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ABSTRACT  In certain experimental conditions, bacteria form complex spatial-temporal patterns.

A striking example of such kind was reported by Budrene and Berg (1991), who observed a wide

variety of different colony structures ranging from arrays of spots to radially oriented stripes or

arrangements of more complex elongated spots, formed by Escherichia coli. We discuss the

relevant mechanisms of intercellular regulation in bacterial colony which may cause pattern

formation, and formulate the corresponding mathematical model. In numerical experiments a

variety of patterns, observed in real systems, is reproduced. The dynamics of their formation is

investigated.
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Introduction

There are numerous experimental observations of complex
spatial-temporal patterns formed by bacterial colonies. One of the
first evidence of this kind was reported by Houser (1885) more
than a hundred years ago, who observed the formation of stable
circular structures in Proteus colonies. In the present paper we
discuss the mechanism of complex stationary pattern formation
observed in Escherichia coli colonies under certain experimental
conditions. Though we confine to this particular species, it seems
obvious that similar generic mechanisms should manifest them-
selves in other morphogenetic events. The experiment, which we
refer to, was performed by Budrene and Berg (1991, 1995), in
which chemotactic strains of the bacterium E. coli  were inocu-
lated on semi-solid agar containing mixtures of amino acids or
sugars. They found that cells could aggregate chemotactically,
resulting in a wide variety of different colony structures ranging
from arrays of spots to radially oriented stripes or arrangements
of more complex elongated spots. Two of their figures are repro-
duced in Fig. 1. The spots or stripes are dense accumulations of
cells visualized by scattered light. They arise sequentially in a
wake of a spreading circular band, which first appeared at the
edge of the inoculum and them migrated outwards at a constant
speed. Every few hours, new sets of stripes or spots appeared in
the wake.

These aggregates first appeared as faint inhomogeneities that
rapidly intensified. They contained vigorously motile bacteria.
Later on, the spots faded (scattered less light). At this stage all the

Int. J. Dev. Biol. 50: 309-314 (2006)
doi: 10.1387/ijdb.052048ap

*Address correspondence to: Dr. Andrey A. Polezhaev. Lebedev Physical Institute, Leninskiy prosp., 53, 119991 Moscow, Russia. Fax: +7-495-1358-533.
e-mail: apol@lpi.ru

0214-6282/2006/$25.00
© UBC Press
Printed in Spain
www.intjdevbiol.com

cells in the aggregate were nonmotile. The patterns, generated by
cells, are the result of their response to gradients of attractant
which they excrete themselves. These patterns are far more
elaborate than those observed when chemotactic strains grow on
media containing nutrients that are attractants (Adler, 1966;
Nossal, 1972; Wolfe and Berg, 1989; Agladse et al., 1993). They
also differ from the well known traveling waves of aggregating
cells of the slime mold Dictyostelium discoideum (Bonner, 1967)
in that the structures formed by E. coli are temporary stable.
However it is worth mentioning that this class of patterns is not
limited to E. coli; similar structures were observed in Salmonella
typhymurium (Woodward et al., 1995).

