amino acids are in bold.* The absence of residues at the corresponding region is indicated by dashes. The zinc finger and the forkhead domain are underlined.

show expression in the pineal gland, in pronephric duct and the urogenital opening (Fig. 2B). The expression of *FoxP2* in the dorsal telencephalon is partially overlapping with that of *emx1*. A double *in situ* hybridization demonstrates that *emx1* expression at the 20-somite stage is limited to a subdomain of *Foxp2* expression (Fig. 2D). Expression of *Foxp2* becomes more complex in the brain after 48 hours of development. At 7 days post fertilization, there is expression of *FoxP2* in several domains throughout the entire brain (Fig. 3A). The highest levels of *FoxP2* expression can be observed in the presumptive optic tectum.

Expression of FoxP2 in the adult brain

In the adult brain, the periventicular gray zone of the optic tectum shows very high levels of FoxP2 expression (Fig. 3B, D and E). However, specific regions in the ventral forebrain and the hypothalamus display high levels of FoxP2 transcripts as well. The ventral telencephalon (Fig. 3B, most anterior expression domain) and the preoptic area show high levels of FoxP2 transcripts (Fig. 3B, C). There is strong expression in the periventricular pretectum and weaker expression in the dorsal thalamus and ventral posterior tuberculum (Fig. 3D). The rostral cerebellum does not express this gene (Fig. 3E, F), while the caudal lobe of cerebellum does (Fig. 3G). The caudal lobe of cerebellum corresponds to the vestibulocerebellum of mammals. The cerebellar FoxP2 expression is in a conspicuous band of seemingly large cells, possibly corresponding to Purkinje cells. Specific cells in the superior reticular nucleus show distinct expression of FoxP2, as do some cells in the medial octavolateralis nucleus, which is the primary sensory nucleus for the lateral line (Mueller et al., 2004).

The functional significance of the temporospatial expression of FoxP2 in zebrafish neural tissue and for that matter in other species, is yet to be elucidated. There is a great shift of expression between the initial expression of FoxP2 in the dorsal telencephalon and the widespread, but region-specific expression in the adult brain. The significance of this shift is not understood, but it is likely that FoxP2 plays a different role during the early development of the brain than it does later in the differentiated neuronal cells. If the expression of FoxP2 is any indication of its sites of function, then FoxP2 is clearly involved in several aspects of brain development and function unrelated to language formation. There are many simmilarities of FoxP2 expression in the brains of birds and crocodiles (Haesler et al., 2004) when compared to that of zebrafish, e.g., ventral telencephalon (possibly striatum), optic tectum, torus semicircularis/inferior colliculus, cerebellum, dorsal thalamus and hypothalamus. It is the challenge for the future to determine the significance of FoxP2 expression in the different

Fig. 2. (Left) Expression of FoxP2 during zebrafish embryogenesis. (A) Lateral view of in situ hybridization of FoxP2 probe to a 20-somite zebrafish embryo. The expression is in the dorsal telencephalon (arrow). (B) Lateral view of in situ hybridization of Emx1 probe to a 20-somite zebrafish embryo. Expression is in

the dorsal telencephalon (T), pineal gland (P) and the urogenital opening (U). (C) Dorsal view of the head region from a 20-somite zebrafish embryo hybridized with a FoxP2 probe. (D) Double in situ hybridization of a FoxP2 probe (red) and Emx1 (black) to the head region of a 20-somite zebrafish embryo. Dorsal view.

Fig. 3. (Right) Expression of FoxP2 in the zebrafish brain. (A) Dorsal view of in situ hybridization of FoxP2 probe to the isolated brain from a 7 dayold zebrafish. The isolated brain was opened along its dorsal axis and flattened. Anterior is to the left. (B) Sagittal section of a brain from a 3 months old zebrafish hybridized with a FoxP2 probe. Vertical lines indicate the positions of cross sections in images (C - H). Cross sections, hybridized with a FoxP2 probe, through the (C) telencephalon, (D)optic tectum, (E) optic tectum, cerebellum and hypothalamus, (F) cerebellum, (G) caudal lobe of the cerebellum and the medulla oblongata. Arrow in (F) indicates the expression in the superior reticular formation. Arrow in (G) indicates expression in the medial octavolateralis nucleus. (H) A section caudal to (G) shows no expression of FoxP2. Abbreviations: Cc, cerebellar crest; CaC, caudal lobe of cerebellum; CCe, corpus cerebelli; DIL, diffuse nucleus of the inferior hypothalamic lobe; Dt, dorsal thalamus; HB, hindbrain; HT, hypothalamus; MO, medulla oblongata; MoN, medial octavolateralis nucleus; PgZ, periventicular gray zone of the optic tectum; Po, preoptic area; Pvpt, periventricular pretectum; SRN, superior reticular nucleus; TeO, optic tectum; TS, torus semicircularis; Vpt, ventral posterior tuberculum.

brain areas.