In many biological systems spatial pattern formation is often
the result of the loss of stability of the initially uniform state.
Mathematical models of such processes are usually the sets of
partial differential equations of the reaction diffusion type (see, for
example, Murray, 1989). Besides diffusion instability, an essen-
tial factor, which may promote pattern formation, is taxis, i.e.
directed cell motion along the gradient of some chemical sub-
stance (chemotaxis) or mechanical stress gradient (haptotaxis).
Examples of the corresponding models are the ones describing
wound healing processes (Lauffenburger and Kennedy, 1983; Alt
and Lauffenburger, 1987), aggregation of amoebae D. discoideum
(Keller and Segel, 1970, 1971; Nanjundiah, 1973), models of
patterns formed in the embryogenesis processes (Oster and
Murray, 1989), models of pigmentation processes in alligators
(Murray et al., 1990) and snakes (Murray and Myerscough, 1991)
and others.
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A number of mathematical models have been developed in
order to explain the formation of ordered spatial patterns in
colonies of motile bacteria. The model for pattern formation in
bacterial colonies, suggested by Budriene et al. (1988), was
based on the essential assumption of the delay in the cell
response to external signals. This model was able to explain the
formation of consequent concentric rings of high cell density in the
course of bacterial colony growth, but failed to explain more
complex patterns observed in experiments. The reason of this
failure is quite clear from the present-day point of view: chemot-
actic response of bacteria to the gradients of attractants, pro-
duced by the cells themselves, was not taken into account, as its
significance for pattern formation has been brought out clearly
later (Budrene and Berg, 1991, 1995). The role of chemotaxis in
pattern formation by motile bacteria was examined in a number of
consequent models (Bruno, 1992; Woodward et al., 1995; Ben-
Jacob et al., 1995; Tsimring et al., 1995; Tyson, 1996; Brenner et
al., 1998; Mittal et al., 2003). Woodward with colleagues (1995)
suggested a model which successfully explained the patterns
formed by motile S. typhimurium. However, the kinetics of forma-
tion and the very structures in this case are much different from
those observed in E. coli colony, in particular, pattern formation is
preceded by the uniform spread of bacteria all over the Petri dish,
which noticeably simplifies the shape of the model.

In other models in order to reproduce numerically the observed
patterns some rather artificial assumptions were made, such as
existence of a second repellent field or the autocatalytic produc-
tion of attractant triggered by waste (Ben-Jacob et al., 1995;

Tsimring et al., 1995) which were not supported by experimental
data. Because all of these studies produced pictures that look
qualitatively like the experiments, it is unclear which specific
features are responsible for the pattern formation.

A qualitative step in the understanding the nature of complex
patterns formed by motile E. coli cells was made by Brenner et al.
(1998), who systematically analyzed the mechanisms of bacterial
interaction and outlined the basic principles of modeling.

In the present paper we will first discuss in more detail experi-
mental data, then outline the basic principles of the model and
formulate the corresponding equations. Finally we will present
results of numeric simulations and compare them with experimen-
tal observations.

Experimental background

Under normal conditions, an E. coli cell consists of an elon-
gated body, to which several flagella are attached. Each flagellum
is propelled by a rotary motor. There are two modes of operation
of this motor, clockwise and counterclockwise. When the indi-
vidual flagella rotate counterclockwise, they form a bundle and
this bundle propels the bacterium forward; when the flagellum
turns clockwise, the motions of the individual flagella are indepen-
dent of each other, causing the cell to randomly change its
orientation (Berg and Brown, 1972).

The environment must contain chemicals so that the bacterium
can live and function normally. Bacteria require a carbon source,
an energy source and inorganic salts. Typical assays for motility
are engineered so that there are sufficient nutrients for normal
survival; if, however, these nutrients are used up, there can be
transitions in the internal state of the bacteria, affecting their
motion. A common environmental response is chemotaxis (Pfeffer,
1884; Stock and Surette, 1996), in which cells move up an
external chemical gradient. For E. coli, chemotaxis occurs by
constant sampling of attractant as they move. Careful measure-
ments demonstrate that the bacteria compute a weighted differ-
ence between the amount of attractant that binds to their recep-
tors during the previous second of motion and the amount of
attractant that has bound during the three preceding seconds
(Segall et al., 1986). The weighting function used for this compu-
tation was directly measured in impulse response experiments on
single bacteria. When the convolution of the weighting function
with a stimulus is positive, the probability of tumbling decreases;
this effectively increases the length of runs in directions of
increasing attractant gradient.

The combined effect of the physiological and chemotactic
responses of the bacteria motion results in nontrivial collective
behaviors, which have been the focus of inquiry since Adler’s
introduction of assays in which E. coli move in migrating “bands”.
In Adler’s experiments, the bands form when cells of E. coli are
placed in an environment containing substances (oxygen, amino
acids, etc.) that the bacteria both consume and respond to
chemotactically. The consumption of the substance generates an
attractant gradient, which provokes chemotaxis. The net re-
sponse is a well-defined band of cells moving across a capillary
tube or a Petri dish (Adler, 1966, 1969).

Budrene and Berg (1991, 1995) found conditions in which
more complex patterns can form in an environment that is chemo-
tactically inert. In contrast to Adler’s experiments, the environ-

Fig. 1. Two examples of patterns of bacteria E. coli in experiments by

Budrene and Berg (1991). Radial alignment of spots (A) and radially
oriented stripes (B).

Fig. 2. The moving ring of vegetative cells. Black color corresponds to
high cell density. Parameters used in simulations: α = 16, µ = 2, B =8, A
= 20, nlim = 10, G0 = 0.65, Dn = 0.4, Ds = Dc = 1, γ = 0.05, σ = 0.1,
s*=0.1867, S = 0.25, N = 1.5.
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mental conditions induce the bacteria to excrete an attractant
(aspartate) toward which they undergo chemotaxis. The excre-
tion of attractant means that there is effectively a long-range
interaction among the bacteria. These conditions produce pat-
terns that are dramatically different from Adler’s initial experi-
ments. Typical experiments are performed on agar plates, in
which the agar concentration is low enough that the bacteria can
move freely. The type of pattern depends strongly on the amount
of a single carbon and energy source (succinate) that is uniformly
distributed in the dish. Exposure to succinate is required for
bacteria to perform intracellular reactions producing the attrac-
tant. At low succinate concentrations, the bacteria originate in the
center of the Petri dish and form a swarm ring that propagates
toward the boundary. At higher succinate concentrations the
swarm ring destabilizes and produces a symmetrical array of
dense compact structures called aggregates. When cells are
grown in semi-solid agar they form symmetrical arrays of spots or
stripes that arise sequentially. On the other hand, when cells are
grown in a thin layer of liquid medium on a single carbon source,
spots appear synchronously, more randomly arrayed. Micro-
scopic examinations of the growing colonies revealed at least two
morphologically distinct bacterial states: classic rod shaped mo-
tile cells (we will refer to them as vegetative bacteria) in the
peripheral area and clusters of non-motile cells (referred to as
anabiotic cells) in the central area of the colony.

The model

Now we will formulate a mathematical model based on the
assumptions, which follow from the experimental data mentioned
above. Our aim is to reveal the most essential properties of the
bacterial colony which ensure the formation of patterns, observed
by Budrene and Berg (1991, 1995), thus the model is to be as
simple as possible.

The experiments described above suggest that the developing
structure is formed by clusters of non-motile non-dividing cells. In
other words, this structure is neither dynamic nor self-sustaining
(in contrast to a dissipative structure). In all instances the pattern
results from the propagation of a pulsatile wave of bacterial
biomass growth. The passage of this wave leads to a non-uniform
spatial distribution of cell density which is fixed due to the

transition of vegetative bacteria to clusters of anabiotic bacteria.
Thus the time-related constancy of the resulting spatial structure
is due to the non-motility of clusters and cessation of division of
the constituent bacteria. In fact the pattern is laid down on the
moving front of the growing bacterial colony due to the instability
of vegetative cell distribution. This instability is the result of the
chemotactic response of bacteria to the attractant (aspartate),
produced by the vegetative cells themselves. The rate of the
attractant production depends on the amount of a single carbon
and energy source (succinate), consumed by bacteria.

Thus the essential variables of the model are densities of
vegetative (n) and anabiotic (n1) cells, attractant (c) and nutrient
(s) concentrations. The corresponding model has the following
form:
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In Eq. (1) the term G0 sn/(s+σ), corresponding to cell division,
takes into account two experimental facts: the slowing down of the
growth rate for low nutrient concentrations and its finite quantity
for high concentrations. The term γn Q(n) Q(n+n1-n lim), entering
Eqs. (1) and (2),  describes the transition of vegetative cells into
anabiotic form due to the increase of local cell density. The
transition starts when the total cell density reaches the value nlim.
In the equations it is ensured by the corresponding Heaviside
function Q(n+n1-n lim).