While this manuscript was under review, a paper by (Bonkowsky and Chien, 2005) described expression of *FoxP2* during early stages of zebrafish development. These authors have demonstrated that there is a widespread expression of *FoxP2* in the neural system of zebrafish during the first three days of development.

Experimental Procedures

Isolation of zebrafish FoxP2

We used PCR and degenerate primers to isolate a cDNA fragment of the *FoxP2* gene encoding the forkhead and the zinc finger domain. The PCR reaction was carried out on reverse transcribed cDNA generated from 9-16 day old zebrafish embryos

according to manufacturer's instructions. Degenerate primers encoding the following peptides were used: FoxP2-F: HGVCKW; FoxP2-R: -HKCFVRV

After sequencing the isolated PCR fragment, we found several EST fragments with high homology in the GenBank database (BQ617568; BQ783717).

Whole mount in situ hybridization and histology

Whole mount *in situ* hybridization was performed according to (Harland, 1991). For double *in situ* hybridization we followed the protocol of (Hauptmann and Gerster, 1994). For sections, the zebrafish brain was embedded in paraffin and 7 micrometers sections were made for *in situ* hybridization. Sections were dewaxed in xylene, rehydrated and hybridized with a digoxigenin-labeled probe. After the chromogenic reaction, the sections were

counterstained with hematoxylin and eosin.

Acknowledgements

We would like to thank Dr. Mario Wullimann with help in the localization of FoxP2 expression in the adult brain and Dr. Eric Swindell for a critical reading of this manuscript.

References

- ACCILI, D. and ARDEN, K.C. (2004). Foxos at the crossroads of cellular metabolism, differentiation and transformation. *Cell* 117: 421-6.
- BONKOWSKY, J.L. and CHIEN, C.B. (2005). Molecular cloning and developmental expression of foxp2 in zebrafish. *Dev Dyn.*
- BRUCE, H.A. and MARGOLIS, R.L. (2002). Foxp2: Novel exons, splice variants and cag repeat length stability. *Human Genetics* 111: 136-44.
- CARLSSON, P. and MAHLAPUU, M. (2002). Forkhead transcription factors: Key players in development and metabolism. *Dev Biol* 250: 1.
- DIRKSEN, M.L. and JAMRICH, M. (1992). A novel, activin-inducible, blastopore lipspecific gene of xenopus laevis contains a fork head DNA-binding domain. *Genes Dev.* 6: 599-608.
- DIRKSEN, M.L. and JAMRICH, M. (1995). Differential expression of fork head genes during early xenopus and zebrafish development. *Dev Genet* 17: 107-16.
- EL-HODIRI, H., BHATIA-DEY, N., KENYON, K., AULT, K., DIRKSEN, M. and JAMRICH, M. (2001). Fox (forkhead) genes are involved in the dorso-ventral patterning of the xenopus mesoderm. *Int J Dev Biol* 45: 265-71.
- ENARD, W., PRZEWORSKI, M., FISHER, S.E., LAI, C.S., WIEBE, V., KITANO, T., MONACO, A.P. and PAABO, S. (2002). Molecular evolution of foxp2, a gene involved in speech and language. *Nature* 418: 869-72.
- ERICKSON, R.P. (2001). Forkhead genes and human disease. J Appl Genet 42: 211-21.
- FISHER, S.E., VARGHA-KHADEM, F., WATKINS, K.E., MONACO, A.P. and PEMBREY, M.E. (1998). Localisation of a gene implicated in a severe speech and language disorder. *Nat Genet* 18: 168-70.
- HAESLER, S., WADA, K., NSHDEJAN, A., MORRISEY, E.E., LINTS, T., JARVIS, E.D. and SCHARFF, C. (2004). Foxp2 expression in avian vocal learners and non-learners. *J Neurosci* 24: 3164-75.
- HARLAND, R.M. (1991). In situ hybridization: An improved whole-mount method for xenopus embryos. *Methods Cell Biol* 36: 685-95.
- HAUPTMANN, G. and GERSTER, T. (1994). Two-color whole-mount in situ hybridization to vertebrate and Drosophila embryos. *Trends Genet* 10: 266.
- HURST, J.A., BARAITSER, M., AUGER, E., GRAHAM, F. and NORELL, S. (1990). An extended family with a dominantly inherited speech disorder. *Dev Med Child Neurol* 32: 352-5.
- KATOH, M. (2004). Human fox gene family (review). Int J Oncol 25: 1495-500.
- KAUFMANN, E. and KNOCHEL, W. (1996). Five years on the wings of fork head. Mech Dev 57: 3-20.
- KAWAHARA, A. and DAWID, I.B. (2002). Developmental expression of zebrafish