Two other terms in Eq. (1) describe cell motility, both random,
with the motility coefficient Dn and chemotactic. Let’s consider the
chemotactic term –α∇(n/(c+µ)2

*∇c) in more detail. As is known
from experiments, the chemotactic cell response depends on the

Fig. 3. Examples of patterns obtained numerically. (A) A radial
pattern. Parameters used in simulations: α = 16, µ = 2, B =8, A = 20, nlim
= 9, G0 = 0.65, Dn = 0.4, Ds = Dc = 1, γ = 0.11, σ = 0.1, s*=0.225, S = 0.8,
N = 0.95. (B) A hehagonal pattern. Parameters used are the same ones
but nlim = 10, s*=0.1867, S = 0.35.

Fig. 4. Concentric stationary rings formed by aggregated cells.

Parameters used in simulations: α = 16, µ = 2, B =8, A = 20, nlim = 9, G0
= 0.65, Dn = 0.4, Ds = Dc = 1, γ = 3, σ = 0.1, s*=0.18, S = 1, N = 0.95.
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attractant receptor occupation (Brown and Berg, 1974). Here µ is
the dissociation constant of the receptor. For low attractant
concentration (c<< µ)  chemotactic velocity is proportional to the
attractant concentration gradient ∇c with the proportionality coef-
ficient α. With the increase of the attractant concentration the
cellular sensitivity to the attractant gradient significantly de-
creases.

Equation (3) describes attractant production, decay and diffu-
sion. The essential assumption is that its production by vegetative
cells depends on the nutrient concentration (Brenner et al., 1998).
Below a certain basic nutrient level s*, its rate is constant, while
above this level it grows with the nutrient concentration.

The last equation describes evolution of the nutrient distribu-
tion depending on its consumption by bacteria and on diffusion.

Results

The model, formulated above, was treated both analytically
and numerically. In the linear analysis, given in the Appendix, the
stability of the expanding ring on the edge of the growing bacterial
colony was examined. As a result the conditions for parameters
were obtained, which correspond to the patterns observed in
experiments. These values of parameters were used in calcula-
tions.

Numerical simulations of Eqs. (1)–(4) were performed in the
polar reference frame using the method of splitting related to
physical processes in the domain 0 < r< R, 0 < ϕ < 2π, where R is
the radius of the Petri dish. For the initial conditions the following
values were taken: n = N in 0 < r < R0, 0 < ϕ < 2π and s = S, c =

n1 = 0 in 0 < r < R, 0 < ϕ < 2π, where R0 is the radius of inoculation.
In the area of inoculation the initial level of bacterial density N was
disturbed by a random noise. For the boundary conditions zero
fluxes at r = 0, r = R were taken.

Numerical experiments have shown that the main parameters,
influencing the type of the emerging pattern are the initial cell
density N and nutrient concentration S, chemotaxis strength α,
the threshold for attractant production s* and the rate of transition
of vegetative cells into anabiotic form γ. By variation of these
parameters it appeared possible to obtain numerically patterns
observed in experiments and to investigate the dynamics of their
formation.

For low nutrient concentrations the cell density in the moving
ring does not reach the threshold value for the transition into the
anabiotic state. The attractant concentration is not sufficient for
the break of stability of the uniform cell distribution along the ring.
Thus, the latter moves in an autowave fashion (Fig. 2).

For higher initial nutrient concentration cell density in the
expanding ring becomes sufficient both for the break of stability of
the uniform cell distribution and for their aggregation. In particular,
if after the formation of the successive set of aggregates the
expanding ring had time to grasp a certain part of the cells,
participating in aggregation, then a radial pattern is formed (Fig.
3A). Aggregates of the next set appear both opposite the previous
ones and between them. On the other hand, if the expanding ring
had no time to grasp cells from the previous set of aggregates, the
hexagonal pattern is formed (Fig. 3B). In this case aggregates of
the net set appear only between the previous ones.

If the rate of cell transition into anabiotic state is increased, the
attractant production is not sufficient for the ring segmentation.
Thus the emerging pattern has the shape of stationary concentric
cell rings (Fig. 4).

In the case when cells have not completely consumed nutrients
behind the moving edge of the bacterial colony, after aggregation
they start to move in the reverse direction. Simultaneously some
of them transform into the anabiotic state and thus the stripes are
formed (Fig. 5).

In Fig. 6 the dynamics of aggregate formation is observed. A
part of cells from the expanding ring stops, while the rest ones
continue to move forward (Fig. 6A). In a certain moment, when the
attractant concentration reaches the critical value, the stationary
ring breaks into separate aggregates (Fig. 6B). This process
repeatedly continues till the edge of the Petri dish is reached (Fig.
6C).

Fig. 5. Elongated cell aggregates (stripes). Parameters used in simu-
lations: α = 16, µ = 2, B =8, A = 20, nlim = 15, G0 = 0.8, Dn = 0.4, Ds =
Dc = 1, γ = 3, σ = 0.1, s*=0.36, S = 0.5, N = 1.15.

Fig. 6. The dynamics of pattern formation (see details in the text). Parameters used in
simulations: α = 16, µ = 2, B =8, A = 20, nlim = 15, G0 = 0.8, Dn = 0.4, Ds = Dc = 1, γ =
3, σ = 0.1, s*=0.36, S = 0. 5, N = 1.15.

A B C
Thus the results of numerical experiments dem-

onstrate that the model, suggested in the present
paper, quite adequately reflects the mechanism
of intercellular regulation in the bacterial colony,
causing the formation of complex spatial patterns.
By variation of the model parameters it appeared
possible both to reproduce numerically the pat-
terns, observed in experiments and to examine
the dynamics of their formation.

Acknowledgments
This work was supported by grants from the Russian

Foundation of Basic Research and by the grant of
support for leading scientific schools of Russia.



Patterns formed by chemotactic bacteria    313

References

ADLER, J. (1966). Chemotaxis in bacteria. Science. 153:708-716.

ADLER, J. (1969). Chemoreceptors in bacteria. Science. 166:1588-1597.

AGLADZE, K., BUDRIENE, E., IVANITSKY, G., KRINSKY, V., SHAKHBAZYAN, V.
and TSYGANOV, M. (1993). Wave mechanisms of pattern formation in micro-
bial populations. Proc. R. Soc. Lond. B. Biol. Sci. 253: 131-135.

ALT, W. and LAUFFENBURGER, D.A. (1987). Transient behavior of a chemotaxis
system modeling certain types of tissue inflammation. J. Math. Biol. 16:141-163.

BEN-JACOB, E., COHEN, I., SHOCHET, O., ARANSON, I., LEVINE, H. and
TSIMRING. L. (1995). Complex bacterial patterns. Nature. 373:566-567.

BERG, H. C. and BROWN, D. A. (1972). Chemotaxis in Escherichia coli analysed
by three dimensional tracking. Nature. 239:500-504.

BONNER, J. (1967). The Cellular Slime Molds. Princeton University Press, Princeton,
NJ, 205 pp.

BRENNER, M. P., LEVITOV, L. S. and BUDRENE, E. O. (1998). Physical mecha-
nisms for chemotactic pattern formation by bacteria. Biophys. J. 74: 1677–1693.

BROWN, D.A. and BERG, H.C. (1974). Temporal stimulation of chemotaxis in
Escherichia coli. Proc. R. Soc. Lond. B. Biol. Sci. 71: 1388–1392.

BRUNO, W. (1992). CNLS Newsletter. 82:1-10.

BUDRENE, E. and BERG, H. (1991). Complex patterns formed by motile cells of
Escherichia coli. Nature. 349:630-633.

BUDRENE, E. and BERG, H. (1995). Dynamics of formation of symmetrical
patterns by chemotactic bacteria. Nature. 376:49-53.

BUDRIENE, E.O., POLEZHAEV, A.A. and PTITSYN, M.O. (1988). Mathematical
modelling of intercellular regulation causing the formation of spatial structures
in bacterial colonies. J. theor. Biol. 135:323–341.

HOUSER, G. (1885). Uber Fäulmisslakterien und deren Beriehungen zur Septicämie.
Leipzig, F.G.V. Vogel.

KELLER, E.F. and SEGEL, L.A. (1970). Initiation of slime mold aggregation viewed
as an instability. J. Theor. Biol. 26:399-415.