emx1 during early embryogenesis. Gene Expr Patterns 2: 201-6.

- LA SPADA, A.R. and TAYLOR, J.P. (2003). Polyglutamines placed into context. *Neuron* 38: 681-4.
- LAI, C.S., FISHER, S.E., HURST, J.A., VARGHA-KHADEM, F. and MONACO, A.P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. *Nature* 413: 519-23.
- LAI, E., PREZIOSO, V.R., SMITH, E., LITVIN, O., COSTA, R.H. and DARNELL, J.E., JR. (1990). Hnf-3a, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. *Genes Dev* 4: 1427-36.
- LEHMANN, O.J., SOWDEN, J.C., CARLSSON, P., JORDAN, T. and BHATTACHARYA, S.S. (2003). Fox's in development and disease. *Trends Genet.* 19: 339-44.
- LI, J. and VOGT, P.K. (1993). The retroviral oncogene gin belongs to the transcription factor family that includes the homeotic gene fork head. *Proc Natl Acad Sci* USA 90: 4490-4.
- LU, M.M., LI, S., YANG, H. and MORRISEY, E.E. (2002). Foxp4: A novel member of the foxp subfamily of winged-helix genes co-expressed with foxp1 and foxp2 in pulmonary and gut tissues. *Gene Expression Patterns* 2: 223-8.
- MORITA, T., NITTA, H., KIYAMA, Y., MORI, H. and MISHINA, M. (1995). Differential expression of two zebrafish emx homeoprotein mrnas in the developing brain. *Neurosci Lett* 198: 131-4.
- MUELLER, T., VERNIER, P. and WULLIMANN, M.F. (2004). The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish danio rerio. *Brain Res* 1011: 156-69.
- SALEEM, R.A., BANERJEE-BASU, S., BERRY, F.B., BAXEVANIS, A.D. and WALTER, M.A. (2003). Structural and functional analyses of disease-causing missense mutations in the forkhead domain of foxc1. *Hum Mol Genet* 12: 2993-3005.
- SHU, W., YANG, H., ZHANG, L., LU, M.M. and MORRISEY, E.E. (2001). Characterization of a new subfamily of winged-helix/forkhead (fox) genes that are expressed in the lung and act as transcriptional repressors. *J Biol Chem* 276: 27488-97.
- TSENG, H.T., SHAH, R. and JAMRICH, M. (2004). Function and regulation of foxf1 during xenopus gut development. *Development* 131: 3637-47.
- VARGHA-KHADEM, F., WATKINS, K.E., PRICE, C.J., ASHBURNER, J., ALCOCK, K.J., CONNELLY, A., FRACKOWIAK, R.S., FRISTON, K.J., PEMBREY, M.E., MISHKIN, M. *et al.* (1998). Neural basis of an inherited speech and language disorder. *Proc Natl Acad Sci USA* 95: 12695-700.
- WANG, B., LIN, D., LI, C. and TUCKER, P. (2003). Multiple domains define the expression and regulatory properties of foxp1 forkhead transcriptional repressors. J. Biol. Chem. 278: 24259-68.
- ZHANG, J., WEBB, D.M. and PODLAHA, O. (2002). Accelerated protein evolution and origins of human-specific features: Foxp2 as an example. *Genetics* 162: 1825-35.

Received: August 2005

Reviewed by Referees: September 2005

Modified by Authors and Accepted for Publication: November 2005