KELLER, E.F. and SEGEL, L.A. (1971). Travelling bands of chemotaxis system
modeling certain types of tissue inflammation. J. Math. Biol. 16: 141–163.

LAUFFENBURGER, D.A. and KENNEDY, C.R. (1983). Localized bacterial infec-

tion a distributed model for tissue inflammation. J. Math. Biol. 24: 691-722.

MITTAL, N., BUDRENE, E.O., BRENNER, M. P. and VAN OUDENAARDEN, A.
(2003). Motility of Escherichia coli cells in clusters formed by chemotactic
aggregation. Proc. Natl. Acad. Sci. USA. 100: 13259 – 13263.

MURRAY, J.D. (1989). Mathematical Biology. Berlin, Springer-Verlag. [2nd cor-
rected edition 1993]. 760 pp.

MURRAY, J.D., DEEMING, D.C. and FERGUSON, M.W.J. (1990). Size-dependent
pigmentation–pattern formation in embryos of Alligator mississipiensis: time of
initiation of pattern generation mechanisms. Proc. R. Soc. Lond. B. Biol. Sci.
239: 279–293

MURRAY, J.D. and MYERSCOUGH, M.R. (1991). Pigmentation pattern formation
on snakes. J. Theor. Biol. 149: 339–360.

NANJUNDIAH, V. (1973). Chemotaxis, signal relaying and aggregation morphol-
ogy. J. Theor. Biol. 30: 63–105.

NOSSAL, R. (1972). Growth and movement of rings of chemotactic bacteria. Exp.
Cell. Res. 75: 138-142.

OSTER, G.F. and MURRAY, J.D. (1989). Patterns formation models and develop-
mental constrains. J. Exp. Zool. 251:186–202.

PFEFFER, W. (1884). Untersuch. Bot. Inst. Tubingen. 1:363.

SEGALL, J. E., BLOCK, S. and BERG, H. C. (1986). Temporal comparisons in
bacterial chemotaxis. Proc. Natl. Acad. Sci. USA. 83:8987-8991.

STOCK, J. B. and SURETTE, M. G. (1996). Chemotaxis. In Escherichia coli and
Salmonella. F. C. Neidardt, editor. ASM Press, Washington, DC. 1103-1129.

TSIMRING, L., LEVINE, H., ARANSON, I., JACOB, E.B., COHEN, I., SHOCHET,
O. and REYNOLDS, W. (1995). Aggregation patterns in stressed bacteria.
Phys. Rev. Lett. 75:1859-1862.

TYSON, R. (1996). Pattern formation by E. coli mathematical and numerical
investigation of a biological phenomenon. Ph.D. thesis. University of Washing-
ton, Seattle.

WOLFE, A. J. and BERG, H. (1989). Migration of bacteria in semi-solid agar. Proc.
Natl. Acad. Sci. USA. 86:6973-6977.

WOODWARD, D. E., TYSON, R., MYERSCOUGH, M., MURRAY, J. D., BUDRENE,
E. and BERG, H. (1995). Spatio-temporal patterns generated by Salmonella
typhimurium. Biophys. J. 68:2181-2189.

Here we obtain the conditions for instability of the expanding ring
on the front of the growing colony. As the total cell density is small
there we disregard the transition of vegetative cells into anabiotic
form. We also neglect the first term in Eq. (1) assuming that the
characteristic tine of cell division is large compared with that of the
cell motility. Then Eqs. (1), (3) take the following form:
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Linearizing Eqs. (A1), (A2) near the uniform steady state (n0, c0),
where A(s)n0 = Bc0, we obtain
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The uniform state is unstable due to the bacterial motility, if there
exists an interval of wave numbers k2 for which one of the
eigenvalues of Eq. (A5) is positive. It can be so if the free term of
Eq. (A5) is negative:

Mathematical Appendix
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Now let’s estimate the value of s*. From Eqs. (1) and (4) it
follows that for the uniform distribution n0 = S - s0, where (n0, s0)
is the quasi-stationary state and S is the initial nutrient concentra-
tion. From the condition A(s)n0 = Bc0 it follows, that
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Substituting (A9) into (A6) we obtain
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Thus the required value of s* lies in the interval between these
roots.


